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Abstract. A new state space method is presented for modal identification of a mechanical system from its time domain impulse

or initial condition responses. A key step in this method is the identification of the characteristic polynomial coefficients of an

adjoint system. Once these coefficients are determined, a canonical state space realization of the adjoint system and the system’s

modal parameters are formulated straightforwardly. This method is conceptually and mathematically simple and is easy to be

implemented. Detailed mathematical treatments are demonstrated and numerical examples are provided to illustrate the use and

effectiveness of the method.

1. Introduction

Modal identification is a process to obtain the modal parameters of a mechanical system from measured data.

The past three decades have witnessed substantial progresses in modal identification methods. Overviews and

comparisons of the methods can be found in [1,2]. The similarities in all the methods arise from a common theoretical

basis. Basically each method starts with a system with its physics being governed by linear second order dynamic

equations, it then seeks to fit the measurement data into a mathematical model, and finally derives the desired

modal parameters from the identified mathematical model. The differences in the methods lie in the measurement

databases being used, and the mathematical models being employed for data fitting. In general, measurement data

can be frequency responses, impulse responses, forced responses, free decays, etc. Depending upon the nature of

the measurement database to be used, the mathematical model can be nonparametric, parametric or state space.

In this paper, we present a new state space method for modal identification. The data employed for identification

are the system’s impulse responses or its responses to arbitrary initial conditions. Compared to the existing methods,

the main advantage of the new method is in its conceptual and mathematical simplicities. In this method, the

identification of a dynamic system is first translated into the identification of an adjoint system. The method then

determines the order and the characteristic polynomial coefficients of the adjoint system. Once these coefficients

are determined, the state space matrices and the modal parameters are formulated in a straightforward fashion. The

new method only involves convenient matrix and algebraic operations and is easy to be implemented. A couple of

examples are provided to illustrate its use and effectiveness.

ISSN 1070-9622/05/$17.00  2005 – IOS Press and the authors. All rights reserved



274 X. Liu / A state space method for modal identification of mechanical systems

2. Dynamic equations

The governing dynamic equations for a linear finite dimensional mechanical system are a set of second order

differential equations, which can be expressed in matrix form as

M̄q̈(t)+C̄q̇(t)+K̄q(t)= f(t) (1)

where the matricesM̄, C̄, K̄ are the mass, damping and stiffness matrices, respectively, q is a vector of generalized

coordinates, and f is a vector of generalized forces. By using the Laplace transform, we can relate the generalized

coordinates and the forces in the form
(

M̄s2+C̄s+K̄
)

q(s)= f(s) (2)

The complex eigenvalues of the system are the roots of the determinant of the matrix M̄s2+C̄s+K̄. For stable

systems, the eigenvalues will have negative real parts. For each eigenvalue λ j , the corresponding eigenvector Φj is

obtained by solving the matrix equation
(

M̄λ2
j+C̄λj+K̄

)

Φj= 0 (3)

The eigenvalues and eigenvectors are characteristics of the system. The eigenvectors are also known as modal

vectors, and the eigenvalues will give the corresponding modal damping rates and damped natural frequencies as

ζj = −Re(λj) (4a)

fj =
Im(λj)

2π
(4b)

The governingdynamic Eq. (1) can be reformulated into state space form [6–8] by different means. One commonly

used reformulation is to let

x =

{

q

q̇

}

(5a)

f = B̄u (5b)

and

A =

[

0 I

−M̄
−1

K̄ −M̄
−1

C̄

]

(6a)

B =

[

0

M̄−1B̄

]

(6b)

Then the state space dynamic equations are

ẋ = Ax + Bu (7)

In addition, if the output or measurement vector is y =Θq, then by letting C =
[

Θ 0
]

, we obtain the output

equations

y = Cx (8)

Equations (7) and (8) constitute a state space model of the dynamic system. The triplet (A, B, C) is called a state

space realization. The transfer function matrix of the system is
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H(s) = C (sI− A)−1
B

(9)

=

∞
∑

k=0

CAkBs−(k+1)

The coefficient matrices CAkB in Eq. (9) are called the system’s Markov parameters. In the case the realization

is minimal, the eigenvalues of the system are equivalent to those of the matrix A. If A has an eigen-decomposition

A = ΨΛΨ−1 (10)

then (A, B, C) can be transformed into an equivalent realization
(

Λ, Ψ−1B, CΨ
)

in modal space. The diagonal

matrix Λ contains the eigenvalues of the system, CΨ will be the modal vector matrix, and Ψ−1B will be the modal

participation factor matrix. Next we will present a method to obtain a minimal realization of a system from its time

domain responses. We will first consider the case with impulse responses, and then extend the method to cover the

case with initial condition responses.

