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In a dynamic social or biological environment, the interactions between
the actors can undergo large and systematic changes. In this paper we pro-
pose a model-based approach to analyze what we will refer to as the dynamic
tomography of such time-evolving networks. Our approach offers an intuitive
but powerful tool to infer the semantic underpinnings of each actor, such as its
social roles or biological functions, underlying the observed network topolo-
gies. Our model builds on earlier work on a mixed membership stochastic
blockmodel for static networks, and the state-space model for tracking object
trajectory. It overcomes a major limitation of many current network infer-
ence techniques, which assume that each actor plays a unique and invari-
ant role that accounts for all its interactions with other actors; instead, our
method models the role of each actor as a time-evolving mixed membership
vector that allows actors to behave differently over time and carry out differ-
ent roles/functions when interacting with different peers, which is closer to
reality. We present an efficient algorithm for approximate inference and learn-
ing using our model; and we applied our model to analyze a social network
between monks (i.e., the Sampson’s network), a dynamic email communica-
tion network between the Enron employees, and a rewiring gene interaction
network of fruit fly collected during its full life cycle. In all cases, our model
reveals interesting patterns of the dynamic roles of the actors.

1. Introduction. Networks are a fundamental form of representation of com-
plex systems. In many problems arising in biology, social sciences, and various
other fields, it is often necessary to analyze populations of entities such as mole-
cules or individuals, also known as “actors” in some network literature, intercon-
nected by a set of relationships such as regulatory interactions, friendships, and
communications. Studying networks of these kinds can reveal a wide range of in-
formation, such as how molecules/individuals organize themselves into groups,
which molecules are the key regulator or which individuals are in positions of
power, and how the patterns of biological regulations or social interactions are
likely to evolve over time.
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In this paper we investigate an intriguing statistical inference problem of inter-
preting the dynamic behavior of temporally evolving networks based on a concept
known as network tomography. Borrowed from the vocabulary of magnetic res-
onance imaging, the term “network tomography” was first introduced by Vardi
(1996) to refer to the study of a network’s internal characteristics using informa-
tion derived from the observed network. In most real-world complex systems such
as a social network or a gene regulation network, the measurable attributes and re-
lationships of vertices (or nodes) in a network are often functions of latent temporal
processes of events which can fluctuate, evolve, emerge, and terminate stochasti-
cally. Here we define network tomography more specifically as the latent semantic
underpinnings of entities in both static and dynamic networks. For example, it can
stand for the latent class labels, social roles, or biological functions undertaken by
the nodal entities, or the measures on the affinity, compatibility, and cooperativity
between nodal states that determine the edge probability. Our goal is to develop a
statistical model and algorithms with which such information can be inferred from
dynamically evolving networks via posterior inference.

We will concern ourselves with three specific real world time-evolving networks
in our empirical analysis: (1) the well-known Sampson’s undirected social net-
works [Sampson (1969)] of 18 monks over 3 time episodes, which are recorded
during an interesting timeframe that preludes a major conflict followed by a mass
departure of the monks, and therefore an interesting example case to infer nodal
causes behind dramatic social changes; (2) the time series of email-communication
networks of ENRON employees before and during the collapse of the company,
which may have recorded interesting and perhaps sociologically illuminating be-
havioral patterns and trends under various business operation conditions; and
(3) the sequence of gene interaction networks estimated at 22 time points dur-
ing the life span of Drosophila melanogaster, a fruit fly commonly used as a lab
model to study the mechanisms of animal embryo development, which captures
transient regulatory events such as the animal aging.

Inference of network tomography is fundamental for understanding the organi-
zation and function of complex relational structures in natural, sociocultural, and
technological systems such as the ones mentioned above. In a social system such as
a company employee network, network tomography can capture the latent social
roles of individuals; inferring such roles based on the social interactions among
individuals is fundamental for understanding the importance of members in a net-
work, for interpreting the social structure of various communities in a network,
and for modeling the behavioral, sociological, and even epidemiological processes
mediated by the vertices in a network. In systems biology, network tomography
often translates to latent biochemical or genetic functions of interacting molecules
such as proteins, mRNAs, or metabolites in a regulatory circuity; elucidating such
functions based on the topology of molecular networks can advance our under-
standing of the mechanisms of how a complex biological system regulates itself
and reacts to stimuli. More broadly, network tomography can lead to important
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insights to the robustness of network structures and their vulnerabilities, the cause
and consequence of information diffusion, and the mechanism of hierarchy and
organization formation. By appropriately modeling network tomography, a net-
work analyzer can also simulate and reason about the generative mechanisms of
networks, and discover changing roles among actors in networks, which will be
relevant for activity and anomaly detection.

There has been a variety of successes in network analysis based on various
formalisms. For example, researchers have found trends in a wide variety of
large-scale networks, including scale-free and small-world properties [Barabasi
and Albert (1999); Kleinberg (2000)]. Other successes include the formal char-
acterization of otherwise intuitive notions, such as “groupness” which can be
formally characterized in the networks perspective using measures of struc-
tural cohesiveness and embeddedness [Moody and White (2003)], detecting out-
breaks [Leskovec et al. (2007)], and characterizing macroscopic properties of var-
ious large social and information networks [Leskovec et al. (2008)]. Additionally,
there has been progress in statistical modeling of social networks, traditionally fo-
cusing on descriptive models such as the exponential random graph models, and
more recently moving toward various latent space models that estimate an em-
bedding of the network in a latent semantic space, as we review shortly in Sec-
tion 2. A major limitation of most current methods for network modeling and in-
ference [Hoff, Raftery and Handcock (2002); Li and McCallum (2006); Handcock,
Raftery and Tantrum (2007)] is that they assume each actor, such as a social indi-
vidual or a biological molecule in a network, undertakes a single and invariant role
(or functionality, class label, etc., depending on the domain of interest), when in-
teracting with other actors. In many realistic social and biological scenarios, every
actor can play multiple roles (or under multiple influences) and the specific role
being played depends on whom the actor is interacting with; and the roles un-
dertaken by an actor can change over time. For example, during a developmental
process or an immune response in a biological system, there may exist multiple
underlying “themes” that determine the functionalities of each molecule and their
relationships to each other, and such themes are dynamical and stochastic. As a
result, the molecular networks at each time point are context-dependent and can
undergo systematic rewiring, rather than being i.i.d. samples from a single under-
lying distribution, as assumed in most current biological network studies. We are
interested in understanding the mechanisms that drive the temporal rewiring of bi-
ological networks during various cellular and physiological processes, and similar
phenomena in time-varying social networks.

In this paper we propose a new Bayesian approach for network tomographic
inference that will capture the multi-facet, context-specific, and temporal nature of
an actor’s role in large, heterogeneous, and evolving dynamic networks. The pro-
posed method will build on a modified version of the mixed membership stochastic
blockmodel (MMSB) [Airoldi et al. (2008)], which enables network links to be re-
alized by role-specific local connection mechanisms; each link is underlined by
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a separately chosen latent functional cause, and each vertex can have fractional
involvement in multiple functions or roles which are captured by a mixed member-
ship vector, thereby the proposed model supports analyzing patterns of interactions
between actors via statistically inferring an “embedding” of a network in a latent
“tomographic-space” via the mixed membership vectors. For example, the charac-
teristics of group profiles of actors revealed by the mixed membership vectors can
offer important and intuitive community structures in the networks in question.

Modeling embedding of networks in latent state space offers an intuitive but
powerful approach to infer the semantic underpinnings of each actor, such as its
biological or social roles or other entity functions, underlying the observed net-
work topologies. Via such a model, one can map every actor in a network to a
position in a low-dimensional simplex, where the roles/functions of the actors are
reflected in the role- or functional-coordinates of the actors in the latent space and
the relationships among actors are reflected in their Euclidian distances. We can
naturally capture the dynamics of role evolution of actors in such a tomographic-
space, and other latent dynamic processes driving the network evolution by fur-
thermore applying a state-space model (SSM) popular in object tracking over the
positions of the tomographic-embeddings of all actors, where a logistic-normal
mixed membership stochastic blockmodel is employed as the emission model to
define time-specific condition likelihood of the observed networks over time. The
resulting model shall be formally known as a state-space mixed membership sto-
chastic blockmodel, but, for simplicity, in this paper we will refer to it as a dynamic
MMSB (or, in short, dMMSB); and we will show that this model allows one to in-
fer the trajectory of the roles of each actor based on the posterior distribution of its
role-vector.

