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A state-space model of fatigue crack growth∗
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Abstract. This paper proposes a nonlinear dynamic model of fatigue crack growth in the state-space setting based
on the crack closure concept under cyclic stress excitation of variable amplitude and random loading. The model
state variables are the crack length and the crack opening stress. The state-space model is capable of capturing
the effects of stress overload and underload on crack retardation and acceleration, and the model predictions are
in fair agreement with experimental data on the 7075-T6 aluminum alloy. Furthermore, the state-space model
recursively computes the crack opening stress via a simple functional relationship and does not require a stacked
array of peaks and valleys of stress history for its execution; therefore, savings in both computation time and
memory requirement are significant. As such, the state space model is suitable for real-time damage monitoring
and control in operating machinery.
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1. Introduction

Dynamic modeling of fatigue crack growth has been a topic of intensive research for several
decades. A vast majority of fatigue crack growth models have been restricted to constant
amplitude stress cycles (Suresh, 1991), where the crack opening stressSo is assumed to
be constant. The fact is thatSo depends on the history of cyclic stresses (Anderson, 1995)
and must be cycle-dependent, in general, if the amplitude of stress cycles is not constant.
Therefore, for variable-amplitude loading, the history of stress cycles has been taken into
consideration in different crack growth models by empirically truncating the cyclic stress
history over a finite horizon, i.e., a finite interval of cycles. For example, the crack open-
ing stress in several existing crack growth models, such as FASTRAN-II (Newman, 1992;
Newman, 1981)), is calculated based on the stress history over an empirically determined
interval of about 300 cycles. In a strain-life-based model, Ray et al. (1994) adopted the
rainflow cycle counting method for computing the reference stress (Dowling, 1984) based
on the history of finitely many stress cycles. The procedure for selection of the number of
cycles in the finite window of stress history varies with the type of load cycles and also the
rules employed for cycle counting. Since a finite interval of cycles is an approximation of the
semi-infinite time horizon, the accuracy of model prediction is expected to improve as the
interval length is increased. In some instances, experimental observations reveal that a short
interval of recent stress history is adequate to predict the crack growth rate. However, it is not
known precisely how much history should be considered for calculating the crack opening
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stress. For variable-amplitude cyclic loading, the procedures for evaluation of crack opening
stress in existing crack growth models are usually complicated, computationally intensive,
and require storage of a sizable history of stress excitation. This issue has been addressed by
Holm et al. (1995) who have formulated an autoregressive (AR) model of crack opening stress
in the state-variable setting. Identification of the AR model parameters is restricted to block
loading. Apparently, the AR model does not capture the effects of irregular sequence loading
(e.g., single-cycle overload and random loading) which is prevalent in many different types of
operating machinery.

This paper presents a nonlinear dynamic model of fatigue crack growth in the state-variable
setting under cyclic stress excitation of variable amplitude. The model is capable of capturing
the effects of block loading, random loading, and irregular sequences including different com-
binations of single overload and underload. The proposed model, hereafter referred to as the
state-space model, is formulated based on the crack closure concept where the state variables
are the crack length(a) and the crack opening stress(So). Although the crack growth equation
in the state-space model is similar to that in the FASTRAN-II model (Newman, 1992), the
two models use different algorithms for calculatingSo. As such, for a given stress history,
the crack length computed by these two models could be different under variable-amplitude
cyclic stress but the results are essentially identical under constant amplitude stress. Unlike the
existing crack growth models, the state-space model does not require a long history of stress
excitation to calculate the crack opening stress and, therefore, savings in both computation
time and memory requirement are significant. The effects of the cyclic stress history are
captured by a fading memory model where the state equation for crack opening stress is a
(piecewise) bilinear difference equation excited by the peaks and valleys of the current stress
cycle and the previous stress cycle. This representation adequately captures the phenomena
of crack retardation and acceleration resulting from stress overload and underload as well as
due to other types of variable-amplitude cyclic stress excitation. The model predictions are in
fair agreement with the available experimental data on the 7075-T6 aluminum alloy (Porter,
1972) under various types of variable-amplitude stress excitation including sequence effects.