3. Modal identification from impulse responses

We consider the single input case where the matrix B is replaced by a column vector b. Let {h(k), k = 0, 1, · · ·}
be the system’s impulse response set which can be obtained as the inverse Fourier transforms of the frequency

response functions. The impulse responses can be expressed as

h(k) = CeAkÄtb (11)

where ∆t is the sampling period. Let

Ã = exp(A∆t) (12)

then Eq. (11) is equivalent to

h(k) = CÃ
k
b (13)

The eigenvalues of Ã will be the exponentials of those of A, and both matrices share the same set of eigenvectors.

Let ωmax be the maximum of the absolute values of the imaginary parts of all the eigenvalues of A. If the condition

0 � ωmax∆t � π is satisfied, then there is a one-to-one correspondence between the eigenvalues of the two matrices
Ã and A. This fact is just a reiteration of Shannon’s sampling theorem. In such a case, the eigenstructure of the

system matrix A can be uniquely recovered from that of Ã. For such a reason, we can focus on the identification of

the adjoint system
(

Ã, B, C
)

and return to the original state space system as needed.

The first step in the identification process is to determine the order of the minimal realization. This can be done

by examining the rank of the Hankel matrix [3,5,6]

H =

⎡

⎢

⎢

⎢

⎣

C

CÃ
...

CÃ
α

⎤

⎥

⎥

⎥

⎦

[

b Ãb · · · Ãβb
]

=

⎡

⎢

⎢

⎢

⎣

h(0) h(1) · · · h(β)
h(1) · · · · · · h(1 + β)

...
. . .

. . .
...

h(α) · · · · · · h(α + β)

⎤

⎥

⎥

⎥

⎦

(14)

for large enough parameters α, β. In the absence of measurement noise, the rank of the Hankel matrix is equal

to the order of the system. When measurement noises are presented in the data, we can perform singular value

decomposition (SVD) of the matrix H and determine its rank by neglecting the singular values below a threshold

level.
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The minimal realization is not unique. The triplet
(

Ã, b, C
)

is equivalent to
(

P−1ÃP, P−1b, CP
)

for any

non-singular matrix P. Suppose the system order is n, then we have

rank
[

b Ãb · · · Ãn−1b
]

= n (15)

If we assume the characteristic equation of Ã takes the form

det(sI − Ã) = sn + an−1s
n−1 + · · · + a0

= 0
(16)

then we can construct a non-singular transformation matrix

P =
[

Ãn−1b · · · Ãb b
]

⎡

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0

an−1 1
. . . 0

...
. . .

. . . 0
a1 · · · an−1 1

⎤

⎥

⎥

⎥

⎥

⎦

(17)

and arrive at the state space realization in controllable canonical form as [8]

Ã1 = P−1ÃP =

⎡

⎢

⎢

⎢

⎣

0 1
...

. . .

0 1
−a0 −a1 · · · −an−1

⎤

⎥

⎥

⎥

⎦

(18a)

b1 = P−1b =
[

0 · · · 0 1
]T

(18b)

C1 = CP =
[

a1I · · · an−1I I
]

⎡

⎢

⎢

⎢

⎢

⎣

Cb 0 · · · 0

CÃb Cb
. . .

...
...

. . .
. . . 0

CÃ
n−1

b · · · CÃb Cb

⎤

⎥

⎥

⎥

⎥

⎦

(18c)

By noticing Eq. (13), we can rewrite the matrix C1 as

C1=
[

a1I · · · an−1I I
]

⎡

⎢

⎢

⎢

⎢

⎣

h(0) 0 · · · 0

h(1) h(0)
. . .

...
...

. . .
. . . 0

h(n − 1) · · · h(1) h(0)

⎤

⎥

⎥

⎥

⎥

⎦

(19)

It is obvious that a key step is to determine the characteristic polynomial coefficients a n−1, · · · , a0 as in Eq. (16).
Once these coefficients are determined, a canonical system realization can be formulated as in Eqs (18) and (19).
The determination of the coefficients is explained next.