Given network data, the dMMSB can be learned based on the maximum like-
lihood principle using a variational EM algorithm [Ghahramani and Beal (2001);
Xing, Jordan and Russell (2003); Ahmed and Xing (2007)], the resulting network
parameters reveal not only mixed membership information of each actor over time,
but also other interesting regularities in the network topology. We will illustrate
this model on the well-known Sampson’s monk social network, and then apply it
to the time series of email network from Enron and the sequence of time-varying
genetic interaction networks estimated from the Drosophila genome-wise microar-
ray time series, and we will present some previously unnoticed dynamic behaviors
of network actors in these data.

The remaining part of the paper is organized as follows. In Section 2 we briefly
review some related work. In Section 3 we present the dMMSB model in detail.
A Laplace variational EM algorithm for approximate inference under dMMSB will
be described in Section 4. In Section 5 we present case studies on the monks net-
work, the Enron network, and the Drosophila gene network using dMMSB, along
with some simulation based validation of the model. Some discussions will be
given in Section 6. Algebraic details of the derivations of the inference algorithm
are provided in the Appendix.
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2. Related work. There is a vast and growing body of literature on model-
based statistical analysis of network data, traditionally focusing on descriptive
models such as the exponential random graph models (ERGMs) [Frank and Strauss
(1986); Wasserman and Pattison (1996)], and more recently moving toward more
generative types of models such as those that model the network structure as be-
ing caused by the actors’ positions in a latent “social space” [Hoff, Raftery and
Handcock (2002)]. Among these models, some variants of the ERGMs, such as
the stochastic block models [Holland, Laskey and Leinhardt (1983); Fienberg,
Meyer and Wasserman (1985); Wasserman and Pattison (1996); Snijders (2002)],
cluster network vertices based on their structural equivalency [Lorrain and White
(1971)]. The latent space models (LSM) instead project nodes onto a latent space,
where their similarities can be visualized and explored [Hoff, Raftery and Hand-
cock (2002); Hoff (2003); Handcock, Raftery and Tantrum (2007)]. The mixed
membership stochastic blockmodel proposed in Airoldi et al. (2005, 2008) inte-
grates ideas from these models, but went further by allowing each node to belong
to multiple blocks (i.e., groups) with fractional membership. Variants of the mixed
membership model have appeared in population genetics [Pritchard, Stephens and
Donnelly (2000)], text modeling [Blei, Jordan and Ng (2003)], analysis of mul-
tiple disability measures [Erosheva and Fienberg (2005)], etc. In most of these
cases mixed membership models are used as a latent-space projection method to
project high-dimensional attribute data into a lower-dimensional “aspect-space,”
as a normalized mixed membership vector, which reflects the weight of each la-
tent aspect (e.g., roles, functions, topics, etc.) associated with an object [Erosheva,
Fienberg and Lafferty (2004)]. The mixed membership vectors often serve as a
surrogate of the original data for subsequent analysis such as classification [Blei,
Ng and Jordan (2003)]. The MMSB model developed earlier has been applied for
role identification in Sampson’s 18-monk social network and functional prediction
in a protein–protein interaction network (PPI) [Airoldi et al. (2005, 2008)]. It uses
the aforementioned mixed membership vector to define an actor-specific multino-
mial distribution, from which specific actor roles can be sampled when interacting
with other actors. For each monk, it yields a multi-class social-identity prediction
which captures the fact that his interactions with different other monks may be
under different social contexts. For each protein, it yields a multi-class functional
prediction which captures the fact that its interactions with different proteins may
be under different functional contexts.

We intend to use the state-space model (SSM) popular in object tracking and tra-
jectory modeling for inferring underlying functional changes in network entities,
and sensing emergence and termination of “function themes” underlying network
sequences. This scheme has been adopted in a number of recent works on extract-
ing evolving topical themes in text documents [Blei and Lafferty (2006b); Wang
and McCallum (2006)] or author embeddings [Sarkar and Moore (2005)] based on
author, text, and reference networks of archived publications.
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3. Modeling dynamic network tomography. Consider a temporal series of
networks {G(1), . . . ,G(T )} over a vertex set V , where G(t) ≡ {V,E(t)} represents
the network observed at time t . In this paper we assume that N = |V | is invariant
over time; thus, E(t) ≡ {e(t)

i,j }Ni,j=1 denote the set of (possibly transient) links at
time t between a fixed set of N vertices.

To model both the multi-class nature of every vertex in a network and the la-
tent semantic characteristics of the vertex-classes and their relationships to inter-
vertices interactions, we assume that at any time point, every vertex vi ∈ V in
the network, such as a social actor or a biological molecule, can undertake mul-
tiple roles or functions realized from a predefined latent tomographic space ac-
cording to a time-varying distribution Pt(·); and the weights (i.e., proportion of
“contribution”) of the involved roles/functions can be represented by a normal-
ized vector �π(t)

i of fixed dimension K . We refer to each role, function, or other
domain-specific semantics underlying the vertices as a membership of a latent
class. Earlier stochastic blockmodels of networks restricted each vertex to belong
to a single and invariant membership. In this paper we assume that each vertex can
have mixed memberships, that is, it can undertake multiple roles/functions within
a single network when interacting with various network neighbors with different
roles/functions, and the vector of proportions of the mixed-memberships, �π(t)

i , can
evolve over time. Furthermore, we assume that the links between vertices are in-
stantiated stochastically according to a compatibility function over the roles under-
taken by the vertex-pair in question, and we define the compatibility coefficients
between all possible pair of roles using a time-evolving role-compatibility matrix
B(t) ≡ {β(t)

k,l }.

3.1. Static mixed membership stochastic blockmodel. Under a basic MMSB
model, as first proposed in Airoldi et al. (2005), network links can be realized by a
role-specific local interaction mechanism: the link between each pair of actors, say,
(i, j), is instantiated according to the latent role specifically undertaken by actor i

when it is to interact with j , and also the latent role of j when it is to interact with i.
More specifically, suppose that each different role-pair, say, roles k and l, between
actors has a unique probability distribution P(·|βk,l) of having a link between
actor pairs with that role combination, then a basic mixed membership stochastic
blockmodel posits the following generative scheme for a static network:

1. For each vertex i, draw the mixed-membership vector: �πi ∼ P(·|θ).
2. For each possible interacting vertex j of vertex i, draw the link indicator ei,j ∈

{0,1} as follows:

• draw latent roles �zi→j ∼ Multinomial(·| �πi,1), �zj←i ∼ Multinomial(·| �πj ,1),
where �zi→j denotes the role of actor i when it is to interact with j , and �zj←i

denotes the role of actor j when it is approached by i. Here �zi→j and �zj←i

are unit indictor vectors in which one element is one and the rest are zero; it
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represents the kth role if and only if the kth element of the vector is one, for
example, zi→j,k = 1 or zj←i,k = 1

• and draw ei,j |(zi→j,k = 1, zj←i,l = 1) ∼ Bernoulli(·|βk,l).

Specifically, the generative model above defines a conditional probability distri-
bution of the relations E = {ei,j } among vertices in a way that reflects naturally in-
terpretable latent semantics (e.g., roles, functions, cluster identities) of the vertices.
The link ei,j represents a binary actor-to-actor relationship. For example, the exis-
tence of a link could mean that a package has been sent from one person to another,
or one has a positive impression on another, or one gene is regulated by another.
Each vertex vi is associated with a set of latent membership labels {�zi→·, �zi←·} (if
the links are undirected, as in a PPI, then we can ignore the asymmetry of “→”
and “←”). Thus, the semantic underpinning of each interaction between vertices is
captured by a pair of instantiated memberships unique to this interaction; and the
nature and strength of the interaction is controlled by the compatibility function
determined by this pair of memberships’ instantiation. For example, if actors A
and C are of role X while actors B and D are of role Y , we may expect that the re-
lationship from A to B is likely to be the same as relationship from C to D, because
both of them are from a role-X actor to a role-Y actor. In this sense, a role is like a
class label in a classification task. However, under an MMSB model, an actor can
have different role instantiations when interacting with different neighbors in the
same network.