2. State variable characteristics of the crack opening stress

It is customary in the fracture mechanics literature (for example, Anderson, 1995; Suresh,
1991) to express the dynamics of fatigue crack growth as a derivative da/dN with respect
to the number of cycles, which is identical to having the crack length incrementak+1 − ak
in the kth cycle. Fatigue crack growth models, reported in technical literature, are usually
governed by a first order nonlinear difference equation excited by the maximum applied
remote stress(Smax

k ) and the crack opening stress(Sok ) in the kth cycle. For example, the
crack growth equation in the FASTRAN-II model (Newman, 1992; Newman, 1981) has the
following structure

ak+1− ak = h(1Keff
k ) for k > 0 and a0>0,

where the crack length(ak) at the end of thekth cycle is the state variable; the effective stress
intensity factor range;1Keff

k := (Smax
k − Sok )

√
πakF(ak); F is the crack length-dependent

correction factor for finite geometry of the specimen. A cycle ranges from a minimum stress to
the next immediate minimum stress. If the frequency and shape effects are negligible (e.g., for
aluminum and ferrous alloys at room temperature), a stress cycle is defined by the maximum
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A state-space model of fatigue crack growth237

stress(Smax) and the following minimum stress(Smin). The nonnegative monotonically in-
creasing functionh(•) in (1) can be determined by table-lookup as a function of1Keff

k ; details
are reported by Newman et al. (1986). This method has been used for generating predictions
of both the state-space model and the FASTRAN-II model in Section 4.

As So is dependent on the stress history (i.e., the ensemble of peaksSmax and valleysSmin

in the preceding cycles), (1) cannot be readily represented in the state-space setting in its
current form. As the objective is to represent the crack growth process by a state-space model,
the crack opening stress(So) is set as a state variable in addition to the crack length(a). The
crack growth process is thus to be modeled in the state-space of dimension 2 (or higher if
necessary). In this section, we explore this possibility based on experimental data.

Schijve (1976) collected crack length data for specimens made of 2024-T3 aluminum
alloy sheets in simple tension for a constant amplitude load withSmax = 147 MPa and
Smin = 98 MPa. The experiments were repeated with the same constant amplitude load with
the exception of a single overload cycle withSmax = 196 MPa andSmin = 98MPa when the
crack length reached 15 mm. Two curves in each of the three plates in Figure 1 show the
respective profiles of crack length, crack opening stress, and crack length increment per cycle,
generated from the Schijve data with and without the overload effect. The shaded regions in
the two plates of Figure 1 are qualitative due to inexact information onSo in the experimental
data (Schijve, 1976). Recently, Yisheng and Schijve (1995) have observed from experimental
data that, following an overload, there is an immediate decrease inSo followed by a rapid
increase and a slow decrease. Similar results were reported earlier by Newman (1982). The
sharp transients in decrease and increase ofSo that occur only for a few cycles have no
significant bearings on the overall crack growth. The crack growth rate per cycle exhibits a
sharp pulse during the overload cycle and then monotonically increases starting from a lower
value, as seen in the bottom plate of Figure 1. This experimental observation is in agreement
with (1) as we now explain.

The net effect of the single-cycle overload is an abrupt increase in(Smax− So), resulting
in an increase in the crack growth increment in the present cycle. A few cycles after the
expiration of the overload,So starts decreasing slowly from its increased value as seen in the
middle plate of Figure 1. The result is a decrease in(Smax−So)which causes the crack growth
rate to drop. Subsequently, under the constant-amplitude stress, asSo slowly relaxes back to
its original value, crack growth rate also reaches a higher value as seen in Figure 1. The crack
growth is therefore retarded due to the fast rise and slow decay ofSo that can be attributed to
the crack closure effect.

Now we proceed to make a state-variable representation of the evolution ofSo under
variable-amplitude cyclic stress excitation and then augment the crack growth model of Equa-
tion (1) with the crack opening stress as an additional state variable. We postulate that the
state-space model of crack growth is observable (Vidyasagar, 1992). In other words, the state
variables in any given cycle can be determined from the history of measured variables over
a finite number of cycles. The crack-length(a) which is one of the two state variables is
assumed to be measurable. The other state variable, the crack opening stressSo, although not
necessarily a measurable quantity, can be determined from a finite history of the input (i.e.,
peaks and valleys of stress excitation) and the output (i.e., crack length measurements) starting
from a particular cycle in the past onwards to the current cycle. This concept is analogous to
the existing crack growth models that rely on either the crack opening stress or a reference
stress based on the history of cyclic stress excitation.
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Figure 1. Profiles of crack length, crack opening stress and crack growth rate for overload.