We begin with the characteristic Eq. (16). By using the Caley-Hamilton theorem we have

Ãn + an−1Ã
n−1 + · · · + a0I = 0 (20)

Furthermore, through consecutively multiplying Eq. (20) by Ã we get
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ãn + an−1Ã
n−1 + · · · + a0I = 0

Ãn+1 + an−1Ã
n + · · · + a0Ã = 0

...

Ã2n−1 + an−1Ã
2n−2 + · · · + a0Ã

n−1 = 0
...

(21)
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Pre-multiplying the above equations by C and post-multiplying by b, and noticing Eq. (13), we obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h(n) + an−1h(n − 1) + · · · + a0h(0) = 0

h(n + 1) + an−1h(n) + · · · + a0h(1) = 0
...

h(2n − 1) + an−1h(2n − 2) + · · · + a0h(n − 1) = 0
...

(22)

or in matrix form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h(0) · · · h(n − 1)

h(1) · · · h(n)
...

. . .
...

h(n − 1) · · · h(2n − 2)
...

. . .
...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

a0

...

an−1

⎫

⎪

⎬

⎪

⎭

= −

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h(n)

h(n + 1)
...

h(2n − 1)
...

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(23)

The characteristic polynomial coefficients an−1, · · · , a0 can then be determined by solving Eq. (23) using the

least square method.

In summary, the modal identification method consists of three major steps:

1) Determine the system order by examining the rank of the Hankel matrix in Eq. (14), and obtain the characteristic

polynomial coefficients of the adjoint system by solving Eq. (23) using the least square method.

2) Form the adjoint system
(

Ã1, b1, C1

)

as in (18)-(19). Solve the eigenvalue problem of Ã1 to obtain the

eigenvalues, λ̃j , and the eigenvector matrix Ψ.

3) Determine the system eigenvalues as λj = ln(λ̃j)/∆t. Determine the modal damping rates and damped

natural frequencies as in (4). Form the modal vector matrix as C 1Ψ, and the modal participation factor matrix

as Ψ−1b1.

4. Modal identification from initial condition responses

The method presented in Section 3 can be extended for modal identification from initial condition responses,

where only the system’s responses to arbitrary initial conditions are used to identify the modal parameters [4].

The response data can be in terms of displacements, velocities or accelerations. Here we discuss the case with

acceleration responses since they are the most commonly available from experimental measurements.
For the state space system (A, B, C), the acceleration responses of the system due to an arbitrary initial state

condition x0 is given by

a(t) = CeAtx̃0 (24)

where

x̃0 = A2x0 (25)

Equation (24) suggests that the acceleration responses are equivalent to the impulse responses of the system

(A, x̃0, C), which will have the same eigenvalues and modal vectors as the original system. Therefore, we can use
the method in Section 3 to obtain the modal parameters, with the impulse responses there being replaced by discrete

samples of acceleration

a(k) = CeAkÄtx̃0 (26)

for k = 0, 1, · · ·, where ∆t is the sampling period. The modes so obtained will be the modes excited by the initial

state condition x0. No modal participation factors will be determined since there’s no information on the excitations

available in such a case.
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1 2 3 0.1m m m kg= = =  

1 2 3 30000k k k N m= = =

1 2 3 3 sc c c N m= = =
.

Fig. 1. A Mass-Spring-Damper System.

5. Numerical examples

We now give a couple of examples to illustrate the use of the proposed method. The first example will validate

the method for modal identification from impulse responses, the second one will validate the method for modal

identification from initial condition responses.

Example 1

A mass-spring-damper system is shown in Fig. 1. The following physical parameters are assumed

m1 = m2 = m3 = 0.1 kg

k1 = k2 = k3 = 30000 N/m

c1 = c2 = c3 = 3 N · s/m

The system has eigenvalues, modal vectors, and modal participation factors as below

λ1,2 = −2.9709± j243.7414, φ1,2 =

⎧

⎨

⎩

1
1.8019
2.2470

⎫

⎬

⎭

, l1,2 = ∓j0.005 (27a)

λ3,4 = −23.3244± j682.6005, φ3,4 =

⎧

⎨

⎩

1
0.4450
−0.8019

⎫

⎬

⎭

, l3,4 = ±j0.0032 (27b)

λ5,6 = −48.7047± j985.7595, φ5,6 =

⎧

⎨

⎩

1
−1.2470
0.5550

⎫

⎬

⎭

, l5,6 = ∓j0.001 (27c)

Suppose the system’s impulse responses from excitation at m3 have been obtained. We now use the method

developed in Section 3 to identify the modal parameters from the impulse responses.

