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An algorithm for adaptive pole-placement for the class of single-input/single-output systems of order n is 

proposed. The asymptotic properties of the algorithm do not depend on persistently exciting signals. Exci­

tation is used only initially to avoid pole-zero cancellation of the parameter estimates. The main result is 

that the asymptotic behaviour of the system equals the behaviour one would have obtained on the basis of 

the true system. Since this does not imply full identification of the desired control law, we propose the term 

weak self-tuning. The reason that such a result can be obtained without identification of the true system is 

the following: Suppose we have a wrong estimate of the system, and that based on that estimate we gen­

erate the controls, and that the incorrectness of the estimate is not revealed by the resulting closed-loop 

behaviour of the system, then the inputs are exactly equal to the ones we would have applied if we had 

known the system. 
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1. INTRODUCTION 

This paper deals with the problem of adaptive pole assignment of single-input/single-output linear 

time-invariant systems of which only the order is assumed to be known. This problem has received 

considerable attention in the literature. Several approaches have been proposed. Pole assignment can 

be treated in the framework of model reference adaptive control. This has for instance been done in 

[ 16]. A drawback of this method is that due to the used convergence analysis only minimum phase 

systems can be handled. In [3,4,5,7,9] the problem is studied for general systems in input/output form 

with the only assumption that the order of the system is known. Algorithms based on parameter esti­

mation and the certainty equivalence principle are proposed. In all of these papers stability results 

are derived under additional assumptions. The main reason that these assumptions have to be made 

seems to be that during the estimation procedure (unstable) pole-zero cancellation can occur. This can 

be avoided by assuming extra knowledge of the true system, which reduces the results essentially to 

local ones. Another way of avoiding that parameter estimates eventually have common factors is to 

use sufficiently exciting signals to assure convergence of the estimates to the true parameter value. It 

should be clear that additional injected signals can influence the performance of the system negatively, 

moreover it is always difficult to guarantee internal excitation by means of conditions on an external 

signal, since external excitation may be annihilated by unpredictable signals in the feedback loop. 

In [10,12] algorithms are presented that overcome this difficulty. In [12] the parameter estimates are 

modified to keep them away from the boundary of the "dangerous region". In [10] the identification is 

done simultaneously in the parameter space and the controller space. By using an extra (non-linear) 

feedback driven by the discrepancy between the controller estimate and the expected behaviour on the 

basis of the parameter estimate, these two schemes are brought into agreement with each other. The 

extra feedback can be interpreted as an asymptotic vanishing excitation signal. A drawback of both 

In this paper an adaptive pole assignment algorithm is proposed which does not call for external 
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exciting inputs and where no a priori information of the system is needed either. The underlying idea 
is that complete knowledge of the system parameters is not needed in order to be able to generate the 
proper sequence of inputs, and hence one should not make any attempt to learn the system com­

pletely. This observation is based on an analysis of the asymptotic structure of the problem. By this 
we mean the following. Generally speaking, in adaptive control one has a (partially) unknown plant 
and a control objective. The sequence of inputs that reaches the objective will in general depend on 
the unknown system, hence in one way or an other one should try to gain knowledge of the system on 
the basis of, initially, arbitrary inputs and the resulting outputs. Then, based on the information one 
can calculate the to be applied inputs more accurately. What one then hopes is that by applying this 
procedure the information about the system will eventually be sufficient to generate the desired con­
trol inputs. However, this procedure leads inevitably to lack of internal excitation, since information 
of the system will be obtained on the basis of closed-loop behaviour only. We believe that this is a 
fundamental problem in adaptive control. One way of dealing with this problem is to inject a 
sufficiently rich signal to assure internal excitation, and hence complete knowledge of the system. But 
before deciding to do that, it might be a good idea to investigate whether or not lack of internal exci­
tation leads to sub-desired behaviour. One of the key observations of this work is that in the case of 
pole assignment the information one obtains from the closed-loop behaviour of the system without 
external signals, is just sufficient to generate the proper sequence of inputs. We believe that this pro­
perty can be seen as a kind of a posteriori justification for a lot of existing algorithms. Based on this 
observation an algorithm will be derived which will asymptotically result in exactly the same closed­
loop behaviour as one would have obtained on the basis of complete knowledge of the system. The 
problem of pole-zero cancellation in the estimation procedure is avoided by monitoring how far away 
we are from cancellation. If we are too close, we apply a special (finite) sequence of inputs, to bias the 
estimates from cancellation. The crucial novelty is then that we can prove that this has to be done 
only a finite number of times. 
We will use both the input/output description as well as the input/state/output representation of the 
systems at hand. The state space description is more convenient for parts of the analysis and to state 
the results in a clear fashion, whereas the input/ output description seems to be the right tool for the 
estimation part of the algorithm. 
Our main result is that the asymptotic closed-loop behaviour of the adaptive controlled system equals 
the behaviour we would have obtained knowing the true system parameters. The proof of this result is 
independent of the desired pole locations. Hence even in the somewhat unrealistic situation where 

one wants to place the closed-loop poles in the unstable region our algorithm is applicable. This may 
look purely academic, but it shows that the adaptation of the controller parameters does not depend 
on stability properties of the system. The reason that we are able to derive such a result is that we 
consider the unknown parameters in the state space description as linear maps of which we want to 
know the action on certain subspaces. The variables on which these maps act can then be normalized 

without losing any information. 
The paper is organized as follows. In section 2 we will formulate the problem statement. First we will 
give the non-adaptive problem and then its adaptive counterpart. A general theorem will be given 
which relates the adaptive requirement to the resulting closed-loop behaviour of the system. In section 
3 we make an attempt to reveal some of the basic principles on which an algorithm should be based. 
These principles are widely used but seldom commented upon. In section 4 a detailed study is made 
of how much information of the system parameters we need for generating the appropriate sequence 
of controls, and how much information we can obtain from the closed-loop behaviour. In sections 5 
and 6 algorithms will be presented for the observed state case and the non-observed state case respec­
tively. To illustrate the algorithms, simulation results will be discussed in section 7. Finally, in section 
8 we will draw some conclusions. 



2. PRELIMINARIES 

Consider the following time-invariant finite dimensional linear system: 

x(k + 1) = Ax(k) + bu(k), x(O) 

y(k) = cx(k) 

(A,b,c)EE, where 

E:={(A,b,c)ERnXnxRnXI XR!Xn I (A,b,c) minimal} 

Also define: 

E:={(A,b)ERnxnxRnxl I (A,b) controllable} 
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(2.1.a) 

(2.1.b) 

(2.2) 

(2.3) 

Let A:= {A1 , •• ,An} CC be such that AEA ~~EA. Let the control objective be the assignment of the 
n 

closed-loop poles to the configuration A. Define aER[X] by: a(X)= Il(X -A;). 
i=I 

Define f: E."'°' R 1xn by: 

f (A,b): = -[0 ... 01] [b:Ab: .... :An-lb r 1a(A) (2.4) 

Then the characteristic polynomial of A +bf (A,b) is exactly a, and moreover, since the system is 
single-input,f(A,b) is the only feedback law with that property. (see [17]). 
Suppose now that the true value (A 0 ,b0 ,c0 ) of the system parameters is unknown. Then the control 
objective has to be replaced by a weaker one. As a modified version of the original control objective 
we choose the following: 

Generate a sequence of inputs such that asymptotically the applied inputs equal the inputs that 
would have been calculated on the basis of the true system parameters. Moreover, the resulting con­
trolled system should be stable, provided that A is contained in the unit disk. 

The following theorem relates the above described requirements to the resulting closed-loop behaviour 
of the system. 

2.1 Let (A,b)ERnxn XRnxJ, not necessarily controllable, and let fERJxn. Let the sequence 
{u(k)}keN and x(O)ERn be given. Define x(k) by: 

x(k + 1) = Ax(k)+bu(k) (2.5) 

Assume that for all k: x(k)-=!== 0 and suppose: 

1im I u(k)- fx(k) I = 0 (2.6) 
k->OO llx(k)ll 

Then there exists a sequence of matrices { l:ik heN such that for all k: 

i) x(k + 1) = (A +bf +l:ik)x(k) 

ii) 1im l:ik = 0 
k->oo 

PROOF Define: 

Ilk : = b(u(k)- fx(k))x(kl 

x(kl x(k) 

then one can easily check that 2.7 holds. 2.8 follows from 2.6. 