The role-compatibility matrix B ≡ {βk,l} decides the affinity between roles. In
some cases, the diagonal elements of the matrix may dominate over other elements,
which means actors of the same role are more likely to connect to each other. In the
case where we need to model differential preference among different roles, richer
block patterns can be encoded in the role-compatibility matrix. The flexibility of
the choices of the B matrix give rise to strong expressivity of the model to deal
with complex relational patterns. If necessary, a prior distribution over elements in
B can be introduced, which can offer desirable smoothing or regularization effects.

Crucial to our goal of role-prediction and role-evolution modeling for network
data is the so-called mixed membership vector �πi , also referred to as “role vector,”
of the mixed-membership coefficients in the above generative model, which rep-
resents the overall role spectrum of each actor and succinctly captures the proba-
bilities of an actor involving in different roles when this actor interacts with an-
other actor. Much of the expressiveness of the mixed-membership models lies
in the choice of the prior distribution for the mixed-membership coefficients �πi ,
and the prior for the interaction coefficients {βk,l}. For example, in Airoldi et al.
(2005, 2008), a simple Dirichlet prior was employed because it is conjugate to
the multinomial distribution over every latent membership label {�zi→·, �zi←·} de-
fined by the relevant �πi . In this paper, to capture nontrivial correlations among
the weights (i.e., the individual elements within �πi ) of all latent roles of a vertex,
and to allow one to introduce dynamics to the roles of each actor when modeling
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temporal processes such as a cell cycle, we employ a logistic-normal distribution
over a simplex [Aitchison and Shen (1980); Aitchison (1986); Ahmed and Xing
(2007)]. The resulting model is referred to as a logistic-normal MMSB, or simply
LNMMSB.

Under a logistic normal prior, assuming a centered logistic transformation, the
first sampling step for �πi ≡ [πi,1, . . . , πi,K ] in the canonical mixed membership
generative model above can be broken down into two sub-steps: first draw �γi ac-
cording to

�γi ∼ Normal( �μ,�);(1)

then map it to the simplex via the following logistic transformation:

πi,k = exp{γi,k − C( �γi)} ∀k = 1, . . . ,K,(2)

where

C( �γi) = log

(
K∑

k=1

exp{γi,k}
)
.(3)

Here C( �γi) is a normalization constant (i.e., the log partition function). Due to the
normalizability constrain of the multinomial parameters, �πi only has K −1 degree
of freedom. Thus, we only need to draw the first K − 1 components of �γi from
a (K − 1)-dimensional multivariate Gaussian, and leave γi,K = 0. For simplicity,
we omit this technicality in the forthcoming general description and operation of
our model.

Under a dynamic network tomography model, the prior distributions of role
weights of every vertex Pt(·), and the role-compatibility matrix B , can both evolve
over time. Conditioning on the observed network sequence {G(1), . . . ,G(T )}, our
goal is to infer the trajectories of role vectors �π(t)

i in the latent social space or
biological function space. In the following, we present a generative model built on
elements from the classical state-space model for linear dynamic systems and the
static logistic normal MMSB described above for random graphs for this purpose.

3.2. Dynamic logistic-normal mixed membership stochastic blockmodel. We
propose to capture the dynamics of network evolution at the level of both the prior
distributions of the mixed membership vectors of vertices, and the compatibility
functions governing role-to-role relationships. In this way we capture the dynamic
behavior of the generative system of both vertices and relations. Our basic model
structure is based on the well-known state-space model, which defines a linear
dynamic transformation of the mixed membership priors over adjacent time points:

�μ(t) = A �μ(t−1) + �w(t) for t ≥ 1,(4)

where �μ(t) represents the mean parameter of the prior distribution of the trans-
formed mixed membership vectors of all vertices at time t , and �w(t) ∼ N (0,�)
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FIG. 1. A graphical model representation of the dynamic logistic-normal mixed membership sto-
chastic blockmodel. The part enclosed by the dotted lines is a logistic-normal MMSB.

represents normal transition noise for the mixed membership prior, and the tran-
sition matrix A shapes the trajectory of temporal transformation of the prior. The
LNMMSB model defined above now functions as an emission model within the
SSM that defines the conditional likelihood of the network at each time point. Note
that the linear system on �μ(t) can lead to a bursty dynamics for latent admixing
vector π

(t)
i through the LNMMSB emission model. Starting from this basic struc-

ture, we propose to develop a dynamical model for tracking underlying functional
changes in network entities and sensing emergence and termination of “function
themes.”

Given a sequence of network topologies over the same set of nodes, here is an
outline of the generative process under such a model (a graphical model represen-
tation of this model is illustrated in Figure 1):

• State-space model for mixed membership prior:
– �μ(1) ∼ Normal(ν,�), sample the mean of the mixed membership prior at

time 1.
For t = 1, . . . , T :
– �μ(t) = Normal(A �μ(t−1),�), sample the means of the mixed membership pri-

ors over time.
• State-space model for role-compatibility matrix:

For k = 1, . . . ,K and k′ = 1, . . . ,K ,
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– η
(1)
k,k′ ∼ Normal(ι,ψ), sample the compatibility coefficient between role k and

k′ at time 1.
For t = 1, . . . , T :
– η

(t)
k,k′ ∼ Normal(bη

(t−1)
k,k′ ,ψ), sample compatibility coefficients over subse-

quent time points.
– β

(t)
k,k′ = exp(η

(t)
k,k′)/(exp(η

(t)
k,k′) + 1), compute compatibility probabilities via

logistic transformation.
• Logistic-normal mixture membership model for networks:

For each node n = 1, . . . ,N , at each time point t = 1, . . . , T :
– �π(t)

i ∼ LogisticNormal( �μ(t),�(t)), sample a k dimensional mixed member-
ship vector.

For each pair of nodes (i, j) ∈ [1,N] × [1,N]:
– �z(t)

i→j ∼ Multinomial(�π(t)
i ,1), sample membership indicator for the donor,

– �z(t)
j←i ∼ Multinomial(�π(t)

j ,1), sample membership indicator for the acceptor,

– e
(t)
i,j ∼ Bernoulli(�z(t)′

i→jB
(t)�z(t)

j←i), sample the links between nodes.

Specifically, we assume that the mixed membership vector �π for each actor
follows a time-specific logistic normal prior L N ( �μ(t),�(t)), whose mean �μ(t) is
evolving over time according to a linear Gaussian model. For simplicity, we as-
sume that the �(t) which captures time-specific topic correlations is independent
across time.

It is noteworthy that unlike a standard SSM of which the latent state would
emit a single output (i.e., an observation or a measurement) at each time point, the
dMMSB model outlined above generates N emissions each time, one correspond-
ing to the (pre-transformed) mixed-membership vector �γ (t)

i of each vertex. To di-
rectly apply the Kalman filter and Rauch–Tung–Striebel smoother for posterior
inference and parameter estimation under dMMSB, we introduce an intermediate
random variable �Y (t) = 1

N

∑
i �γ (t)

i ; it is easy to see that �Y (t) follows a standard
SSM reparameterized from the original dMMSB:

�Y (t) ∼ Normal
(

�μ(t),
�(t)

N

)
t = 1, . . . , T .(5)