The mass, damping and stiffness matrices are

M̄ =

⎡

⎣

m1

m2

m3

⎤

⎦ (28)
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C̄ =

⎡

⎣

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

⎤

⎦ (29)

K̄ =

⎡

⎣

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

⎤

⎦ (30)

We define the state vector to be

x =
[

x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
(31)

and the measurement vector

y =
[

x1 x2 x3

]T
(32)

Then the state space matrices are

A =

[

03×3 I3×3

−M̄
−1

K̄ −M̄
−1

C̄

]

(33)

b =

[

0

M̄−1b̄

]

where b̄ =
[

0 0 1
]T

(34)

C =
[

I3×3 03×3

]

(35)

For simulation purpose, we use Eq. (11) to regenerate the impulse responses. The sampling period is chosen to

be ∆t = 0.001 second. By checking the rank of the Hankel matrix in Eq. (14), we find the system order to be 6.

Solving Eq. (23), we obtain the characteristic polynomial coefficients of the adjoint system as

a0 = 0.8607, a1 = −4.0408, a2 = 8.9062
a3 = −11.6209, a4 = 9.4200, a5 = −4.5032

(36)

Use Eqs (18)–(19), we can form a minimal realization of the adjoint system

Ã1 =

[

05×1 I5×5

−0.8607 4.0408 −8.9062 11.6209 −9.4200 4.5032

]

(37)

b1 =
[

0 0 0 0 0 1
]T

(38)

C1 =

⎡

⎣

1.3e − 6 0.0001 0.0004 0.0002 1.5e − 5 0
0.0003 0.0012 −0.0015 0.0009 0.0006 0
0.0083 −0.0245 0.0352 −0.0262 0.0094 0

⎤

⎦ (39)

The eigenvalues of Ã1 are found to be

λ̃1,2 = 0.9676± j0.2406 (40a)

λ̃3,4 = 0.7580± j0.6163 (40b)
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λ̃5,6 = 0.5260± j0.7941 (40c)

and the eigenvalues of the original system are determined as

λ1,2 = ln(λ̃1,2)
/

∆t = − 2.9709± j243.7414 (41a)

λ3,4 = ln(λ̃3,4)
/

∆t = − 23.3244± j682.6005 (41b)

λ5,6 = ln
(

λ̃5,6

)/

∆t = −48.7047± j985.7595 (41c)

The modal vector and modal participation factor matrices are determined as C 1Ψ and Ψ−1b1, with Ψ being the

eigenvector matrix of Ã1. After normalization with respect to the first elements of the modal vectors, the modal

vectors are

φ1,2 =

⎧

⎨

⎩

1
1.8019
2.2470

⎫

⎬

⎭

(42a)

φ3,4 =

⎧

⎨

⎩

1
0.4450
−0.8019

⎫

⎬

⎭

(42b)

φ5,6 =

⎧

⎨

⎩

1
−1.2470
0.5550

⎫

⎬

⎭

(42c)

and the corresponding modal participation factors are

l1,2 = ∓j0.005 (43a)

l3,4 = ±j0.0032 (43b)

l5,6 = ∓j0.001 (43c)

Comparing these with Eq. (27), we see that the proposed method precisely identifies the modal parameters of the

system.

Example 2

We consider the same system as in Fig. 1. We now use the method in Section 4 to identify the system’s modal

parameters from its acceleration responses to initial conditions.

Suppose we have available the system’s acceleration responses to arbitrary initial state conditions
⎧

⎨

⎩

x1

x2

x3

⎫

⎬

⎭

0

=

⎧

⎨

⎩

0.0008
0.0005
0.0002

⎫

⎬

⎭

(44a)

and
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d

dt

∣

∣

∣

∣

0

⎧

⎨

⎩

x1

x2

x3

⎫

⎬

⎭

=

⎧

⎨

⎩

6.7214
8.3812
0.1964

⎫

⎬

⎭

(44b)

The system order is found to be 6 by examining the rank of the matrix

H =

⎡

⎢

⎢

⎢

⎣

a(0) a(1) · · · a(β)
a(1) · · · · · · a(1 + β)

...
. . .