(2.7) 

(2.8) 

(2.9) 

COMMENT Theorem 2.1 tells us that if the input of a linear system is asymptotically given by state 
feedback, then asymptotically the system will behave as if this feedback was used. This result holds 
whether or not f is stabilizing. An important feature in the assumption of the theorem is the 
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normalization. This decouples the result from the norm of the state trajectory, and emphasizes that 
everything depends only on the directions of the states. 
If we replace (A,b) by (Ao,bo) and f by f (A o,b0 ), we see what kind of result we get if we are able to 
produce a sequence of inputs which satisfies (2.6). In section 5 and 6 we will present algorithms which 
produce such sequences. 

3. ADMISSIBLE ALGORITHMS 
In this section we will define a class of admissible adaptive pole assignment algorithms. There are two 
reasons why we think that at least an attempt in this direction should be made. The first reason is 
that we want to rule out algorithms from which it is intuitively clear that they will give bad 
behaviour, although mathematically things look good. Since we deal with deterministic systems we 
can, mathematically speaking, identify the system exactly within finite time. After having done so, we 
can then calculate the control law and apply it for ever. It should be clear that this kind of open-loop 
adaptive control will not be very robust against (slow) variations of the system parameters. 
The second reason is that we want to make the principles that lead to the development of the algo­
rithms proposed in sections 5 & 6 more explicit. It will tum out that our algorithm is just an example 
of an admissible algorithm that behaves well asymptotically. But it is quite possible that there are 
better algorithms within the class defined below. 

DEFINITION 3.1 An admissible adaptive pole assignment algorithm is a procedure consisting of two 
parts: An estimation part and a control part. Furthermore there is a rule which connects these two 
parts. The procedure should obey the following rules. 
(i)RECURSIVENESS At every time instant a new estimation of the system parameters (or a function of 

them) is made on the basis of a uniformly bounded number of past observations and past estima­
tions. 

(ii)NEUTRALITY The estimate at time k + 1 equals the estimate at time k if and only if there is no 
discrepancy between the observed data and the data expected on the basis of the estimate at time k. 

(iii)CERTAINTY EQUIVALENCE The estimation part and the control part are connected according to the 
certainty equivalence principle: The control action at time k, for almost all k is calculated on the 
basis of the latest estimate, as if this estimate represents the true system. With almost always we 
understand: always except for a finite number of times. At those time instants a alternative control 
action may be taken. 

An admissible algorithm is called regular if it does not use the possibility of taking alternative control 
actions. It is called irregular otherwise. 

COMMENT If the algorithm does not depend on time, then neutrality and certainty equivalence enter 
quite naturally. For, suppose we are lucky and the initial guess of the system parameters happens to 
be the true one, then the control action should equal the desired one. Since this should hold for every 
possible value of the system parameters certainty equivalence and neutrality follow. Another motiva­
tion for neutrality is the following: Suppose that the present estimate is not falsified by the newly 
observed data, why should one then change the estimate and moreover in which direction should this 
be done. The escape possibility of taking alternative control actions at a finite number of time 
instants is provided for the following reason. Since the estimation part produces estimates in the space 
of minimal triples, one should be able to avoid that estimates eventually become non-minimal. Our 
algorithms make use of this possibility. 

Note that by definition it is not allowed to use external excitation signals. 
In the next section we will investigate the question whether there is ariy chance that there exist admis­
sible algorithms which give good asymptotic behaviour. 
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4. How MUCH CAN WE LEARN, AND HOW MUCH SHOULD WE LEARN? 

In this section we shall give a characterization of how much we can learn from the true system when 
the control sequence is generated by a regular admissible algorithm. The reason that we restrict our 
attention to regular algorithms (i.e. algorithms which generate every input on the basis of the latest 
estimate) is that for every admissible algorithm there is a time instant after which the algorithm 
behaves regular. Since we want ·to draw conclusions about possible limit points of an unspecified 
admissible algorithm, we should not include algorithms with very specific initial behaviour. 

DEFINITION 4.1 Let T be a regular admissible algorithm. We call (A,b,c,x(O)) indistinguishable from 
(A 0 ,b0 ,c0 ,x(O)) under the use of T, if and only if (A,b,c) is invariant under T, provided that the 
observed data is produced by (A 0 ,b0 ,c0 ), and the input sequence is generated by T. We call 

(A,b,c,x(O)) indistinguishable from (A 0 ,b0 ,c0 ,x(O)) if and only if (A,b,c,x(O)) is indistinguishable 
under the use of T, for every regular admissible T. 

COMMENT The above definition is motivated by the following observation. Suppose we have a guess 

(A,b,c,x(O)) of the system which happens to satisfy the requirements of the Definition 4.1. Suppose 

now that we apply a regular admissible algorithm to the system with initial value (A,b,c,x(O)). Since 

(A,b,c,x(O)) is invariant under the algorithm, the next and all the successive estimates will be (A,b,c). 

Hence by applying a regular algorithm we can never tell whether the true system parameters were 

(A,b,c) or (A 0 ,b0 ,c0 ). In that sense (A,b,c,x(O)) cannot be distinguished from (A 0 ,b0 ,c0 ,x(O)). Note 
that the relation defined above is non symmetric and non transitive. 

PROPOSITION 4.2 If the state trajectory is observed, then (A,b,c,x(O)) is indistinguishable from 
(A 0 ,b0 ,co,x(O)) if and only if for all k: 

(Ao+bof(A,b))x(k) =(A +bf(A,b))x(k), (4.1) 

where x (k) is defined by: 

x(k + 1) = <Ao +bof (A,b))x(k) (4.2) 

PRooF Suppose (A,b,c,x(O)) is indistinguishable from (A 0 ,b0 ,c0 ,x(O)). Take (A,b) as the initial state 
of any admissible algorithm. According to the certainty equivalent principle we should then apply 
u(O)= f (A,b)x(O). Now observe the new state x(l). Since (A,b) is invariant under the algorithm, we 
conclude that: 

x(l) = (Ao +bof (A,b))x(O) = (A +bf(A,b))x(O), (4.3) 

according to the neutrality principle. For general k the same conclusion holds. 
Suppose now that for all k (4.1) holds, then again by the neutrality principle, (A,b) will be invariant 
under any admissible algorithm. 

PROPOSITION 4.3 If the state trajectory is not observed, then (A,b,c,z(O)) cannot be distinguished from 
(A 0 ,b0 ,c0 ,x(O)) if and only if for all k: 

y(k) = y(k), (4.4) 

wherey(k) andy(k) are defined by: 

x(k + 1) = Aox(k)+bof (A,b)z(k) ,x(O) 

y(k) = c0x(k) 

z(k + 1) = Az(k)+bf (A,b)z(k) ,z(O) 

y(k) = cz(k) 

(4.5a) 

(4.5b) 

(4.6a) 

(4.6b) 
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PROOF The proof is completely analogous to that of Proposition 4.2. 

COMMENT The essential conclusion of the above results is that if we have a guess of the true system 
which happens to be indistinguishable from the true system under the use of any admissible algo­
rithm, we will not change this guess. The crucial question then arises what the consequences are for 
the resulting input sequence. The reassuring answer is that both in the observed state and in the non 
observed state case the applied input sequence is then exactly the desired one. The following theorems 
formalize this statement. 

THEOREM 4.4 Suppose that for all k: 

(Ao+bof(A,b))x(k) =(A +bf(A,b))x(k), 

where x(k) is defined as in (4.2); then for all k: 

f (A,b)x(k) = f (Ao,b0 )x(k) 

(4.7) 

(4.8) 

THEOREM 4.5 Suppose we have (A 0 ,b0 ,c0 ,x(O)) and (A,b,c,z(O)) for which (4.4), (4.5) and (4.6) hold, 
then for all k: 

f (A,b)z(k) = f (Ao,b 0 )x(k) (4.9) 

REMARK From Theorems 4.4 and 4.5 it follows that once we have a guess of the true system which is 
indistinguishable from the true system under the use of any admissible algorithm, the resulting input 
sequence is exactly the desired one. This reflects in a certain sense a narrow escape. For the minimum 
information about (A 0 ,b0 ,c0) is that we should be able to calculate the desired input at every time 
instant, i.e. f (A 0 ,b0 )x(k). On the other hand it is obvious that the maximum information we can get 
from the true system by means of an admissible algorithm is described by 4.4, 4.5, and 4.6. Hence the 
maximum we can get is the minimum we need. This can be rephrased by saying that there is no 
conflict between closed-loop identification and pole assignment. It should be noted that this does not 
hold for general control criteria, see for instance [15]. 