In principle, we can use the above membership evolution model to capture not
only membership correlation within and between vertices at a specific time [as
did in Blei and Lafferty (2006a)], but also dynamic coupling (i.e., co-evolution) of
membership proportions via covariance matrix �. In the simplest scenario, when
A = I and � = σI , this model reduces to a random walk in the membership-
mixing space. Since in most realistic temporal series of networks both the role-
compatibility functions between vertices and the semantic representations of
membership-mixing are unlikely to be invariant over time, we expect that even
a random walk mixed-membership evolution model can provide a better fit of the
data than a static model that ignores the time stamps of all networks.
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4. Variational inference. Due to difficulties in marginalization over the
super-exponential state space of latent variables �z and �π , even the basic MMSB
model based on a Dirichlet prior over the role vectors �π is intractable [Airoldi
et al. (2005, 2008)]. With the additional difficulty in integration of �π under a lo-
gistic normal prior where a closed-form solution is unavailable, exact posterior
inference of the latent variables of interest and direct EM estimation of the model
parameters is infeasible. In this section we present a Laplace variational approxi-
mation scheme based on the generalized means field (GMF) theorem [Xing, Jor-
dan and Russell (2003)] to infer the latent variables and estimate the model pa-
rameters. This scheme requires one additional approximating step on top of the
variational approximation developed in Airoldi et al. (2008), but we will show em-
pirically in Section 5.1.1 that this step does not introduce much additional error.
The GMF approach is modular, that is, we can approximate the joint posterior
p({�z(t), �π(t), �μ(t),B(t)}Tt=1|
, {G(t)}Tt=1), where 
 denotes the model parameters,
by a factored approximate distribution:

q
({�z(t), �π(t), �μ(t),B(t)}T

t=1

)
(6)

= q1
({�z(t), �π(t)}T

t=1

)
q2

({ �μ(t)}T
t=1

)
q3

({
B(t)}T

t=1

)
,

where q1(·) can be shown to be the marginal distribution of {�z(t), �π(t)}Tt=1 un-
der a reparameterized LNMMSB, and q2(·) and q3(·) are SSMs over { �μ(t)}Tt=1
and {B(t)}Tt=1, respectively, with emissions related to expectation of {�z(t), �π(t)}Tt=1
under q1(·). This can be shown by minimizing the Kulback–Leibler divergence
between q(·) and p(·) over arbitrary choices of q1(·), q2(·), and q3(·), as proven
in Xing, Jordan and Russell (2003). The computation of the variational parameters
of each of these approximate marginals leads to a coupling of all the marginals,
as apparent in the descriptions in the subsequent subsections. But once the varia-
tional parameters are solved, inference on any latent variable of interest under the
joint distribution p(·), which is intractable, can be approximated by a much sim-
pler inference on the same variable in one of the qi(·) marginals that contains the
variables of interest. Below we briefly outline solutions to each of these marginals
of subset of variables, which exactly correspond to the three building blocks of the
dMMSB model outlined in Section 3.2. [Since μ(t) and B(t) both follow a standard
SSM, for simplicity, we only show the solution to q2(·) over μ(t), and treat B(t) as
an unknown invariant constant to be estimated.]

4.1. Variational approximation to logistic-normal MMSB. For a static MMSB,
the inference problem is to estimate the role-vectors given model parameters and
observations. That is, model parameters �μ, �, and B are assumed to be known
besides the observed variables E, and we want to compute estimates of the role
vectors �γ· along with role indicators �z·→· and �z·←·. (Under dMMSB, �μ is in fact
unknown, but we will discuss shortly how to estimate it outside of the MMSB
inference detailed below.)
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Under the LNMMSB, ignoring time and vertex indices, the marginal posterior
of latent variables �γ (the pretransformed �π ) and �z is

p( �γ·, �z·→·, �z·←·| �μ,�,B,E)
(7)

∝ ∏
i

p( �γi | �μ,�)
∏
i,j

p(�zi→j , �zj←i | �γi, �γj )p(eij |�zi→j , �zj←i ,B).

Marginalization over all but one hidden variable to predict, say, �γi , is in-
tractable under the above model. Based on the GMF theory, we approxi-
mate p( �γ·, �z·→·, �z·←·| �μ,�,B,E) with a product of simpler marginals q(·) =
qγ (·)qz(·), each on a cluster of latent variable subsets, that is, { �γi} and {�zi→j ,

�zj←i}. Xing, Jordan and Russell (2003) proved that under GMF approximation,
the optimal solution, q(·), of each marginal over the cluster of variables is isomor-
phic to the true conditional distribution of the cluster given its expected Markov
Blanket. That is,

qγ ( �γi) = p( �γi | �μ,�, 〈�zi→·〉qz, 〈�zi←·〉qz),(8)

qz(�zi→j , �zj←i) = p(�zi→j , �zj←i |eij ,B, 〈 �γi〉qγ , 〈 �γj 〉qγ ).(9)

These equations define a fixed point for qγ and qz. The optimal marginal dis-
tribution of the variables in one cluster is updated when we fix the marginal of all
the other variables, in turn. The update continues until the change is neglectable.

The update formula for a cluster marginal of (�zi→j , �zj←i) is straightforward. It
follows a multinomial distribution with K × K possible outcomes:1

qz(�zi→j , �zj←i) ∝ p(�zi→j |〈 �γi〉qγ )p(�zj←i |〈 �γj 〉qγ )p(eij |�zi→j , �zj←i ,B)
(10)

∼ Multinomial(�δij ),

where δij (u,v) ≡ 1
C

exp(〈γi,u〉qγ + 〈γj,v〉qγ )β
eij
u,v(1 − βu,v)

1−eij , and C is the nor-
malization function to keep

∑
(u,v) δij (u,v) = 1. Furthermore, the expectation of z’s

according to the multinomial distribution are

〈zi→j,u〉qz
=

∑
v δij (u,v)∑

u,v δij (u,v)

= ∑
v

δij (u,v),

(11)

〈zj←i,v〉qz
=

∑
u δij (u,v)∑

u,v δij (u,v)

= ∑
u

δij (u,v).

The update formula for �γi can be derived similarly, but some further approxi-
mation is applied. First,

qγ ( �γi) ∝ p( �γi | �μ,�)p(〈�zi→·〉qz, 〈�zi←·〉qz | �γi)
(12)

= N ( �γi; �μ,�) exp
(〈 �mi〉Tqz

�γi − (2N − 2)C( �γi)
)
,

1The K × K components are flatted into a one-dimension vector.
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where mik = ∑
j �=i (zi→j,k + zi←j,k), 〈mik〉qz = ∑N

j �=i (〈zi→j,k〉qz + 〈zi←j,k〉qz),

and C( �γi) = log(
∑K

k=1 exp{γi,k}). The presence of the normalization constant
C( �γi) makes qγ unintegrable in the closed-form. Therefore, we apply a Laplace
approximation to C( �γi) based on a second-order Taylor expansion around
γ̂i [Ahmed and Xing (2007)], such that qγ ( �γi) becomes a reparameterized multi-
variate normal distribution N (γ̃i , �̃i) (see Appendix A.1 for details). In order to
get a good approximation, the point of expansion, γ̂i , should be set as close to the
query point as possible. Therefore, we set it to be the γ̃i obtained from the previous
iteration, that is, γ̂ r+1

i = γ̃ r
i where r denotes the iteration number.

The inference algorithm iterates between equation (10) and equation (12) until
convergence when the relative change of log-likelihood is less than 10−6 in ab-
solute value. The procedure is repeated multiple times with random initialization
for γ̃i . The result having the best likelihood is picked as the solution.

4.2. Parameter estimation for logistic-normal MMSB. The model parameters
�μ, �, and B have to be estimated from data E ≡ {eij }. In the simplest case, where
time evolution of �μ and B is ignored, these can be done via a straightforward
EM-style procedure.

In the E-step, we use the inference algorithm from Section 4.1 to compute the
posterior distribution and expectation of the latent variables by fixing the cur-
rent parameters. In the M-step, we re-estimate the parameters by maximizing the
log-likelihood of the data using the posteriors obtained from the E-step. Under a
LNMMSB, exact computation of the log-likelihood is intractable, hence, we use an
approximation method known as variational EM. We obtain the following update
formulas for variational EM [Ghahramani and Beal (2001)] (see Appendix A.2 for
an illustration of the derivation of the update for B):

β̂k,l =
∑

i,j eij δij (k,l)∑
i,j δij (k,l)

, μ̂ = 1

N

∑
i

γ̃i ,

(13)

�̂ = 1

N

∑
i

�̃i + Cov(γ̃1:N).