3. Modeling of crack opening stress in the state-variable setting

Experimental observations strongly indicate that the state variableSo has a fast stable re-
sponse; i.e.,So requires a very short time to pick up after the application of overload, which
provides a pulse to the crack growth process. Furthermore, an underload (i.e., a negative
overload) is observed to have much less significant effects on the crack growth rate and par-
ticularly onSo, as reported by Porter (1972). This behavior suggests that a first order bilinear
or nonlinear difference equation is a viable model for describing the dynamic behavior ofSo.

We now proceed to determine the structure of the difference equation and the incorporation
of the cyclic stress input therein. To this effect, we first consider the steady-state solution of the
difference equation under constant amplitude stress excitation which has been examined by
several investigators. The steady-state crack opening stress(Soss) under a constant amplitude
cyclic stress is a function of the minimum stress(Smin), the maximum stress(Smax), the con-
straint factorα (which is 1 for plane stress and 3 for plane strain) , the specimen geometry, and
the flow stressSflow which is the average of the yield strength and the ultimate strength. Such
relationships are claimed to be good for most metallic materials. One such semi-empirical
relationship has been used in the FASTRAN-II code (Newman, 1992).
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A state-space model of fatigue crack growth239

To construct the difference equation forSok such that, under different levels of constant-
amplitude stress excitation, the forcing functionSoss

k at thekth cycle matches the crack opening
stress derived from the following empirical relation (Newman, 1984)

Soss
k

Smax
k

= A0 +A1Rk +A2R2
k +A3R3

k , (2)

where

Rk = Smod
k /smax

k , (3)

Smod
k = αSmin

k + Smin
k−1

α + 1
, (4)

A0 = (0.825− 0.34α + 0.05α2)

[
cos

(
π
2

Smax
k

Sflow

)]1/α

, (5)

A1 = (0.415− 0.071α)

(
Smax
k

Sflow

)
, (6)

A2 =
{

1−A0 −A1−A3 if Rk >0,

0 if Rk 6 0,
(7)

A3 =
{

2A0+A1 − 1 if Rk >0,

0 if Rk 6 0,
(8)

and the constraint factorα in (4) is obtained as a function of the instantaneous crack increment
in (1).

Now, we propose the following constitutive relation in the form of a (piecewise) bilinear
first order difference equation for recursive computation of the crack opening stress(Sok ) at
the completion of the(k − I )th cycle

Sok =
(

1

1+ η
)
Sok−1+

(
η

1+ η
)
Soss
k +

(
λk

1+ η
)
(Soss
k − Sok−1)J(S

oss
k − Sok−1), (9)

η = tSy

2wE
, (10)

where the Heaviside function

J(x) :=
{

0 if x 6 0

1 if x >0
;

Soss
k is calculated from the semi-empirical formula in (2) as if a constant amplitude stress
(Smax
k , Smod

k ) was applied; the dimensionless parameterη dependents on the specimen thick-
nesst , half-widthw, yield strengthSy , and Young’s modulusE; andλk := (Smax

k − Smod
k )/

(Smax
k − Smin

k−1) is the dimensionless, cycle-dependent, pulse scaling factor.

Remark 1. The variablesoss
k , generated from the semi-empirical equation (2), is used to

construct the (piecewise bilinear) forcing function to the dynamics of crack opening stress

168419.tex; 3/07/1995; 11:23; p.5
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Figure 2. Effect of overload on crack opening stress as predicted by the model.

Sok in (9). Under constant amplitude stress excitation,Soss is the steady-state solution ofSo.
However, under variable-amplitude stress excitation,Soss

k is different from the instantaneous
crack opening stress(Sok ). 2

Remark 2. Following an overload cycle, the duration of crack retardation is represented by
the dynamics ofSo in the state-space model and hence controlled by the stress-independent
parameterη in (9). Physically, this duration depends on the ductility of the material which
is dependent on many factors including heat treatment (Schijve, 1976). For example, a lower
yield strength produces a smallerη resulting in longer duration of the overload effect. 2

Remark 3. To include the effects of delayτ (in cycles) at the onset of crack retardation, the
crack growth model in (1) can be modified by altering1Keff

k as

ak+1− ak = h((Smax
k − Sok−τ )

√
πakF) with Sok−τ = Smin

k for k < τ. (11)