For the proofs of Theorems 4.4 and 4.5 we will use the following two results, which we will prove in 
the appendix to this section. 

THEOREM 4.6 Let (A 0 ,b0 ),(A,b)EE and 'Ya linear subspace of Rnxn such that: 

i) For all vECV": (Ao+b0f(A,b))vECV (4.10) 

ii) For all vECV": (Ao+bof(A,b))v =(A +bf(A,b))v (4.11) 

Then: 

for all vECV:f(A,b)v=f(Ao,bo)v. (4.12) 

PROOF See the appendix to this section. 

THEOREM 4.7 Let {(u(k),y(k))}keN be a sequence in R2 and suppose there exist 
(A1>bi.c 1), (A 2 ,b2 ,c2), minimal triples of order n, and sequences {x(k)(l>,x(k)<2>} in Rn, such that 
for all k: 

x(k +1)<1> = A 1x(k)O>+b 1u(k) 

x(k + 1)<2> = A2x(k)<1> +b2u(k) 

(4.13) 

(4.14) 



y(k) = C1X(k)(I) 

y(k) = C2X(k)<2> 

Define~ = span {x(k)}kEl\1> and d; = dim(~), i = 1,2. 
(i)if d 1 < n, then there exists a non-singular matrix S, such that: Sx (k )<1> = x (k p>. 
(ii)d1 = d2. 
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(4.15) 

(4.16) 

(iii)if there exists g 1 such that: u (k) = · g 1 x (k )(I), then there exists a non-singular matrix S, such that: 
Sx(k)<1> = x(k)<2>. 

PROOF See the appendix to this section. 

PROOF OF THEOREM 4.4: 

Suppose that (4.7) holds. Define <X:= span {x(k)}keN· Then : (A 0 +b0f(A,b))'XC'X Moreover, for 
all xE'X: (A 0 +b0f(A,b))x = (A+bf(A,b))x. Hence by Theorem 4.6 we have for all xE'X: 

J (A,b)x = J (Ao,bo)x. In particular: f(A,b)x(k) = f (Ao,bo)x(k). 

PROOF OF THEOREM 4.5: 

Suppose (4.4), (4.5) and (4.6) hold. Then, by putting u(k) = f (A,b)z(k), the conditions of Theorem 

4.7 are satisfied. Hence there exists a non-singular matrix S such that for all k: Sx(k) = z(k). By 

replacing z(k) by s- 1 x(k) in (4.5a) and (4.6a) we obtain two recursions for x(k): 

x(k+l) = (Ao+bof(A,b)S- 1)x(k) (4.17) 

and: 

x(k + 1) = S(A +bf(A,b))S- 1x(k) 

Define: A: =SAs- 1
, and b: =Sb, then (4.17) and (4.18) can be written as: 

x(k + 1) = (Ao +bof (A,b))x(k) 

and: 

-
x(k + 1) = (A +bf(A,b))x(k) 

(4.18) 

(4.19) 

(4.20) 

Hence, by Theorem 4.4 it follows that for all k: f (A,b)x(k) = f (A 0 ,b0 )x(k), which is equivalent to: 
f (A,b)z(k) = f (Ao,b 0 )x(k). 

APPENDIX. 

PROOF OF THEOREM 4.6 Suppose that AcR and that "'A;=/="'Aj for all i=/=j. Let Cifbe one-dimensional. 
Then Cifis generated by an eigenvector v of (A +bf(A,b)) corresponding to let's say "'A:="'A;. Hence by 

(4.11): (A 0 +b0f(A,b))v ="'Av. Suppose (A 0 ,b0 ) is in standard controllable form. Then 
v=[l,"'A, .. ,An-l]T. The spectrum of A 0 +b0f(A 0 ,b0 ) is by definition of/equal to A. Hence A is an 

eigenvalue of (A 0 +b0f(A 0 ,b0 )), and there exists v such that (A 0 +b0f(A 0 ,b0 ))v="'Av. From the 

standard controllable form it is easy to see that the only candidates for an eigenvector with eigenvalue 

"'A are multiples of v, hence v=µ.v, for some µ.=/=O. Hence (Ao+bof(Ao,bo))v =(Ao+bof(A,b))v. Since 
b0 =/=0, we conclude thatf(A,b)v =f(Ao,bo)v. 

If dimCif> 1, then Cifhas a basis of eigenvectors and the above reasoning gives the result. For general A 
the proof goes along the same lines, but then one has to study several different cases. We skip the 
details. 

For the proof of Theoretp. 4.7 we will use the following: 

LEMMA 4.8. Let (A,b)EE and x(O)ERn. Let {u(k)} be a sequence of real numbers. Define: 
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x(k + 1) = Ax(k)+bu(k) k = 0, 1,2, ... (4.21) 

Define 'X:= span {x(k)}kel'lh and d:=dim (<X). If d<n, then there exists a gERixn such that for all 
k: 

u(k) = gx(k) 

PROOF Suppose (A,b) is in standard controllable form i.e. 

0 1 0 
0 

0 

A= 0 b= 
0 

0 0 
1 

a1 a2 an 

Define aERIXn by: a: =(ai. .. ,an) Define: 
-
A:=A-ba 

ii: =ax(k)+u(k) 

then: 

x(k + 1) = Ax(k)+bu(k) 

Suppose x(O)=[x1(0), .. ,Xn(O)f, define HERnXN by: 

H : = [x(O),x(l),x(2),x(3), .... ] 

then: 

X1(0) X2(0) X3(0) Xn(O) 

H:= 
u(O) 

xn(O) u(O) 

Xn(O) u(O) u(I) u(n -2) 

u(O) 

u(n -1) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Since d<n, rank(H)<n. Now His a truncated Hankel matrix, hence its rank does not increase if we 
add the last row, shifted to the left, as then+ 1-th row. This shifted row is: 

[u(o),u(1 ), u(2), u(3), .... 1 (4.29) 

Since the rank of the increased matrix is equal to the original one, the last row is a linear combination 
of the first n rows. In other words, there exist g 1, ... , in ER such that: 

- IXn - - -where r; denotes the i-th row. Define gER by: g : = [ii. ... ,gn1· Then for all k: 

u(k) = gx(k) 

Define g by: g: = g-a. Finally: 

u(k) = uk-ax(k) 

= gx(k)-ax(k) 

= gx(k) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 



We will now prove Theorem 4. 7: 

PROOF OF THEOREM 4.7: 

i). Suppose d 1 < n. 

i-1 

y(k+i) = c 1A\x(k)<I)+ ~A{b 1 u(k+i-j-l) 
j=o 

Define: 

W:= 

then: 

A n-I 
C1 I 

y(k) 

y(k + l)-c 1b 1u(k) 
Wx(k) = 

From which we conclude that: 

x(k)<I) 

u(k) 

u(k +n -2) 

From which we derive: 

x\1>(k) 

= 

y(k) 

1 

0 

0 

y(k+n-1) 

= T1 u(k) 

u(k +n -2) u(k +n -2) 

In the same way one derives that: 

x\2>(k) 
y(k) 

u(k+n-2) 

Hence: 

y(k+n-l) 

= T2 u(k) 

u(k +n -2) 

0 y(k) 

1 -c1A7-2b1 -c1b1 y(k +n -1) 

I O u(k) 

0 u(k +n -2) 

9 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 
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x(k)<l) 

u(k) 

u(k +n -2) 

x(k)<1> 

u(k) 
=R. 

u(k+n-2) 

(4.41) 

where R=T1Ti 1
• Now since u(k+i) = bf(x(k+i+l)<2>-A 2x(k+i)<2>), there exist matrices 

~2>, ... ,~ 2 > E!Rnxn , such that for all k: 

x(k)<1> = M'(>x(k)<2>+ ... +~ 2 >x(k +n -1)<2> 

and similarly: 

x(k)<2> = ~ 1 >x(k)< 1 >+ ... +~ 1 >x~~n-1 

(4.42) 

(4.43) 

Since by assumption d <n, we conclude from Lemma 4.9 that there exists g1 such that 
u(k) = g1x(k)(I>, hence x(k+1)<1> = (A 1 +b1gi)x(k)(I>. Together with (4.43) this gives that there 
exists a matrix N 1 such that for all k: 

x(k)<2> = N 1x(k)<1> (4.44) 

Denote by ~ the linear span of x(k)<1>keN• and by d2 its dimension. From (4.44) it follows that: 
d 2 ~di. hence by Lemma 4.9 there exists g2 such that for all k: u(k) = g2x(k)<1>. As above we con­
clude that there exists a matrix N 2 such that for all k: 

x(k)<1> = N 2x(k)<1> (4.45) 

Finally (4.44) together with (4.45) gives the statement. 
ii) This follows immediately form part i). 
iii) Suppose u(k) = g1x(k)<I>, then just as in the proof of part (i) ( (4.43) ), we conclude that: 

x(k)<2> = N1x(k)<1> 

Since d 1 = d2 = n, it follows that N 1 is non-singular. 