The procedure for the learning can be summarized below.
Learning for logistic-normal MMSB:

1. initialize B ∼ U [0,1], �μ ∼ N (0, I ), � = 10I

2. while not converged (Outer Loop)
2.1. Initialize q( �γi)

2.2. while not converged and #iteration ≤ threshold (Inner Loop)
2.2.1. update q(�zi→j , �zj←i) ∼ Multinomial(�δij )

2.2.2. update q( �γi) ∼ N (γ̃i , �̃i)

2.2.3. update B
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2.3. update �μ,�

The convergence criterion is the same as in inference. It is worth noting that
the update of role-compatibility matrix B is in the inner loop, which means that
it is updated as frequently as mixed membership vectors �γi . This makes sense
because the role-compatibility matrix and mixed membership vectors are closely
coupled.

4.3. Variational approximation to dMMSB. When �μ is time-evolving as in
dMMSB, two aspects in the algorithms described in Sections 4.1 and 4.2 need to
be treated differently. First, unlike in equation (13), estimation of �μ(t) now must
be done under an SSM, with {γ̃ (t)

i } as the emissions at every time point. Second,
according to the GMF theorem, the μ that appeared in all equations in Section 4.1
must now be replaced by the posterior mean of �μ(t) under this SSM. Below we
first summarize the algorithm for dMMSB, followed by details of the update steps
based on the Kalman Filter (KF) and the Rauch–Tung–Striebel (RTS) smoother
algorithms.

Inference for dMMSB:

1. initialize all �μ(t)

2. while not converged
2.1. for each t

2.1.1. call the inference algorithm for MMSB on network E(t) in Sec-
tion 4.1 (by passing to it all current estimate of �μ(t)), and return the
GMF approximation γ̃

(t)
i , �̃

(t)
i

2.1.2. update the observations, �Y (t) = ∑
i γ̃

(t)
i /N

2.2. RTS smoother update �μ(t) = μ̂t |T based on { �Y (t)}Tt=1

Given all model parameters and all the emissions (the current estimate of the
mixed membership vectors {γ̃ (t)

i } of all vertices returned by the logistic-normal
MMSB at each time point), posterior inference of the hidden states �μ(t) can be
solved according to the following KF and RTS procedure. The major update steps
in the Kalman Filter are as follows:

μ̂t+1|t = Aμ̂t |t = μ̂t |t ,

Pt+1|t = APt |tAT + � = Pt |t + �,

Kt+1 = Pt+1|t (Pt+1|t + �t+1/N)−1,

μ̂t+1|t+1 = μ̂t+1|t + Kt+1( �Yt+1 − μ̂t+1|t ),(14)

Pt+1|t+1 = Pt+1|t − Kt+1Pt+1|t ,(15)
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where μ̂t |s ≡ E( �μ(t)| �Y1, . . . , �Ys) and Pt |s ≡ Var( �μ(t)| �Y1, . . . , �Ys). And the major
update steps in the Rauch–Tung–Striebel smoother are as follows:

Lt = Pt |tAT P −1
t+1|t = Pt |tP −1

t+1|t ,

μ̂t |T = μ̂t |t + Lt(μ̂t+1|T − μ̂t+1|t ),(16)

Pt |T = Pt |t + Lt(Pt+1|T − Pt+1|t )LT
t .(17)

4.4. Parameter estimation for dMMSB. We again use the variational EM al-
gorithm. The E-step uses the dMMSB inference algorithm in Section 4.3 for com-
puting sufficient statistics μ̂t |T ,∀t , and the logistic normal MMSB inference algo-
rithm in Section 4.2 for computing all sufficient statistics δ

(t)
ij (k,l). In the M-step,

model parameters are updated by maximizing the log-likelihood obtained from
the E-step. From this on, we simplify the linear transition model posed on matrix
B and assume that it is constant. We derive the following updates for the model
parameters B,ν,�,�(t) (see Appendix A.3 for some details):

β̂k,l =
∑

t

∑
i,j e

(t)
ij δ

(t)
ij (k,l)∑

t

∑
i,j δ

(t)
ij,(k,l)

,(18)

�̂ = 1

T − 1

(
T −1∑
t=1

(μ̂t+1|T − μ̂t |T )(μ̂t+1|T − μ̂t |T )T +
T −1∑
t=1

LtPt+1|T LT
t

)
,(19)

�̂(t) = 1

N

(∑
i

(
μ̂t |T − γ̃

(t)
i

)(
μ̂t |T − γ̃

(t)
i

)T + ∑
i

�̃
(t)
i

)
,(20)

ν̂ = μ̂1|T .(21)

The algorithm can be summarized below.
Learning for dMMSB:

1. initialize B ∼ U [0,1], ν ∼ N (0, I ), �μ(t) = ν, � = 10I , �(t) = 10I

2. while not converged
2.1. initialize all q( �γ (t)

i )

2.2. while not converged
2.2.1. for each t

2.2.1.1. update q(�zi→j , �zj←i) ∼ Multinomial(�δij )

2.2.1.2. update q( �γi) ∼ N (γ̃i , �̃i)

2.2.2. update B

2.3. RTS smoother update, �μ(t) = μ̂t |T based on { �Y (t)}Tt=1
2.4. update ν,�,�(t)

Notice that in the above algorithm, the variational cluster marginals q(�zi→j ,

�zj←i), q( �γi), and q( �μ(1), . . . , �μ(T )) each depend on variational parameters defined
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by other cluster marginals. Thus, overall the algorithm is essentially a fixed-point
iteration that will converge to a local optimum. We use multiple random restarts to
obtain a near global optimum.

5. Experiments. In this section we validate the inference algorithms pre-
sented in Section 4 on synthetic networks and demonstrate the advantages of the
dMMSB model on the well-known Sampson’s monk network. Then we apply
dMMSB to two large-scale real world data sets.

5.1. Synthetic networks. We first evaluate the logistic normal MMSB de-
scribed in Section 3.1 in comparison with the earlier Dirichlet MMSB proposed
by Airoldi et al. (2008), and then with the dMMSB model described in Section 3.2.
We investigate their differences in three major aspects: (i) Is the Laplace variational
inference algorithm adequate for accurately estimating the mixed membership vec-
tors? (ii) For a static network, does LNMMSB provide a better fit to the data when
different roles are correlated? And (iii) for dynamic networks, does dMMSB pro-
vide a better fit to the data?

5.1.1. Inference accuracy. We generated three sets of synthetic networks, each
of which has 100 individuals and 3 roles, using 3 different sets of role-vector priors
and role-compatibility matrices, to mimic different real-life situations. Figure 2
shows the estimation errors with LNMMSB under the three scenarios. The results
from the Dirichlet MMSB are very close to that of LNMMSB and therefore are
not shown here.

For synthetic network I, most actors have a single role and the role-compatibility
matrix is diagonal, which means that actors connect mostly with other actors of

FIG. 2. Results of inference and learning with LNMMSB on representative synthetic networks from
scenario I to III. In the top row, the figure in each cell displays the estimated role-vectors. They are
projected onto a simplex along with the ground truth: a circle represents the position of a ground
truth; a cross represents an estimated position; and, each truth-estimation pair is linked by a grey
line. Note that we used different colors to denote actors from different groups. In the bottom row,
we display the the true and estimated role-compatibility matrices. For all three cases, the estimated
role-compatibility matrices are close to the true matrices we used to generate the synthetic networks.
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the same role. It can be seen that the mixed membership vectors are well recov-
ered. Most of the actors in the simplex are close to a corner, which indicates that
they have a dominating role. Some actors are not close to a corner but close to an
edge, which means that they have strong memberships for two roles. The remain-
ing actors lying near the center of the simplex have mixed memberships for all
three roles. In general, the difficulty of recovering the mixed membership vector
increases as an actor possesses more roles.

In synthetic network II, the true mixed membership vector is qualitatively sim-
ilar to synthetic network I, but the role-compatibility matrix contains off-diagonal
entries. As a result, an actor in network II is more likely to connect with actors of a
different role than network I. In this more difficult case, our model still accurately
estimates the role-compatibility matrix and the mixed membership vectors.

In synthetic network III, we present a very difficult case where many actors
undertake noticeable mixed roles, and the within-role affinity is very weak. Though
a few actors near the center of the simplex endure obvious discrepancy between the
truth and the estimation, less than 10 percent of actors have more than 20 percent
errors in their role vectors. Furthermore, we can see the group structure is still
clearly retained.