. . .
...

a(α) · · · · · · a(α + β)

⎤

⎥

⎥

⎥

⎦

(45)

for large enough parameters α, β. By solving the equations
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a(0) · · · a(5)

a(1) · · · a(6)
...

. . .
...

a(5) · · · a(10)
...

. . .
...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

a0

...

a5

⎫

⎪

⎬

⎪

⎭

= −

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a(6)

a(7)
...

a(11)
...

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(46)

using the least square method, we obtain the adjoint system’s characteristic polynomial coefficients

a0 = 0.8607, a1 = −4.0408, a2 = 8.9062
a3 = −11.6209, a4 = 9.4200, a5 = −4.5032

(47)

Form state matrices Ã1 as in (18), and C1 as in Eq. (19) except the impulse responses there being replaced by

acceleration responses, we obtain

Ã1 =

[

05×1 I5×5

−0.8607 4.0408 −8.9062 11.6209 −9.4200 4.5032

]

(48)

C1 =

⎡

⎣

−956.96 2107.07 −2092.95 974.38 299.22 −481.85
−2129.12 6780.50 −9308.23 6199.01 −1429.82 −295.34

1727.31 −5359.77 7050.71 −4600.74 841.78 335.54

⎤

⎦ (49)

The eigenvalues of the matrix Ã1 are

λ̃1,2 = 0.9676± j0.2406 (50a)

λ̃3,4 = 0.7580± j0.6163 (50b)

λ̃5,6 = 0.5260± j0.7941 (50c)

and the eigenvalues of the original system are obtained as

λ1,2 = ln(λ̃1,2)
/

∆t = − 2.9709± j243.7414 (51a)

λ3,4 = ln(λ̃3,4)
/

∆t = − 23.3244± j682.6005 (51b)

λ5,6 = ln
(

λ̃5,6

)/

∆t = −48.7047± j985.7595 (51c)
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The modal vector matrix is C1Ψ, where Ψ is the eigenvector matrix of Ã1. After normalization with respect to

the first elements of the modal vectors, the modal vectors are

φ1,2 =

⎧

⎨

⎩

1
1.8019
2.2470

⎫

⎬

⎭

(52a)

φ3,4 =

⎧

⎨

⎩

1
0.4450
−0.8019

⎫

⎬

⎭

(52b)

φ5,6 =

⎧

⎨

⎩

1
−1.2470
0.5550

⎫

⎬

⎭

(52c)

Once again, the system’s modal parameters are accurately identified.

6. Conclusions

We have presented a state space method for modal identification of a mechanical system. This method employs

the system’s time domain impulse responses or initial condition responses for identification. A key step of this

method is the identification of the characteristic polynomial coefficients of an adjoint system. Once these coefficients

are determined, the modal parameters can be formulated straightforwardly. This method is conceptually and

mathematically simple. We have illustrated through examples the use and effectiveness of the method.

Acknowledgment

The reviewer’s helpful suggestions are gratefully acknowledged.

References

[1] R.J. Allemang and D.L. Brown, A Unified Matrix Polynomial Approach to Modal Identification, Journal of Sound and Vibration 211(3)

(1998), 301–322.
[2] D.J. Ewins, Modal Testing: Theory and Practice, Research and Studies Press LTD., England, 1984.

[3] B.L. Ho and R.E. Kalman, Effective Construction of Linear State Variable Models from Input/Output Data, Proceedings of the 3rd Annual

Allerton Conference on Circuit and System Theory, 1965, pp. 449–459.

[4] S.R. Ibrahim and E.C. Mikulcik, A Method for the Direct Identification of Vibration Parameters from the Free Response, Shock and Vibration

Bulletin (47) (1977), 183–198.

[5] J.N. Juang and R.S. Pappa, An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction, Journal of

Guidance, Control and Dynamics 8(5) (1985), 620–627.

[6] J.N. Juang, Applied System Identification, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
[7] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

[8] D. Zheng, Linear System Theory, Tsinghua University Press, Beijing, China, 1990, in Chinese.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