5. AN ADMISSIBLE ALGORITHM FOR THE OBSERVED STATE CASE 

We will now propose an admissible algorithm for the case that the state of the system (2.1) is 
observed. This is of course not a very realistic situation, but on a conceptual level it provides a good 
preparation for the non-observed state case. The algorithm is a modification of the one described in 
[13,14]. There an essential assumption was made on the controllability of the limit points of the 
sequence of parameter estimates. By introducing an alternative procedure when the parameter esti­
mates are close to non-controllable, this assumption is relaxed. A drawback is that the analysis of the 
algorithm becomes a little bit more complicated. However, the superficial reader may take it for 
granted that parameter estimates and their limit points are controllable, without losing appreciation of 
what is going on. 
ALGORITHM 5.2 

We will introduce the algorithm inductively. Choose any sequence {Ek} and any sequence {Ck} such 
that: 

(5.1) 

INITIALIZATION (Ao.ho): arbitrarily, ho = 0, jo = 0, x(O): given. 

RECURSION 

(5.2) 

• d means Euclidean distance. As proven in (2], Bk is the smallest singular value of the controllability matrix of (At.bk). 



if hk = 0 

then: 

{ if 8k ;;;;.: f:j. 

then: 
A A• 

{ u(k) = f (Ak>hk)x(k) 

hk+I = hk 

}k+J = }k} 

else (if 8k <£j.} 

{ u(k) = CA llx(k)ll 

A+1 = }k+l}} 

else (if hk >0) 

{ u(k) = 0 

hk+I = hk-1 

A+1 =A } 

{ x(k + 1) = A 0x(k)+h0u(k) 

x(k + 1) = A.kx(k)+bku(k) 

Ak+J = Ak + (llu(k)ll2+11x(k)ll2
)-

1(x(k+l)-x(k+I))x(kl 

bk+J =bk+ (llu(k)ll2 +11x(k)ll2
)-

1(x(k+l)-x(k+I))u(k)} 

11 

(5.2.a.l) 

(5.2.b.l) 

(5.2.d.l) 

(5.2.a.2) 

(5.2.b.2) 

(5.2.c.2) 

(5.2.d.2) 

(5.2.a.3) 

(5.2.b.3) 

(5.2.d.3) 

(5.2.e) 

(5.2.f) 

(5.2.g) 

(5.2.h) 

REMARK The division in (5.2.g) and (5.2.h) can of course only be done if x(k) or u(k) is non-zero. 
Therefore if x(k0 ) = 0 for some k 0 , we do not change the estimates anymore and we take u(k) = 0 
for all k ;;;;.: k 0 • For the analysis of the algorithm we will assume that x(k)*O for all k. This assump­
tion is also needed if we want to apply Theorem 2.1. 

q>~NT Let us first exe.lail} how the (k + 1)-th estimate, (Ak+i.bk+J) of (A 0,h0) is calculated from 
(Ak>bk>u(k)). Suppose (Ak>bd has been calculated and that u(k) has been applied to the true sys­
tem, this gives: 

x(k + l)=A 0x(k)+h0 u(k) (5.3) 

Define 

Gk+ 1:= {(A,h)ERnxnxRnxJ I Ax(k)+bu(k)=x(k+l)} (5.4) 
A 

then Gk+J is exactly the set of those parameter~ that are able to explain the tfansitj_on from x(k) to 

x(k,.. + 1), given u{k). Since a fortiori (A 0 ,b0 )EGk+I• it is natural to choose (Ak,.H•Pk+d ~omewhere 

in Gk + 1. Since Gk + 1 is linear affine.i w~ can take the orthogonal projection of (Ak>hk) on Gk + 1. One 
may check that the recursions f~r (Ak.ibk) are indeed based on this gtlO~etrical consideration. As a 
first consequence we have that (Ak+i.hk+d is closer to (A 0 ,h0 ) than (Ak>bk) and hence the sequence 
of estimates is bounded. The idea of orthogonal projection is not new, it was already used in [l] and 
[7], and seems to go back to [8]. A A 

The algorithm is obviously recursive. Also, since (Ak+J.hk+J) = (Ak>bk) if and only if 
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x(k + 1) = x(k + 1)), neutrality is guaranteed. 
Certainty ~ajvalence is less easy to see. Only in the first loop of the algorithm we take 
u(k) = f(Ak>hk)x(k), hence we have to show that the other loop is used only a finite number of 
times. The formal proof will be given in Lemma 5.3, but f¥st Awe will explain intuitively how u (k) is 
calculated. Of cpurAse one would prefer to take u(k) = f (Ak>hk)x(k), for all k, however it,_is always 
possible that (Ak>hk) is non-controllable which makes it impossible to calculate f (Ak>hk)- If we 
assume extra kno~ledge ofA th~ system, for instance if we assume that (A 0 ,h0 ) belongs to a known 
convex subset of E, then (Ak>hk) will be controllable forAallAk, but we want to have a global result. 
Apo!,her possibility is to inject external signals to force (Ak>hk) to conver,ge to (A 0 ,h0 ). In finite time 
(Ak>hk) will then be in a convex neighbourhood of (A 0 ,h0 ) contained in E. But we d~n'! want to add 
external signals all the time. What we do is t~e fpllowing. 8k measures how close (Ak>hk) is to non­
controllable. If lh is large, we take u(k) = f (Ak,hk)x(k), if 8k is small (measured by the sequence ej) 
we start an alternative procedure. First we take a large input, large compared with the norm of x (k ). 
Then we apply n times the zero-input, and the distance-checking procedure starts again. We denote 
by Tj the time instifiltAon which the alternative procedure starts for the j-th time. T1 is the first time 
that an estimate (Ak,hk) is closer to the boundary of the set of controllable pairs than e1• Tj + 1 is the 
first time after Tj + n that an estimate is closer to the boundary of the set of controllable pairs than 
Ej+I· At time Tj, the input is taken to be Cjllx(Tj)ll, after which we apply the zero input for n time 
steps and the distance checking procedure starts again. The sequence Tj constructed in this fashion 
can be interpreted as a sequence of stopping times (terminology borrowed from the theory of stochas­
tic processes). 
As soon as k = oo (which can take quite a long time), it is easy to see that: 

A A Ac 

To = min { j I d((Aj,hj),E).;;;;; Eo} (5.5) 
A A A C 

Tk = min {j;;;;;.:. Tk-1 +n +l I d((Aj,hj),E).;;;;; ek} (5.6) 