Note that LNMMSB and Dirichlet MMSB employ different variational schemes
to approximate the posterior of the mixed membership vectors, and the two models
possess different modeling power to accommodate correlations between different
memberships. The combined effect could lead to a difference in their accuracy
of estimating the mixed membership vectors of every vertex, although in prac-
tice we found such difference hardly noticeable in the simplexial display given in
Figure 2. To provide a quantitative comparison between the LNMMSB and the
Dirichlet MMSB, we compute the average distance between the ground truth and
the estimated mixed membership vectors in the aforementioned three settings. We
used both the �1 and the �2 distance as the metrics in our comparison, and the re-
sults are shown in Figure 3, where each type of network is instantiated ten times to
produce the error bar. We can see that the LNMMSB performs slightly better for
networks I and II (though no significant difference is observed).

5.1.2. Goodness of fit of LNMMSB. To evaluate the fitness of the model to the
data, we compute the log-likelihood of fitting a type-II synthetic network generated
in the previous experiment, achieved by the model in question at convergence of
parameter estimation via the variational EM. Since no simple form of the log-
likelihood can be derived for both methods, the log-likelihoods were obtained via
importance sampling. The results for LNMMSB and Dirichlet MMSB are listed in
Table 1, showing that the goodness of fit of the two models are comparable, with
LNMMSB slightly dominating over Dirichlet MMSB. As parallel evidence, the �2
norm distances between the inferred mixed membership vectors and the ground
truth are also shown.
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FIG. 3. The average distance in (top) L-1 and (bottom) L-2 between the ground truth and the
estimation of the mixed membership vectors in networks that share parameter settings as simulation
networks I, II and III (from left to right).

5.1.3. Goodness of fit of dMMSB. To assess the fitness of the dMMSB, we
generate dynamic networks consisting of 10 time points. The number of actors
remains 100 and the number of roles remains 3. Furthermore, we generate the
networks in such a way that networks between adjacent time points show certain
degrees of similarity. As an illustration, the true role compatibility matrix and the
mixed membership vectors at time point 6 are displayed in Figure 4.

In Figure 4 (right), we compare dMMSB to an LNMMSB learning a static net-
work for each time point separately. We measure the performance in terms of the
average �2 distance between the estimates of the mixed membership vectors and
their true values. It can be seen that the error of dMMSB is lower than the error
of MMSB in most cases and about 10 percent lower on average. This suggests
that dMMSB can indeed integrate information across temporal domain and better
models the networks. More settings of model parameters have been tested on both
LNMMSB and dMMSB; they confirm that dMMSB is more effective in modeling
dynamic networks.

5.2. Sampson’s monk network: Emerging crisis in a cloister. Now we illus-
trate the dMMSB model on a small-scale pedagogical example, the Sampson net-
work. Sampson (1969) recorded the social interactions among a group of monks

TABLE 1
Dirichlet vs. logistic normal prior for MMSB

Prior Avg. �2 distance Log-likelihood

Dirichlet 0.091 −5755.8
Logistic normal 0.092 −5691.7
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FIG. 4. Left: The true mixed membership vectors (circle) and the estimates by dMMSB (cross)
at time point 6 visualized in a 2-simplex; each truth-estimate pair is linked by a grey line. Middle:
The learned role compatibility matrix, whose nonzero entries are shown by arcs with values; values
outside the brackets are the truths and the values inside the brackets are estimates. Right: Average
�2 errors of mixed membership vectors for MMSB and dMMSB.

while being a resident in a monastery. He collected a lot of sociometric rankings
on relations such as liking, esteem, praise, etc. Toward the end of his study, a major
conflict broke out and was followed up by a mass departure of the members. The
unique timing of the study makes the data more interesting in the attempt to look
for omens of the separation.

We analyze the networks of liking relationship at three time points. They contain
18 members (only junior monks). The networks are directed rather than undirected,
because one can like another while not vice versa.

We start with a static analysis on the network of time point 3, which is the
latest record before the crisis. Several researchers have also studied the static
network, including Breiger, Boorman and Arabie (1975), White, Boorman and
Breiger (1976), and Airoldi et al. (2008).

The network is fitted by our model with 1 to 5 roles. The proper number of roles
is selected by Bayesian Information Criterion (BIC).

Figure 5 shows the posterior estimation of mixed membership vectors of the
monks in the monk liking networks by LNMMSB with three roles. It clearly sug-
gests three groups, each of which is close to one vertex of the triangle. Using
Sampson’s labels, the three groups correspond to the Young Turks (monks num-
bered 1, 2, 7, 12, 14, 15, 16), the Loyal Opposition (4, 5, 6, 9, 11) + Waverers (8,
10), and the Outcasts (3, 17, 18) + Waverer (13). The result is consistent with all
previous works except for a controversial person, Mark (13). He is known as an
interstitial member of the monastery. Breiger, Boorman and Arabie (1975) placed
him with the Loyal Opposition, whereas White, Boorman and Breiger (1976) and
Airoldi et al. (2008) placed him among the Outcasts.

Figure 6(a) demonstrates the estimated role-compatibility matrix. It appears that
the inter-group relation of liking is strong, while the intra-group relation is absent.
Together with the fact that most of the individuals have an almost pure role, it
suggests that an explicit boundary exists between the groups, leaving the later sep-
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FIG. 5. Posterior mixed membership vectors of the monks projected in a 2-simplex by Log-Normal
MMSB with 3 roles. Numbered points can be mapped to monks’ names using the legend on the right.
Colors identify the composition of mixed membership role-vectors.

aration as no surprise. Figure 6(b) gives the BIC scores. It suggests that the model
with 3 roles is the best.

The trajectories of the varying role-vectors over time inferred by dMMSB with
three roles are illustrated in Figure 7. Several big changes in mixed membership
vectors happened from time 1 to time 2, and some minor fluctuation occurred
between time 2 and time 3. Overall, most persons were stable in the dominant
role. If we only look at time 3, which is the one we studied earlier in the static
network analysis, the results of mixed membership and grouping of the two models
are mostly consistent. Therefore, according to the discussion in the static network
analysis, the three roles in the dynamic model can be roughly interpreted as Young
Turks, Loyal Opposition, and Outcasts.

One of the persons whose dominant role changed is Ambrose (3). He later be-
came an Outcast. However, at time 1, he was connected with both Romul (1) and
Bonaven (2) in the Young Turks besides his connection with Elias (17), an Out-
cast. It supports our result viewing him mainly as a Young Turk at the time. The

FIG. 6. (a) The estimated role-compatibility matrix of the monk liking networks by Log-Normal
MMSB with 3 roles. (b) The Bayesian Information Criterion scores of the learning result of the monk
liking network with 1 to 5 roles. The lower the better.
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FIG. 7. The role-vectors learned in the dynamic network of liking relationship between members
in the Sampson Monastery. Each color represents a role.

other two persons are Peter (5) and Hugh (11). They were close to some Outcasts
at time 1 but flipped to Loyal Opposition at time 2, where they finally belonged
to. It suggests that the Outcast group whose member finally got expelled had not
been noticeably formed until after these big changes happened between time 1 and
time 2.

From time 2 to time 3, it can be observed that the mixed membership vectors
were purifying, for instances, in monks numbered 1, 3–10, 12, and 15–17. Bonaven
(2) and Albert (14) were the exceptions, but they did not change the general trend.
The purifying process indicated that the members of different groups were more
and more isolated, which finally led to the outbreak of a major conflict.

5.3. Analysis of Enron email networks. Now we study the Enron email com-
munication networks. The email data was processed by Shetty and Adibi (2004).
We further extract email senders and recipients in order to build email networks.
We have processed the data such that numerous email aliases are properly corre-
sponded to actual persons.

There are 151 persons in the data set. We used emails from 2001, and built
an email network for each month, so the dynamic network has 12 time points.
We learn a dMMSB of 5 latent roles. The composition and trajectory of roles of
each recorded company employee and the role compatibility matrix are depicted
in Figure 8.