In addition, there is a built-in delay of two cycles in the state equations after the application
of an overload pulse because the crack growth model, in its present form, is represented by
a second order difference equation (see (1) combined with (9)). Since the experimental data
may not exactly show the transients ofSo during and immediately after the application of an
overload pulse, the effects of an overload pulse could be realized in the model after several
cycles onwards. Starting with a higher order difference equation, we reduced the order (i.e.,
the number of state variables) of the present model to 2 by singular perturbation (Vidyasagar,
1992) based on the experimental data of 7075-T6 Aluminum alloy (Porter, 1972). The possi-
bility of a higher order model to represent longer delays in crack retardation is not precluded
for other materials. 2

3.1. PREDICTION OF OVERLOAD AND UNDERLOAD EFFECTS

Figure 2 shows the effects of a single-cycle overload onSo as predicted by the model in (9).
The model predictions are of similar trend as the experimental data of Yisheng and Schjive
(1995) except for the sharp negative spike inSo immediately after the overload. As stated
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Figure 3. Effect of underload-overload on crack opening stress as predicted by the model.
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Figure 4. Effect of overload–underload on crack opening stress as predicted by the model.

earlier, the sharp transients ofSo that occur only for a few cycles have no significant bearings
on the overall crack growth. Since the dynamics ofSo are described by a first order difference
equation,So attains a peak value in the cycle following the application of the overload. The
positive edge of this resulting pulse is effective whereas, unlike a linear system, the negative
edge is rendered ineffective by the Heaviside functionJ( · ). WhenJ( · ) is zero,So decreases
at a rate decided by the dimensionless parameterη which needs to be identified from test data.
The pulse scaling factor is equal to unity, i.e.,λ = 1 , for all cycles including the cycle of
overload. The amplitude of the input pulse on the right side of (9) depends on the amount of
overload, which leads to retarded crack growth unless the overload is too high. In the latter
case, the crack damage resulting from the overload itself may dominate the beneficial effects
of increasedSo in subsequent cycles.
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Figure 5. Porter specimen and load for single overload data.

Figure 6. Cyclic stress excitation profile for Porter data.

In contrast to overload, a single-cycle underload causes hardly any change inSo because
the Heaviside functionJ( ·) makes the input excitation in (9) largely ineffective for under-
loads. Figure 3 shows the effect of an underload followed by an overload. The difference
between this case and the pure overload case, as modeled in (9), is that the value of the
dimensionless pulse scaling factor is less than unity (i.e., 0<λ<1) in the cycle of underload-
overload andλ = 1 thereafter.

Figure 4 shows howSo is affected by an overload immediately followed by an underload.
In the overload-underload cycle,Smax

k is identical to that for pure overload but the correspond-
ing Smin

k is smaller. Consequently,Soss
k is smaller for overload-underload than that for pure

overload. The pulse scaling term is greater than 1, i.e.,λ>1, in an overload-underload cycle
in contrast toλ>1 in a pure overload cycle. The net effect of these two phenomena is that
the forcing function (i.e., the sum of the second and third terms on the right-hand side of (9)
becomes smaller for overload-underload than that for pure overload. A single-cycle overload
retards crack growth more effectively than a similar overload immediately followed by an
underload. Therefore, benefits of an overload monotonically diminishes with an increase in the
magnitude of the following underload. The overload effects and sequence effects, predicted
by the state space model, are in fair agreement to those observed from the experimental test
data as we show in Section 4.

3.2. ADVANTAGES OF THE STATE-SPACE MODEL

In this section we compare the state-space model in (9) with the autoregressive (AR) model
proposed by Holm et al. (1995). While both models treat crack opening stress(So) as a
state variable, there are several differences in the structures of their governing equations. For
example, the state-space model is piecewise bilinear, whereas the AR model is piecewise
linear.

The phenomena of crack acceleration and retardation are captured by the state-space model
over a stress cycle via the constant parameterη, and the stress-dependent pulse scaling factor
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Figure 7. Model validation under block loading: Effect of number of overload cycles.
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Figure 8. Model validation under different overload amplitudes.

λ, as seen in (9). In contrast, the AR model (Holm et al., 1995) uses (possibly) different
constant parameters over the two halves of a cycle to represent the acceleration and retardation
effects. The absence of the pulse scaling factor in the AR model is the cause of its failure to
capture the single overload effect even with the availability of two parameters. Because of this
shortcoming the AR model cannot adequately represent the phenomena of single overload,
irregular load sequences, and random loads. Unlike the state-space model, the parameter
identification in the AR model is restricted to block loading. The two parameters in the AR
model may be required to differ significantly to represent fast acceleration and slow retardation
of crack length. This may lead to physically unrealistic values of the crack opening stress(So)

under irregular load sequences. If the two parameters are made identical as suggested by Holm
et al. (1995), the AR model may generate reasonable values ofSo. However, the resulting
rates ofSo will be similar under acceleration and retardation which contradicts experimental
observations (Schijve, 1976). In addition, having these parameters to be identical may lead to
conservative estimation of crack growth.