The minimum is understood to be infinity if the set over which the minimization takes place is empty. 
Suppose now that the set of finite stopping times is infinite. Then, essentially what happens is the fol­
lowing. Due to the growing inputs at time Tk> the dynamics of the system (i.e. the matrix A 0 ), will be 
dominated by the input. As a consequence h0 will be identified asymptotically. Moreover, the states 
x(Tk + 1) will converge to the subspace spanned by h0 • Finally, since we apply zero-inputs and 
because of the controllability of (A 0 ,b0), the states x(Tk+I), .... ,x(Tk+n) will asymptotically span the 
whole state space. That means that asymptotically we will measAureA the action of A 0 on the whole 
state space and hence A 0 will be identified too. In other words (Ak>bk) will converge to (A 0 ,h0 ). But 
since (A 0 ,b0 ) is controllable, it has a positive distance to the boundary of E. However, the assumption 
that the set,. of p.nite stopping times is infinite and the fact that Ej tends to zero, imply that the limit 
points of (A.,..,h.,J are non-controllable. This is a contradiction and hence the number of finite stop­
ping times is finite. This procedure of avoiding that estimates come too close to the boundary of the 
set of controllable pairs is, of course, not exclusively applicable to pole assignment. It can be used for 
every adaptive control problem where pole-zero cancellation can occur. It proves that a search 
through the (A,b )-space can be done as long as one is willing to accept temporary alternative inputs. 
Moreover, the alternative procedure is started and switched off automatically, which is completely in 
the spirit of adaptive control. The inputs u(Tk), .... ,u(Tmax) can be interpreted as an initial excitation 
signal, not for identification purposes but only to avoid pole-zero cancellation of the estimates. The 
sequences ej, Cj can be seen as design parameters. In [11] an other procedure for biasing the esti­
mates from non-controllable is described for stochastic systems. 
We know now that after some time instant we will always use Au(k)= f(Ak>hk)x(k). The original 
motivation of this control policy combined with the projection on Gk + 1 lies in the theory described in 
section 4. For suppose that the sequence of estimates converges to (A,h) say. Then (A,h) is an invari­
ant point of the algorithm and hence it should satisfy: 
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A +bf(A,b)I~ = A 0 +b 0 f(A,b)I~ (5.7) 

where ~ is the invariant subspace spanned by the asymptotic state-trajectory. From Theorem 4.6 we 
can then conclude that f(A,b)I~ = /(A 0 ,b 0 )1~. and in particular that asymptotically the applied 
input equals the desired input. 

In the next three lemmata we will derive some basic properties of the algorithm including the finite­
ness of the set of finite stopping times .. 

LEMMA 5.1 ll(Ak>bk)-(A 0 ,b0 )11 is a decreasing sequence, hence ii converges to some real constant 
R;;;;;.: 0. 

PR.po! This a direct s_onseq_uence of the orthogonal projection feature, which assures that 

ll(Ak>bk)-(Ao,bo)ll ;,;;;;,: ll(Ak+1>bk+1)-(Ao,bo)ll. 

Although Lemma 5.1 is very simpl~, npt to say trivial, it is an important feature of our algorithm. A 

direct conseque~ce of 5.1 is that (Ak>bk) converges .to a sphere with centre (A 0 ,b0 ) and radius R. If 

R =O then (Ak>bd--'Jo(A 0 ,b0 ) and we are done. In the sequel we shall therefore assume that R >0. 

" " ,... ,... 
LEMMA 5.2 lim ll[(Ak+1>bk+1)-(Ak>bk))ll = 0 

k~oo · 

PRClOF S~ppose thAe cl~ is not true. Then there exists E:>O and a sequence {sk}, such that for all k: 

ll[(As,+1.bs,+1)-;:(A~.,bs.)Jll ;,;;;;,: E: 

Now denote ll(Ak>bk)-(A 0 ,b0 )11 by rk. Choose 8>0 and let k 0 be such that R~rs, ~R +8 for all 

k ;,;;;;,: k 0 • Using Pythagoras' theorem we see that for all k ;,;;;;,: k 0 : 

for some positive constant C and 8 sufficiently small. 

Since rk is non-increasing we have r8, -r8,.1 
;,;;;;,: C, which yields: 

Hence there exists k such that r
8

, <R, which is a contradiction. 

A A A 

(5.8) 

(5.9) 

(5.10) 

PROOF Suppose the contrary. Assume that (A.,..,b.,..) converges, say klim (A.,..,b.,..) = (A,b). (Other-
~oo 

wise take a suitable subsequence). Then, for all k: 
A 

d ((A,b ),Ec}<tk 
A A A 

Hence (A,b) is non-controllable. Since for all k: (Ak+l>bk+i)EGk+I> we have: 
A A 

x(k + 1) = Ak+ 1x(k)+bk+1u(k) 

In particular: 

x(Tk+I) 

llx(Tk + 1)11 

= Aox(k)+bou(k) 

A A 

A.,.,+1X(Tk)+b.,.,+1 Ckllx(Tk)ll 
A A 

llA.,.,+1X(Tk)+b.,..+1 Ckllx(Tk)llli 

Aox(Tk)+boCk llx(Tk)ll 

llA ox ( Tk) + boCk llx ( Tdll 11 

(5.11) 

(5.12.a) 

(5.12.b) 

(5.13) 

(5.14) 
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Now: 

fun x(Tk + l) = fun Aox(Tk)+hoCkllx(Tk)ll 

k-+oo llx(Tk + 1)11 k-+oo llAoX(Tk)+hoCkllx(Tk)ll II 
(5.15) 

X(Tk) 

Ao llx(Tk)ll +boCk 

X(Tk) 
llAo llx(Tk)ll +boCkll 

= fun 
k->oo 

(5.16) 

ho Ck ho 
= k~ ---x-(T-k) ____ = llh

0
11 = pho 

llAo llx(Tk)ll +boCkll 

(5.17) 

for some p=f=O. On the other hand, if we take the limit in (5.13), we obtain: 

pb (5.18) 

Hence: 
A 

fun h =ho 
k-+oo "• 

(5.19) 

From (5.2.a.3) and (5.19) we can now conclude that: 

fun 
x(Tk+i) Ab- 1bo 

. 
1 

i=l, ... ,n+l 
k-+oo llx(Tk+i)ll llAb- boll 

(5.20) 

A A 

Since for all k: x(k + 1) = Ak+ 1x(k)+bk +luk> we have: 
A 

x(Tk +i + 1) = A,,.,+;+1X(Tk +i) = Aox(Tk +i) (5.21) 

A x(Tk+i) A 0x(Tk+i) 

A,,.,+;+I llx(Tk+i)ll = llx(Tk+i)ll 
(5.22) 

Taking limits at both sides gives: 

i = l, ... ,n (5.23) 

Since (A 0 ,h0) is controllable, we conclude that A =Ao and hence: 
A A 

fun (A,,..,b,,..) = (Ao,bo) 
k-+00 

(5.24) 

And thus 

(A,b) = (Ao,bo) (5.25) 

Since by assumption (A,b) is non-controllable, we have a contradiction and the statement follows. 

C~R<!LLARY 5.4 For all k sufficiently large, (Abbk) is controllable and moreover all the limit points of 
{Abhk} are controllable. 

ANALYSIS OF THE ALGORITHM. 

The properties of the algorithm will be derived in several steps. First we shall state our main result. 

THEOREM 5.5 Consider the (controlled) system (2.1,5.2), there exists a sequence of matrices {LldkeN• 
such that: 



i) x(k + l)=(Ao +bof (Ak,bk))x(k) 

=(Ao +bof (Ao,bo)+Llk)x(k) 

ii) lim Llk=O 
k~oo 
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(5.26) 

(5.27) 

(5.28) 

COMMENT. Theorem 5.5 tells us that asymptotically the action of the closed-loop matrix is identical 

to that of the optimal closed-loop matrix. It should be noticed that we do not claim that the real 

closed-loop matrix converges to the optimal one, but only as far as the action on the real state­

trajectory is concerned. This weaker form of convergence is not surprising, if we realise the fact that 
the estimation procedure only receives information about the action of the real closed-loop matrix on 

the state-trajectory. We propose the te~ 'v.:eak self-tuning' for this kind of behaviour. Self-tuning 

would have implied that lim Ao+bof(Ak>bk) = Ao+Bof(Ao,bo), which we do not claim. Note 
k~oo 

that the above result is valid whether or not A is contained in the unit disk. This shows that the 

adaptation part of the algorithm does not depend on the stability properties of the closed-loop sys­
tem. The reason that the result holds even for the instable case, is that the estimation part of the 

algorithm depends on the direction of x(k) (i.e. ll~~~~ll ), rather than x(k) itself. The normalization 

plays an important role in the proof of Theorem 5.5. Of course for stability of the closed-loop system 

it is needed that A is contained in the unit disk. 