It is observed that the first role (blue) stands for inactivity, that is, the condition
that a vertex is not interacting with any peers; this is a necessary role to account for
the intrinsic sparsity of the network. The other roles are active. Actors with Role 2
(cyan), likely representing lower-level employees, only send email to persons of
the same role, therefore, they form a clique. So is Role 4 (orange), which leads to
another clique. Persons #6, 9, 48, 67, etc. mainly assume this role, and they com-
municate with many others in the same role. They appear to be normal employees
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FIG. 8. Temporal changes of the mixed membership vectors for each actor, and the visualization
for role compatibility matrix.

according to available information and the underlying meaning of the clique is yet
to be discovered.

Role 5 (red) is within the functional composition of many people. Persons in
Role 5 send emails to persons with either Role 5 or Role 3 (green). They form
a large clique, where Role 3 corresponds to receivers and Role 5 to both senders
and receivers. Role 3 might reflect a certain aspect of senior management role
that routinely receives reports/instructions, while Role 5 might correspond to an
executive role that likes to issue orders to the managers and communicate among
themselves, or other level of positions that behave somewhat similarly but possibly
with opposite purpose, for example, reporting to managers rather than dominating
over them.

Of special interest are individuals that are frequently dominated by multiple ac-
tive roles (especially those falling into separate cliques), because they have strong
connection with different groups and may serve important positions in the com-
pany. By scanning Figure 8, actor #65 and #107 fit best to this category. According
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FIG. 9. Left: Visualization of mixed membership vectors of network actors in 3-simplex at one time
point. Each vertex of the tetrahedron corresponds to a role marked by its ID. A mixed membership
vector is represented by a cross whose location and color are the weighted average of its active roles
and whose size is proportional to the sum of the weights from the active roles. Right: We track the
trajectory of the mixed membership vector for an actor across time. Numbers in italics show time
stamps.

to external sources, Mark Haedicke (#65) was the Managing Director of the Legal
Department and Louise Kitchen (#107) was the President of Enron Online, which
supports the finding by our method.

We also zoom into Kenneth Lay (#127), the Chairman and CEO of Enron at the
time. His role vector in August is abnormally dominated by Role 3, which stands
for a receiver. It is exactly the time when Enron’s financial flaws were first publicly
disclosed by an analyst, which might lead to a massive increase in enquiry emails
from the internal employees.

With respect to systematic changes in temporal space, the role vectors of most
actors are smooth over time. However, a few people experience a large increase in
the weight of the inactivity role in December (i.e., persons #6, 13, 36, 67, 76). This
is the time when Enron filed for bankruptcy.

We can also visualize the mixed membership vectors of the network entities and
track the trajectory of the mixed membership vector for an individual as shown
in Figure 9. They can help us understand the network as a whole and how each
individual evolves in his or her role. Based on these examples, we believe dMMSB
can provide a useful visual portal for exploring the stories behind Enron.

5.4. Analysis of evolving gene network as fruit fly aging. In this section
we study a sequence of gene correlation networks of the fruit fly Drosophila
melanogaster estimated at various point of its life cycle. It is known that over
the developmental course of any complex organism, there exist multiple under-
lying “themes” that determine the functionalities of each gene and their relation-
ships to each other, and such themes are dynamical and stochastic. As a result,
the gene regulatory networks at each time point are context-dependent and can
undergo systematic rewiring, rather than being invariant over time. We expect the
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dMMSB model can capture such properties in the time-evolving gene networks of
Drosophila melanogaster.

However, experimentally uncovering the topology of the gene network at multi-
ple time points as the animal aging is beyond current technology. Here we used the
time-evolving networks of Drosophila melanogaster reverse-engineered by Kolar
et al. (2010) from a genome-wide microarray time series of gene expressions us-
ing a novel computational algorithm based on �1 regularized kernel reweighting
regression, which is detailed in a companion paper that also appears in this is-
sue. Altogether, 22 networks at different time points across various developmental
stages, namely, embryonic stage (1–10 time point), larval stage (11–13 time point),
pupal stage (14–19 time points), and adult stages (20–22 time points), are ana-
lyzed. We focused on 588 genes that are known to be related to the developmental
process based on their gene ontologies.

We plotted the mixed membership vector over 4 roles for each gene as it varies
across the developmental cycle (Figure 10). From the time courses of these mixed
membership vectors, we can see that many genes assume very different roles dur-
ing different stages of the development. In particular, we see that many genes ex-
hibit sharp transition in terms of their roles near the end of the embryonic stage.
This is consistent with the underlying developmental requirement of Drosophila
that the gene interaction networks need to undergo a drastic reconfiguration to ac-
commodate the new stage of larval development. Somewhat surprisingly, we found
when the number of roles is set to four, the probability of interacting between dif-
ferent roles is very small, as revealed by the visualization of the role compatibility
matrix (Figure 10, lower right). More experiments are needed to examine whether
this pattern is a true property of the Drosophila gene interactions or an experi-
mental artifact (e.g., from accuracy of network reverse engineering, or from the
smallish number of roles we have chosen to fit the model, which might be overly
coarse, or from the quality of approximate inference in a high-dimensional model).

We selected four genes for further analysis, namely, Optix, dorsal (dl), lethal (2)
essential for life [l(2)efl], and tolkin (tok). These four genes are among the high-
est degree nodes in the network produced by averaging the dynamic networks over
time. We want to see how their roles evolve over time and, therefore, we plotted the
trajectory of their mixed membership vector in a 4-d simplex (Figure 11). We can
see from the trajectory some of these genes cover a wide area of the 4-d simplex.
This is consistent with the roles of gene Optix and dl as transcriptional factors that
participate in many different functions and regulate the expression of a wide range
of other genes. For instance, dl participates in a diverse range of functions such as
anterior/posterior pattern formation, dorsal/ventral axis specification, immune re-
sponse, gastrulation, heart development; Optix participates in nervous system and
compound eye development. In contrast, gene tok and l(2)efl are not transcriptional
factors and they are currently only known for very limited functions: tok is related
to axon guidance and wing vein morphogenesis; l(2)efl is related to embryonic
and heart development. In our results, we found that, indeed, the role-coordinates
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FIG. 10. Changes in mixed membership vectors of all genes, and the visualization for role com-
patibility matrix. The x-axes of each subplot is time, and the y-axes is the weight of role-component.
Each color stands for a role.

of tok are almost invariant, but the trajectory of l(2)efl suggests that it may play
more diverse roles than what is currently known and deserves further experimental
studies.
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FIG. 11. The trajectories of mixed membership vectors of 4 genes [Optix, dl, tok, l(2)efl].

We further used the mixture membership vectors as features to cluster genes at
each time point into 4 clusters (each cluster corresponding to a particular role-
combination pattern), and studied the gene functions in each role-combination
across time. In other words, we try to provide a functional decomposition for each
role obtained from the dMMSB model and investigate how these roles evolve over
time. In particular, we examined 45 ontological groups and computed the score en-
richment of these biological functions over random distribution in each role cluster.
Figures 12 and 13 demonstrate the results in cluster (i.e., role) 1. The overall pat-
tern that emerges from our results is that each role consists of genes with a variety
of functions, and the functional composition of each role varies across time. How-
ever, the distributions over these function groups are very different for different
roles: the most common functional groups for genes in role 1 are related to mul-
ticellular organismal development, cuticle development, and pigmentation during
development; for the second role, the most common functional groups are gland
morphogenisis, heart development, gut development, and ommatidial rotation; for
the third role, they are stem cell maintenance, sensory organ development, central
nervous system development, lymphoid organ development, and gland develop-
ment; for the fourth role, gastrulation, multicellular organismal development, gut
development, stem cell maintenance, and regionalization.