4. Model validation and discussion of results

Let us now compare the state-space model predictions with the available experimental data on
7075-T6 aluminum alloy specimens under variable-amplitude cyclic stress excitation. The
implication of sequence effects is also explained from the perspectives of the state-space
formulation of the crack opening stress in (9).
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Figure 9. Model validation under different overload spacing.

4.1. VALIDATION OF MODEL RESULTS WITH EXPERIMENTAL DATA

Porter (1972) collected fatigue crack data under tensile load for specimens made of 7075-
T6 aluminum alloy sheets. Figure 5 shows a schematic of the Porter specimen for which the
constraint factorα in (4) varies between 1.0 and 1.8 depending on the instantaneous crack
increment in (1) (see p. 62, Newman, 1992). The dimensionless parameterη given by (10)
was∼ 10−4, for Porter’s specimen. The load profile for this set is shown in Figure 5. Sinceη

is stress-independent, this specific value ofη has been used for all identical specimens under
different loading conditions in order to validate the state-space model by comparison with the
rest of Porter data.

Figure 6 illustrates a profile of block loading applied to the Porter specimens to collect data
that are used to validate the crack growth model constructed by combining (1)–(10). Figure 7
shows a comparison of the state-space model predictions with actual experimental data and the
predictions of FASTRAN-II model (which calculates the crack opening stressSo in a different
way). The curves in each plate of Figure 7 are generated with the parametern = 50 and the
peak stress of overloadσ2 = 15 ksi at different values ofm in the load spectrum of Figure 6.
The state-space model and the FASTRAN-II model produce essentially identical results under
constant amplitude cyclic stresses because the procedure for calculatingsoss is the same for
both. For variable-amplitude cyclic stresses, the state-space model predictions are very close
to the experimental data and predictions of the FASTRAN-II model, as seen in Figure 7. Both
models are again compared with experimental data for different amplitudes of overload in
Figure 8 form = 1,n = 29, and different overload stress ratiosσ2/σ1; as well as for different
overload spacing in Figure 9 form = 1, and peak overload stressσ2 = 15 ksi, and differentn
in the load spectrum of Figure 6. The plots in Figures 8 and 9 indicate that the accuracy of the
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Figure 10. Model validation under sequence effect (underload-overload).

state-space model relative to the experimental data is comparable to that of the FASTRAN-II
model. The sequence effects are also captured by the state-space model as seen in Figures 10
and 11.

The agreement of model predictions with experimental data in Figures 7 to 11 strongly
supports the hypothesis that the crack opening stress is a state variable, thus validating the
foundations of the state-space model.

4.2. COMPARISON OF COMPUTATION TIME

A comparison of the computation time for the state-space model and the FASTRAN-II model
reveals that the former is faster and, therefore, more economical to execute in real time. The
state-space model recursively computesSok with Smax

k , Smin
k , andSmin

k−1 as inputs, as seen in (9).
This implies the crack opening stress in the present cycle is obtained as a simple algebraic
function of the maximum and minimum stress excitation in the present cycle as well as the
minimum stress excitation and the crack opening stress in the immediately preceding cycle.
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Figure 11. Model validation under sequence effect (overload-underload).

Table 1. Computer execution time in minutes: seconds on an SGI Indy workstation

Load description State-space model FASTRAN-II model

1000 cycles 10 ksi and 1 cycle 15 ksi,Smin = 0.5 ksi 1:20 3:19

300 cycles 10 ksi and 1 cycle 15 ksi,Smin = 0.5 ksi 1:14 3:27

50 cycles 10 ksi and 1 cycle 15 ksi,Smin = 0.5 ksi 0:54 1:58

Overload/underload 22.5/4.5 ksi, constant amplitude 15-7.5 ksi 0:28 2:26

In contrast, the FASTRAN-II model computes the crack opening stress as a function of con-
tact stresses and crack opening displacements based on the stress history. Consequently, both
computer execution time and memory requirement of the proposed state-space model is signif-
icantly smaller than those of the FASTRAN-II model. Table 1 lists typical computation times
required on an SGI Indy workstation for calculation of crack growth under variable-amplitude
cyclic stress excitation.
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5. Summary and conclusions

A fatigue crack growth model has been formulated in the state-space setting based on the crack
closure concept where the state variables are the crack length(a) and the crack opening stress
(So). The effects of the cyclic stress history are represented by a fading memory model where
the state equation for crack opening stress is a (piecewise) bilinear difference equation excited
by the peaks and valleys of the current stress cycle and the previous stress cycle. The state-
space model captures pertinent traits of the crack growth process under variable-amplitude
cyclic stresses that have been observed by other researchers and are listed by Schijve (1976).