PROOF Since the algorithm 5.2 js admissible, there exists k 0 

k > k 0 • Hence by definition of Gk+t. we have for all k > k 0 : 

A A A A A A x(k) 
[(A 0 +b0f(Abbk))-(Ak+I +bk+if(Ak,bk))] llx(k)ll =O 

Using Lemma 5.2, Corollary 5.4, and taking limits at both sides of (5.29) gives the statement. 

(5.29) 

PRooF i) Suppose the claim is not true. Then there exist t:>O and a subsequence {sk}, such that for 

all k: 

A A x(sk) 
ll(f(As.,bs.)- f (Ao,bo)) llx(sk)ll 11 ~ t: (5.30) 

Assume that { sk} was already such that: 
A A 

lim (As ,b9 ) = (A,b) 
k~oo • • 

(5.31) 

. x(sk) * 
lim = x 
k~oo llx(sk)ll 

(5.32) 

A $ 

for some (A,b )EE and x ERn. Then for all /: 
A A 

lim (A1 +s.,bl +s.) = (A,b) 
k~oo 

(5.33) 
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Define xk and zk by: 

xk =(A +bf(A,b)fx*, 

zk = (Ao+bof(A,b)fx*, 

k =0,1,2, .. . 

k =0,1,2, .. . 

Then, by Lemma 5.6 and (5.33), we have for all k: 

Hence by Theorem 4.4 it follows that in particular: 

f(A,b)x* = f(Ao,bo)x* 

This contradicts (5.30), and the statement follows. 
ii) This follows from Lemma 5.6 and (i). 

PROOF of Theorem 5.5: 

This is now a direct application of Theorem 5.7 and Theorem 2.1. 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

REMARK In [13,14] Theorem 5.5 was proven slightly different. There the notion of excitation space 

was introduced. This is the space spanned by the limit points of { ll~~z~ll }kEN· Denote this space by 

'X.. From Theorem 5.7 we can then derive that: 

(5.38) 

for A allA x E ~ which implies that only on the asymptotic active part of the state space the action of 
f (Ak>bk) is as desired. This illustrates the term weak self-tuning. Also it can be proven that ~ is 
invariant under A 0 +bof(Ao,bo). 

6. AN ADMISSIBLE ALGORITIIM FOR THE UNOBSERVED STATE CASE 

We will now propose an adaptive pole assignment algorithm for the class of single-input/single-output 
discrete time systems of (known) order n. The algorithm is based on ideas developed in the previous 
section. There it was assumed that the state of the system was observed. This assumption is now 
relaxed, and hence the algorithm should also contain an observer part. Indeed, the algorithm consists 
of an estimation part including an adaptive observer and a control part. However, one can also view 
the estimation part as an adaptive partial realization procedure, since no attempt is made to identify 
the system parameters completely, and the true state trajectory (whatever that may be) is not recon­
structed either. What we really end up with is not a complete realization of the unknown system, but 
an input/state/output description that is suitable for one input/output sequence, namely the asymp­
totic one. This section runs very much parallel to section 5 and the reader is referred to that section 
for some of the details and discussions. 
We will first give three different descriptions of the system. Then we will introduce the algorithm. 
Then we will prove some basic properties. Next we will formulate the main theorem of this paper: 
the characterization of the asymptotic closed-loop behaviour of the controlled system. Finally, we will 
give the arialysis of the algorithm, ultimately leading to the proof of the main theorem. 

THE SYSTEM: 

The true system is supposed to be linear, time-invariant, single-input, single-output and of known 
order n. Hence it has an input/ output description of the form: 

y(k + 1) = a8y(k)+ ... +a~- 1 y(k -n + l)+b8u(k)+ ... +b~_ 1 u(k-n +I) (6.1) 

Since we want to work m i/s/o form, we realize (6.1) as follows: Define 



(Ao,bo,c)ERnXn XRnXI XRlxn, by: 

a& I 0 b& 

0 

Ao:= 0 bo := c := [I 0 ... O] 

I 

a2-1 0 0 b2-1 

And define for every k, x(k)ERn, by: 

X1(k) = y(k) 

n -i n-i 

xi(k) = ~a?+j-JY(k-I-j)+ ~b?+j- 1 u(k-I-j) i = 2, ... ,n 
j=O j=O 

Then for all k: 

x(k +I) = ~ 0 x(k)+b 0 u(k) 

y(k) = cx(k) 
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(6.2) 

(6.3.a) 

(6.3.b) 

(6.4.a) 

(6.4.b) 

Although there are of course many other realizations of 6.1, we will refer to 6.4 as the true realization, 
and to the sequence {x(k)}keN as the true state trajectory. 
We will also need the following non-minimal realization of 6.1. Define F 0 E R(2n-l)X(in-I) and 
Ko ER(2n - l)X I by: 

Fo := 

Define: 

a& 

I 

0 

0 0 

0 

a2-2 a2-1 b? 

0 0 0 

0 

1 

0 

0 

0 

0 0 0 

I 

0 

0 0 

0 

0 

I 

0 go:= 

0 

b& 

0 

0 

0 

0 

<P(_k) : = [y(k),y(k - I, ... ,y(k -n + I),u(k -1), ... ,u(k -n + l)]T 

then for all k: 

<P(.k +I) = F 0<P(.k)+gou(k) 

Moreover, since (A 0 ,b0) is controllable, so is (F0 ,g0). Finally define M ER(2n-l)Xn by: 

I 0 0 0 0 0 0 
0 a1 a1 an-I b1 b2 bn-J. 

a1 a3 0 b2 b3 0 
M:= 

an-I bn-1 

0 an-I 0 0 bn-1 0 0 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
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then for all k we have by (6.3) that: 

x(k) = M'i>(k) 

THE ALGORITHM 6.11 
Choose any sequence {£k} and any sequence {Ck} such that: 

£d,0 and ck too 

INITIALIZATION (A 0 ,b0): arbitrarily, ho = 0, jo = 0, 4>(0): given. 

RECURSION 

ao(k) 1 

0 

an-1(k) 0 

• " " "c 
8k = d ((Ak>bk),Ek ) 

if hk = 0 

then: 

then: 

0 

0 

1 

0 

{ u(k) = J (Ak,bk)z(k) 

hk+I = hk 

A+1 =A} 

else (if 8k <£j.) 

{ u(k) = CA 11#..k)ll 

hk+I = 2n -1 

A+1 = }k+I}} 

else (if hk >0) 

{ u(k) = 0 

hk+I = hk-1 

A+1 = ik } 

A 

bo(k) 

bk:= 

{y(k + 1) = a8y(k)+ ... +a~-IY(k-n + l)+b8u(k)+ ... +b~- 1 u(k -.n + 1) 

y(k + 1) = ao(k)y(k)+ ... +an-1(k)y(k -n + l)+bo(k)u(k)+ ... +bn-1(k)u(k -n + 1) 

(6.9) 

(6.10) 

(6.11.A) 

(6.11.B) 

(6.11.a.l) 

(6.11.b.l) 

(6.11.d.l) 

(6.11.a.2) 

(6.11.b.2) 

(6.11.c.2) 

(6.11.d.2) 

(6.11.a.3) 

(6.11.b.3) 

(6.11.d.3) 

(6.11.e) 

(6.11.f) 

• d means Euclidean distance. As proven in [2], 8k is the smallest singular value of the controllability matrix of (Ak.bk). 



'A(k) = (y 2(k)+ ... +y2(k-n + l)+u2(k)+ ... +u2(k +n - l))- 1[y(k + 1)-y(k + l)] 

a;(k + 1) = a;(k)+'A(k)y(k -i) i = O, ... ,n -1 
A A 

b;(k + 1) = b;(k)+'A(k)u(k -i) i = o, ... ,n -1 

n-i n-i,. 

x;(k) = ~a;+j-1(k+l)y(k-l-j)+ ~h;+j-1(k+l)u(k-l-j) i = l, ... ,n 
j=O . j=O 

n-i n-i,.., 
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(6.11.g) 

(6.11.h) 

(6.11.i) 

(6.11.j) 

z;(k+l) = ~a;+j-1(k+l)y(k-j)+ ~bi+j- 1 (k+l)u(k-j) i = l, ... ,n } (6.11.k) 
j=O j=O 

REMARK The division in (6.11.g) and can of course be done only if <fl<..k) or u(k) is non-zero. Therefore 

if <fl(_k0 ) = 0 for some k 0 , we do not change the estimates anymore and we take u(k) = 0 for all 

k ;;;..: k 0 • For the analysis of the algorithm we will assume that <fl(_k) =I= 0 for all k. This assumption is 

also needed if we want to apply Theorem 2.1. 