6. Discussion. Unlike traditional descriptive methods for studying networks,
which focus on high-level ensemble properties such as degree distribution, motif



DYNAMIC NETWORK TOMOGRAPHY 561

FIG. 12. Average gene ontology (GO) enrichment score for role 1. The enrichment score for a given
function is the number of genes labeled as this function. Note that in the plot we have normalized
the score to a range between [0,1], since we are mainly interested in the relative count for each GO
group. Abbreviations appearing in the figure are as follows: dev. for development, proc. for process,
morph. for morphogenesis, and sys. for system.

profile, path length, and node clustering, the dynamic mixed membership stochas-
tic blockmodel proposed in this paper offers an effective way for unveiling detailed
tomographical information of every actor and relation in a dynamic social or bio-
logical network. This methodology has several distinctive features in its structure
and implementation. First, the social or biological roles in the dMMSB model are
not independent of each other and they can have their own internal dependency
structures; second, an actor in the network can be fractionally assigned to mul-
tiple roles; and third, the mixed membership of roles of each actor is allowed to
vary temporally. These features provide us extra expressive power to better model
networks with rich temporal phenomena.

In practice, this increased modeling power also provides better fit to networks
in reality. For instance, the interactions between genes underlying the develop-
mental course of an organism are centered around multiple themes, such as wing
development and muscle development, and these themes are tightly related to each
other: without the proper development of muscle structures, the development and
functionality of wings can not be fulfilled. As an organism moves along its de-

FIG. 13. Temporal evolution of gene ontology enrichment score for role 1. The time points are
ordered from left to right, and from top to bottom. The order of the gene ontology groups are the
same as in Figure 12.
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velopmental cycle, the underlying themes can evolve and change drastically. For
instance, during the embryonic stage of the Drosophila, wing development is sim-
ply not present and other processes such as the specification of anterior/posterior
axis may be more dominant. Many genes are very versatile in terms of their roles
and they differentially interact with different genes depending on the underlying
developmental themes. Our model is able to capture these various aspects of the
dynamic gene interaction networks, and hence leads us a step further in under-
standing the biological processes.

In terms of the algorithm, a key ingredient to glue the three features together is
the logistic normal prior for the mixed membership vector. This prior is superior
to a Dirichlet prior in our context since the off-diagonal entries of the covariance
matrix allow us to code the dependency structure between roles, as clearly demon-
strated in an earlier work [Ahmed and Xing (2007)]. Another advantage of the
logistic normal prior is that it can be readily coupled with a state-space model for
tracking the evolution of the roles. However, the drawback of the logistic normal
prior is that it is not a conjugate prior to the multinomial distribution and, there-
fore, additional approximation is needed during learning and inference. For this
purpose, we developed an efficient Laplace variational inference algorithm.

Our algorithm scales quadratically with the number of nodes in the network, due
to the necessity to infer the context-dependent role indicator Z. It scales quadrati-
cally with the number of possible roles, and linearly with the number of time steps,
which are small compared to the network size. The constant factor typically de-
pends on the stringency of the convergence test in the variational EM and the num-
ber of random restarts to alleviate local optimum. In our current implementation,
we can handle a network with nodes ∼103 within a day. We have been focusing
on developing efficient algorithms that enable dynamic tomographic analysis of
“meso-level” networks, that is, a network with thousands of nodes, rather than a
“mega” network with millions of nodes. We feel that this objective is appropriate
because for mega-networks, such as the blogsphere and the world wide web, it is
the ensemble behavior mentioned above that offers more important information to
an investigator who wants to do something with the network, rather than individual
nodal states. This change of focus with the size of the system can also be seen in
economics and game theory.

There are many dimensions where we can extend our current work. For in-
stance, the current model does not explicitly take hubs and cliques of the networks
into account, and the state-space model does not enforce temporal smoothness di-
rectly over the mixed membership vector but only on its prior. Incorporating these
elements will be interesting future research.

APPENDIX: DERIVATIONS

A.1. Taylor approximation. We want to approximate C(γi) by a second-
order Taylor expansion. For simplicity, we temporarily drop the subscript i in this
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subsection. The Taylor expansion of C( �γ ) w.r.t. any point γ̂ is

C( �γ ) ≈ C(γ̂ ) + �gT ( �γ − γ̂ ) + 1
2( �γ − γ̂ )T H( �γ − γ̂ ),(22)

where �g is the first derivative (a K × 1 vector), and H is the second derivative
(a K×K matrix). Only linear and quadratic terms are left. Therefore, equation (12)
becomes

qγ ( �γ ) ∝ N ( �γ ; �μ,�) exp
(〈 �m〉Tqz

�γ − (2N − 2)C( �γ )
)

≈ exp
{−1

2( �γ − �μ)T �−1( �γ − �μ) + �rT �γ + �γ T Sγ
}
,

where �rT = 〈m〉Tqz
− (2N − 2)�gT + (2N − 2)γ̂ T H is a 1×K row vector and S =

−(N − 1)H is a K × K symmetric matrix.
Letting x = �γ − �μ, the exponent becomes

−1
2( �γ − �μ)T �−1( �γ − �μ) + �rT �γ + �γ T Sγ

= −1
2xT �−1x + �rT (x + �μ) + (x + �μ)T S(x + �μ)

= −1
2xT (�−1 − 2S)x + (�rT + 2 �μT S)x + C1

(and letting �̃−1 = �−1 − 2S,D = �rT + 2 �μT S)

= −1
2xT �̃−1x + Dx + C1

= −1
2(x − �̃DT )T �̃−1(x − �̃DT ) + C2

= −1
2( �γ − �μ − �̃DT )T �̃−1( �γ − �μ − �̃DT ) + C2.

Therefore, �̃ = (�−1 − 2S)−1 = (�−1 + (2N − 2)H)−1

γ̃ = �μ + �̃DT = �μ + �̃(AT + 2S �μ)

= �μ + �̃
(〈 �mi〉qz

− (2N − 2)�g + (2N − 2)H γ̂i − (2N − 2)H �μ)
,

where the first and the second derivatives are

g(γ̂ )k = exp γ̂k∑
k exp γ̂k

,

H(γ̂ )kl = I(k = l)∑
k exp γ̂k

− exp γ̂k exp γ̂l

(
∑

k exp γ̂k)2

or, in short,

H = diag(�g) − �g�gT .
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A.2. Learning on logistic-normal MMSB. The log-likelihood as a function
of B can be written as

l(B) = ∑
i,j

log
∑
k,l

(
δij,(k,l)β

eij

k,l (1 − βk,l)
(1−eij )) + C0

≥ ∑
i,j

∑
k,l

δij,(k,l) log
(
β

eij

k,l (1 − βk,l)
(1−eij )) + C0

(23)
= ∑

i,j

∑
k,l

δij,(k,l)

(
eij logβk,l + (1 − eij ) log(1 − βk,l)

) + C0

≡ l∗(B),

∂l∗(B)

∂βk,l

= ∑
i,j

∑
k,l

δij,(k,l)

(
eij

βk,l

− 1 − eij

1 − βk,l

)
,

β̂k,l =
∑

i,j eij δij,(k,l)∑
i,j δij,(k,l)

.(24)

Jensen’s Inequality is applied in the derivation to get an approximation (more
specifically, a lower bound) to the log-likelihood which has an analytical solu-
tion in finding the maximum point. Setting the derivative to zero gives us an MLE
estimator of B based on approximation.

A.3. Learning on dMMSB. Again, we take an approximation of the log-
likelihood, which is more tractable:

l(B) = ∑
t

∑
i,j

log
∑
k,l

(
δ
(t)
ij,(k,l)β

e
(t)
ij

k,l (1 − βk,l)
(1−e

(t)
ij )) + C0

≥ ∑
t

∑
i,j

∑
k,l

δ
(t)
ij,(k,l) log

(
β

e
(t)
ij

k,l (1 − βk,l)
(1−e

(t)
ij )) + C0

(25)
= ∑

t

∑
i,j

∑
k,l

δ
(t)
ij,(k,l)

(
e
(t)
ij logβk,l + (

1 − e
(t)
ij

)
log(1 − βk,l)

) + C0

≡ l∗(B).

The update equation for B is from maximizing the upper bound of the log-
likelihood:

∂l∗(B)

∂βk,l

= ∑
t

∑
i,j

∑
k,l

δ
(t)
ij,(k,l)

( e
(t)
ij

βk,l

− 1 − e
(t)
ij

1 − βk,l

)
,

β̂k,l =
∑

t

∑
i,j e

(t)
ij δ

(t)
ij,(k,l)∑

t

∑
i,j δ

(t)
ij,(k,l)

.(26)
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