Unlike the existing crack growth models, the state-space model does not require a long
history of stress excitation to calculate the crack opening stress. Specifically, the state space
enjoys the following advantages over many crack growth models:

• Smaller execution time and computer memory requirements as needed for real-time dam-
age monitoring and control.
• Compatibility with other state-space models of plant dynamics (e.g., aircraft flight sys-

tems and rocket engine systems) and structural dynamics of critical components as needed
for synthesis of life extending control systems (Ray et al., 1994).

The structure of the fatigue crack growth equation in the state-space model is similar to
that in the FASTRAN-II model (Newman, 1992), but the algorithm for calculation of the crack
opening stress is different. Both models are shown to be of comparable accuracy and are in
fairly close agreement with experimental data of 7075-T6 Aluminum alloy under different
types of variable-amplitude cyclic stress excitation.

Acknowledgements

The authors acknowledge beneficial technical discussions with Dr. James C. Newman, Jr.
of NASA Langley Research Center and Dr. Sekhar Tangirala of Penn State University. The
authors are grateful to Dr. Newman for providing them with the FASTRAN-II code.

References

Anderson, T.L. (1995).Fracture Mechanics, CRC Press, Boca Raton, Florida.
Dowling, N.E. (1983). Fatigue life prediction for complex load versus time histories.ASME Journal of

Engineering Materials and Technology, Trans. ASME105, 206–214.
Holm, S., Josefson, B.L., de Mare, J. and Svensson, T. (1995). Prediction fatigue life based on level crossings and

a state variable,Fatigue and Fracture of Engineering Materials18(10), 1089–1100.
Newman, J.C. (1981).A Crack-Closure Model for Predicting Fatigue Crack Growth under Aircraft Loading,

Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP748, 53–84.
Newman, J.C. (1982). Prediction of fatigue crack growth under variable amplitude and spectrum loading using a

closure model,Design of Fatigue and Fracture Resistant Structures, ASTM STP761, 255–277.
Newman, Jr., J.C. (1984). A crack opening stress equation for fatigue crack growth,International Journal of

Fracture24, R131–R135.
Newman, J.C., Swain, M.H. and Phillips, E.P. (1986). An assessment of the small-crack effect for 2024-T3

aluminum alloy. In:Small Fatigue Cracks, (Edited by R.O. Ritchie and J. Lankford).
Newman, Jr., J.C. (1992). FASTRAN-II – A fatigue crack growth structural analysis program,NASA Technical

Memorandum 104159, Langley Research Center.
Porter, T.R. (1972). Method of analysis and prediction for variable amplitude fatigue crack growth,Engineering

Fracture Mechanics4, 717–736.

168419.tex; 3/07/1995; 11:23; p.14



A state-space model of fatigue crack growth249

Ray, A., Wu, M-K, Carpino, M. and Lorenzo, C.F. (1994). Damage mitigating control of mechanical systems: Part
I and II, ASME Journal of Dynamic Systems, Measurements and Control116(3), 437–455.

Schijve, J. (1976).Observations on the Prediction of Fatigue Crack Growth Propagation Under Variable-
Amplitude Loading, Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, pp. 3–23.

Sharpe, W.N., Jr., Corbly, D.M. and Grandt, A.F., Jr. (1976).Effects of Rest Time on Fatigue Crack Retardation
and Observation of Crack Closure, Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, pp. 61–77.

Suresh, S. (1991).Fatigue of Materials, Cambridge University Press, Cambridge, UK.
Vidyasagar, M. (1992).Nonlinear Systems Analysis, 2nd ed., Prentice Hall, Englewood Cliffs, NJ.
Yisheng, W. and Schijve, J. (1995). Fatigue crack closure measurements on 2024-T3 sheet specimens,Fatigue and

Fracture of Engineering Materials and Structures18(9), 917–921.

168419.tex; 3/07/1995; 11:23; p.15