COMMENT The interpretation of the algorithm is more or less the same as for the observed state case, 

the main difference being that now a state trajectory has to be invented too. Define: 
A n-1 
Gk+l :={(ao, .. ,lln-1>ho, .. ,bn-1)ly(k+l) = ~ (a;y(k-i)+b;u(k-i))} (6.12) 

" i=O 
Then Gk + 1 is linear affine and 

(ao(k + 1 ), ... ,an -1 (k + 1 ),bq(k + 1 ), ... ,bnA 1 (k +I)) 

(ao(k), ... ,an-1(k),bo(k), ... ,bn-1(k)) on Gk+l· 

THE OBSERVER 

(a8, ... ,a~ -i.h8, ... ,b~ -1 )EGk +l · 

as the orthogonal projection 

The definition of x(k) and z(k + 1) is motivated 1,?y the followjng analysis. 

Define 

of 

At time k we compute (a0(k + l), ... ,an-1(k + l),b0(k + l), ... ,hn-l(k + 1)) on the basis of the observed 

data (u(k -n + I),y(k -n + l), ... ,u(k),y(k),y(k + 1)). Suppose we want to have an i/s/o description 

of this finite ii o sequence: 
A A 

x(j + 1) = A(k + I)x(j)+b(k + I)u(j) j =k -n + l, ... ,k 

y(j) = cx(j) 

Let x be the unique solution of the equations: 

Aj-1_ j-2A/ A • 
0 

cAk+1x + c~Ak+1bk+1u(k-n+1-I-l) =y(k-n+1) 
/=O 

A A 

j=I, ... ,n 

(6.13.a) 

(6.13.b) 

(6.14) 

Then, if (Ak+i.bk+i) was the true parameter, x would hl:lve b~n the estimation of x(k -n + 1) based 

on the dead-beat observer for (A 0 ,b0 ). Since we use (Ak+i.hk+l) instead of (A 0 ,b0), the observer 

part of the algorithm can be interpreted as a certainty equivalence dead-beat observer. Now one may 

check that: 

(6.15) 

A A 

z(k + 1) = Ak+1x(k)+bk+1u(k) (6.16) 

where x(k) and z(k + 1) are defined by (6.11.j) and (6.11.k). 

The next three lemmata give some essential properties of the algorithm. 

A A 

LEMMA 6.1 ll(Ak>bk)-(A 0 ,b0 )11 is a decreasing sequence, hence it converges to some real constant 
R;;;..: 0. 

PROOF See the proof of Lemma 5.1. 

A A A A 

LEMMA 6.2 lim il[(Ak+i.hk+i)-(Ak,bk)]il = 0 
k-.oo 
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PROOF See the proof of Lemma 5.2. 

A A A 

PRooF Suppose the contrary. Assume that (A.,..,b.,.J converges, say k~ (A.,..,b.,..) = (A,b). (Other-

wjse take a suitable subsequence). Then (A,b) is A non-controllable. Define 
(Fbgk)ER(2n-l)X(2n- 1>xR<2n-l)XI by replacing a? by a;(k) and b? by b;(k) in (6.2). Now the proof 

is completely analogous to the proof of Lemma 5.3. 

q>R<;?LLARY 6.4 For all k sufficiently large, (Ak>bk) is controllable and moreover all the limit points of 

{Ak>bk} are controllable. 

The analysis of (6.11) is as follows: first we will prove that the sequence {z(k +I)} provides asymp­
totically a realization of the controlled system. Then we will apply Theorem 4.7 to the limiting 
behaviour of the system to connect the true state trajectory with the constructed one. 

ANALYSIS OF THE ALGORITHM 

THEOREM 6.5 Consider the (controlled) system (2.1,6.11). Assume that there exists AEA such that 
A =I= 0. Then there exists a sequence of matrices {Adker\i. such that fork sufficiently large: 

i) x(k + 1) = Aox(k)+bof (Ak,bk)z(k) 

= (Ao+bof(Ao,bo)+Ak)x(k)) 

ii) lim Ak = O 
k->«:J 

(6.17) 

(6.18) 

(6.19) 

REMARK Just as in Theorem 5.5 we do not claim that (A 0 ,b0 ) is identified, nor is f (A 0 ,b0 ) identified. 

Even the state trajectory }s Jl-Ot reconstructed. The constructed state trajectory}(~) will in general not 

equal x(k), nor will f (Ak>bk) be close to f (Ao,bo)-,.. ~ the limit, both f (Ak>bk) and z(k) will be 

wrong, but the resulting input sequence u(k) = f (Ak>bk)z(k) will be as desired, and that is what 
really matters. Again this could be seen as a weak form of self-tuning. As in section 5, the above 
result is valid whether or not A is contained in the unit disk. This shows that the adaptation part of 
the algorithm does not depend on the stability properties of the closed-loop system. The reason that 
the result holds even for the instable case, is that the estimation part of the algorithm depends on the 

direction of </>(k) (i.e. 11 ~Z~ll ), rather than </>(k) itself. The normalization plays an important role in 

the proof of Theorem 6.5. Of course, for stability of the closed-loop system it is needed that A is 
contained in the unit disk. 
Note that: 

where the matrices MkERnX(2n-I) are defined by replacing a? by a;(k) and b? by b;(k) in (6.8). 

Define: 

n-1 n-1 

dk = 11</>(k)ll = [ ~y 2 (k -1)+ ~ u2(k -1)]~ 
j=O j=I 

LEMMA 6.6 

(6.20) 

(6.21) 

(6.22) 

(6.23) 
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PRooF From Lemma 6.3 and (6.11.a.l) we deduce that fork sufficiently large: 
A A A A 

z(k + 1) = Ak+1x(k)+bk+if<Ak>bk)z(k) (6.24) 

Hence: 

(6.25) 
A A 

Now, sinq, ll(Ak>bk)-(Ak+i.bk+i)ll -">. 0, the continuity off on E, the controllability of the limit 

points of (Ak>bk), we conclude: 

1 A A A A 

fun 11-d [z(k + 1)-(Ak+I +bk+if(Ak>bk))z(k)ll (6.26) 
k-+oo k 

'fHEOREM6.7 

(6.28) 

PROOF Suppose the claim is not true. Then there exist £>0 and a sequence {tk} such that for all k: 

11
1(Ao,bo)x(k)-f(Ak,bk)z(k)

11 
;;;;.. £ 

dk 
(6.29) 

• x(tk) x(tr» * 
Let x be a limit point of -d-. Say fun -d- = x , for some subsequence {t~ 1 )} of {tk}· Let 

'• k-+oo 1 ~1l 

{ t'f->} be a subsequence of { t~ 1 > }, such that: 
A A 

fun (A,(2) ,b,<2>) = (A,b) 
k-+oo • • 

and: 

Then for all/: 

Define sequences { x (k) * } and { z ( k )* } as follows: 

x (0) * : = x • z (O)° : = z * 

z(k)* = (A +bf(A,b)lz* 

x(k +I)* = Aox(k)* +bof (A,b)z(k)* 

Then, by Lemma 6.6, the fact that cz(k) = cx(k), and (6.32), for all k: 

cx(k)* = cz(k)* 

hence by Theorem 4.7 there exists a non-singular matrix S such that for all k: 

Sz(k}* = x(k)* 

Hence, by Theorem 4.5: 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 
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f(A,b)z* = f(Ao,bo)x* 

which contradicts (6.29). 

(6.38) 

REMARK Theorem 6. 7 tells us that asymptotically the applied input equals the desired input if we nor­
malize with the norm of </>(,k). For the derivation of the same result, but this time normalized with the 
norm of x(k) (in order to be able to apply Theorem 2.1), we will study, as an intermediate step, the 
non-minimal realization (6.7) of (6.1). 
We have for all k: 

</>(,k + 1) = F0</>(,k)+gou(k) 

Define h0 eR 1x<2n-I) by: 

ho : = f (Ao,bo)M 

Then the desired input is: 

u(k) = f(Ao,bo)x(k) = f(Ao,bo)M</>(,k) = ho</>(,k) 

Hence the desired closed-loop representation of (6.39) is given by: 

</>(,k+l) = (Fo+goho)</>(,k) 

However, the applied control is: 

u(k) = J (Ak>bk)z(k) = J <Ak>bk)Mk-1«k) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

The following Theorem characterizes the asymptotic closed-loop behaviour of the realization 
(6.11,6.39). 

THEOREM 6.8 There exists a sequence of matrices {a~}keN such that: 

(i) </>(,k+l) = (Fo+g0f(Ak>bk)Mk-1)</>(,k) 

= (Fo+goh 0 +a~)</>(,k) 

(ii) lim a~ = o 
k-+oo 

PRooF The proof follows immediately from Theorem 6.7 and Theorem 2.1 

(6.44) 

(6.45) 

(6.46) 

LEMMA 6.9 Let {MdkeN be a sequence of matrices in Rnxn, such that lim Mk = M =I= 0. Choose 
k-+oo 

x(O)eRnXn and define: 

x(k + 1) = Mkx(k) (6.47) 

Assume that for all k x(k) =I= 0. Denote by X the linear span of the limit points of ll:~z~ll. Then: 

i) MX c X (6.48) 

ii) for all x EX ,x=f=O : Mx =I= 0 (6.49) 

(k) x(sk) 
PROOF i) Suppose x· is a limit point of { ll:(k)ll }. Say lim = x·, for some subsequence 

k-+oo llx(sk)ll 
{sk}. Then: 

Mx • = k~ llx(~k) II Ms. x(sk) = k~ llx(~k)ll x(l + sk) (6.50) 
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= lim llx(l +sk)ll x(I +sk) = lim llMs.x(sk)ll x(I +sk) 

k->oo llx(sk)ll llx(l +sk)ll k->oo llx(sk)ll llx(l +sk)ll 
(6.51) 

x(sk) x(l+sk) * . x(I+sk) 

= llMs. llx(sk)ll II llx(l +sk)ll = llMx II}~ llx(l +sk)ll 
(6.52) 

Hence Mx •EX. By linearity the result follows. 

ii) After a change of basis, M and Mk can be decomposed as: 

_ [Mu OJ _ [M11(k) M!2(k)l 
M - 0 0 ' Mk - Mi1(k) M22(k) (6.53) 

such that M 11 is non-singular. Then: 

lim x2(k + 1) = lim (M21(k)x1(k)+ Mi2(k)x2(k)) = 
0 

k->oo llx(k)ll k->oo llx(k)ll 
(6.54) 

lim x1(k + 1) = lim (M11(k)x1(k)+M12(k)x2(k)) * 
0 

k->oo llx(k)ll k->oo llx(k)ll 
(6.55) 

This yields: 

x(k) 
llx(k)ll ~ coker(M) (6.56) 

By linearity the statement follows. 

COROLLARY 6.10 Let x. be a limit point of x d:) ' then: x * * 0. 

PROOF One may check that Aco(G0). Since by assumption at least one of the A!s is non zero, we 
conclude by Lemma 6.9 that there exists p. > 0 such that for i: 

l/>(kd:i) ~ µ! (6.57) 

• x(tk) 
Now suppose x = 0. Say -d- ~ 0, then: 

'• 
A A 

llx(tk + I )II llA ox (k) + bof (A,., b,. )z(k )II 
= (6.58) 

This implies: 

(y(tk),y(tk + l), .. ,y(tk +n -1),u(tk),u(tk + l), .. ,u(tk +n -1)) 
d ~o 

'• 
(6.60) 

(6.61) 

which contradicts (6.57). 

COROLLARY 6.11 

lim II (u(k)-f (Ao,bo)x(k)) II = 
0 

k->oo llx(k)ll 
(6.62) 
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PROOF Since by the previous corollary llx(k)ll ..;;; 8, for some 8 > 0, we have: 

. (u(k)-f (Ao,bo)x(k)) . (u(k)-f (Ao,bo)x(k)) dk 

k~ II llx(k)ll II = k~ II dk llx(k)ll II 
=O (6.63) 

PROOF OF 'THEOREM 6.5 

The proof of Theorem 6.5 is now just an application of Theorem 2.1 and Corollary 6.11. 

7. SIMULATIONS 

The algorithms presented in sections 5 & 6 have been simulated extensively. As could be expected, 
convergence gets slower as the order of the system increases. The asymptotic behaviour of the con­

trolled system was characterized in terms of the action of the asymptotic closed-loop matrix on the 

state-trajectory. The weak self-tuning property, however, can better be illustrated by a comparison 
between the applied input and the desired input. In many cases the assumption (2.6) in Theorem 2.1 
implies that: 

Iim ..E..SJ{)_ = 1 (7 .1) 
k-+oo fx(k) 

We will now give the graphs of the output of a second order unstable non-minimum phase system 

and of u(k~ (where superscripts a and d stands for "applied" and "desired" respectively). The 
u(k, 

applied algorithm is the one introduced in section 6 (non-observed state case). The true system has 

the realization: 

[-1 1] x(k+l) = 
6 0 

x(k) + [~] u(k) (7.2.a) 

y(k) = [1 O]x(k) (7.2.b) 

The system was initially guessed as: 

A [-3 1] A [23] Ao = 7 0 ho = (7.3) 

The desired closed-loop characteristic polynomial was chosen to be: 

X 2 
- l.7X + 0.72 (7.4) 

If we look at figures 7.1 and 7.2, we see that initially the system behaves badly. Then after a certain 

learning period, the quotient of applied and desired input is close to 1 and the system begins to sta­

bilize. One may check that y(k) tends to zero exponentially fast, the exponent tending to the slowest 

desired pole: 0.9. At iteration 32 there is a peak in the graph of u(k):. The explanation is that the 
u(k) 

state was suddenly too far away from the subspace it was converging to. Outside this subspace the 

control law was still far away from the desired one. Although after 150 iterations u(k): is very close 
u(k) 

to 1, the true system has not been identified at Aall. 'fhe simulations showed that the Euclidean dis-

tance between the true system parameters and (A 150 ,b 150) was almost 2.24 (initially 2.65). After 150 
iterations the closed-loop poles were 0.89998 and 0.81490. The larger deviation of the second pole 
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from the desired one can be explained by the fact that the state-trajectory converges to the invariant 
subspace belonging to the other pole. Hence information about the invariant subspace belonging to 
the second pole gets poor very quickly. This illustrates the weak self-tuning feature: only the poles 
which are excited asymptotically are placed properly. 
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Figure 7.1. The output of the system. 
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Figure 7.2. The quotient of applied and desired input. 

8. CoNCLUSIONS AND REMARKS 

Algorithms have been proposed for adaptive pole-assignment for single-input/ single-output systems. 
Pole-zero cancellation of the estimates was avoided by introducing a finite number of special inputs. 

A weak form of self-tuning was derived without imposing conditions on the richness of the signals. 
There are some interesting topics for further research. First of all the limit points of the estimates. 
We did not claim convergence of the sequence of estimates since we did not need it. It would, how­
ever, be interesting to know whether or not the estimates converge. lf they do, it is obvious that the 
limit will be an invariant point of the algorithm, and will hence satisfy (5.7). For the first order case 
convergence of the estimates can be proven. 
Another question is to which invariant subspace of A 0 +b0f (A 0 ,bo) the state trajectory converges. 
From simulations we know that in most cases the state trajectory converges to the invariant subspace 
belonging to the slowest desired pole, as in the non-adaptive case. It is not unlikely that this will 
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generically be the case, but a proof has not yet been found. 
The algorithms as presented have an interesting potential possibility. The asymptotic results have been 
derived without imposing any conditions on excitation. In the initial period inputs are calculated on 
the basis of very little knowledge of the system, and hence they can be expected to be far from 
appropriate. This means that initially certainty equivalence does not make so much sense, and hence 
the input sequence could also contain an active learning part. This learning should then be tempered 
more and more as the tuning gets better and better. Since the results presented here do not depend 
on asymptotic excitation, this should in principle not change the asymptotic properties of the algo­
rithm, but only the initial part. 
Finally, the algorithm should be translated into the continuous time case. 
We hope to report on these topics in the near future. 
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