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A State-Space Solution to the Two-Player Decentralized

Optimal Control Problem

Laurent Lessard1,3 Sanjay Lall2,3

Allerton Conference on Communication, Control, and Computing, pp. 1559–1564, 2011

Abstract

In this paper, we present an explicit state-space solution
to the two-player decentralized optimal control problem.
In this problem, there are two interconnected linear sys-
tems that seek to optimize a global quadratic cost. Both
controllers perform output feedback, but they have ac-
cess to different subsets of the available measurements.
The optimal controller, which was not previously known,
has a state dimension equal to twice the state dimension
of the original system.

1 Introduction

In this paper, we address optimal controller synthesis for
the decentralized two-player problem. The feature that
makes this problem difficult is the structural constraint
imposed on the controller. Such constraints appear fre-
quently in practice. For example, many modular systems
such as power grids, or teams of vehicles flying in forma-
tion, can be viewed as a network of interconnected sub-
systems. A common feature of these applications is that
subsystems must make control decisions with limited in-
formation. The goal is to optimize global performance
measures despite the decentralized nature of the system.

In this paper, we consider a specific information struc-
ture in which there are two linear subsystems and the
state-space matrices are block-triangular:

[

ẋ1

ẋ2

]

=

[

A11 0
A21 A22

] [

x1

x2

]

+

[

B11 0
B21 B22

] [

u1

u2

]

+ w

[

y1
y2

]

=

[

C11 0
C21 C22

] [

x1

x2

]

+ v

In other words, Player 1’s measurements and dynamics
only depend on Player 1’s inputs, but Player 2’s system
is fully coupled. Our aim is to find an output-feedback
law with this same structure; u1 must depend only on y1,
but u2 is allowed to depend on both y1 and y2.

1L. Lessard is with the Department of Aeronautics and As-
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The controller must be stabilizing, and must also min-
imize the infinite-horizon quadratic cost

lim
T→∞

1

T
E

∫ T

0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt

The disturbance w and noise v are assumed to be station-
ary zero-mean Gaussian processes, and are characterized
by the covariace matrices

covw = W and cov v = V

The structural constraint that u1 and u2 depend on dif-
ferent sets of measurements greatly complicates the prob-
lem. It was shown by Witsenhausen [12] that such struc-
tural constraints can lead to situations in which a nonlin-
ear control policy strictly outperforms any linear policy.
However, this is not always the case. For many decentral-
ized problems, there exists a linear optimal policy, and
it can be found by solving a convex optimization prob-
lem [2, 3, 4, 11]. The two-player problem considered here
falls in this category, so we may restrict our search to
linear controllers.

In [5], it was shown that certain decentralized problems
can be converted to equivalent centralized problems via
vectorization. Consequently, the optimal controller for
the two-player problem must be rational and we may
further restrict our search to controllers representable in
state-space form. Unfortunately, vectorization causes a
dramatic increase in the state dimension of the system,
making it a feasible method only for small problems.

Explicit solutions have been found, but only for some
special cases of the two-player problem. Most notably,
the state-feedback case admits a nice state-space so-
lution [8, 9]. More recently, the partial output feed-
back case was also solved, in which the second player
performs output feedback but the first player performs
state-feedback and provides his full state to the second
player [10].

In this paper, we provide explicit state-space formu-
lae for an optimal controller. These formulae provide
tight upper bounds on the minimal state dimension for
an optimal controller, which were previously not known.
The paper is organized as follows. In Section 2, we re-
view some required background mathematics and nota-
tion. In Section 3, we formulate the problem as an H2

optimization. In Section 4, we present our main results,
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and in subsequent sections, we discuss the result and give
a abridged proof.

2 Preliminaries

State-space. In this paper, all systems are linear
and time-invariant (LTI), rational, and continuous-time.
Given a state-space representation (A,B,C,D) for such
a system, we can describe the input-output map as a
matrix of proper rational functions

F =

[

A B

C D

]

, D + C(sI −A)−1B

If the realization is minimal, F having stable poles is
equivalent to A being Hurwitz, and F being strictly
proper is equivalent to D = 0.

Sylvester Equations. A Sylvester equation is a ma-
trix equation of the form

AX +XB + C = 0

where A and B are square matrices, possibly of different
sizes. Here, we must solve for X and all other parameters
are known. We write X = LYAP(A,B,C) to denote a
solution when it exists.

Riccati Equations. A continuous-time algebraic Ric-
cati equation (CARE) is a matrix equation of the form

ATX +XA−XBR−1BTX +Q = 0

Again, we must solve for X and all other parameters are
known. We say X is a stabilizing solution if (A + BK)
is stable, where K = −R−1BTX is the associated gain
matrix. We write X = CARE(A,B,Q,R) to denote a
stabilizing solution when it exists.

Stabilization. For simplicity, we assume throughout
this paper that the plant dynamics are stable. No gen-
erality is lost in this assumption because a parameteri-
zation of all stabilizing controllers was found for many
decentralized problems including the two-player problem
[6, 7]. This leads to a coprime factorization that pre-
serves the triangular structure of problem and is similar
to the classical treatment for centralized problems [13].

3 Problem Formulation

In this section, we will formulate the problem of Section 1
as an H2 optimal control problem using the language of
transfer functions. The state-space equations are

ẋ = Ax+Bu+Mw, (1)

z = Fx+Hu (2)

y = Cx+Nw (3)

Our goal is to find a LTI controller K that maps y

to u, and minimizes the average infinite-horizon cost

limT→∞
1
T E
∫ T

0
‖z(t)‖2 dt.

We have some additional structure:

A ,

[

A11 0
A21 A22

]

B ,

[

B11 0
B21 B22

]

C ,

[

C11 0
C21 C22

]

and we impose a similar structure on our controller K.
We denote the set of block lower-triangular operators as
S, and omit the specific class of operators from this no-
tation for convenience. We therefore write the constraint
as K ∈ S. To ease notation, define

E1 ,

[

I

0

]

and E2 ,

[

0
I

]

where sizes of the identity matrices involved are deter-
mined by context. We also partition B by its block-
columns and C by its block-rows. Thus, B1 , BE1,
B2 , BE2, C1 , ET

1 C, and C2 , ET

2 C. For consistency
with Section 1, suppose FTH = 0 and MNT = 0, and

Q , FTF R , HTH W , MMT V , NNT

As is standard, we assume R > 0 and V > 0 so that the
problem is nonsingular. By taking Laplace transforms of
(1)–(3), and eliminating x,

[

z

y

]

=

[

P11 P12

P21 P22

] [

w

u

]

(4)

where the Pij are transfer functions given by

P11 =

[

A M

F 0

]

P12 =

[

A B

F H

]

P21 =

[

A M

C N

]

P22 =

[

A B

C 0

]
(5)

As mentioned previously, we assume the Pij are stable,
so A is Hurwitz. Substituting u = Ky and eliminating y

and u from (4), we obtain the closed-loop map

z =
(

P11 + P12K(I − P22K)−1P21

)

w (6)

Since minimizing the average infinite-horizon cost is
equivalent to minimizing the H2-norm of the closed-loop
map, we seek to

minimize
∥

∥P11 + P12K(I − P22K)−1P21

∥

∥

subject to K is proper and rational

K is stabilizing

K ∈ S

(7)

For more details on the H2 norm and related concepts
see [1, 14]. Now let Q = K(I − P22K)−1, which corre-
sponds to the well-known Youla parameterization [13] in
the centralized case. Since P22 ∈ S and K ∈ S, we have
Q ∈ S. Furthermore, P22 is stable and strictly proper,
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and K is stabilizing and proper. Thus, Q is stable and
proper. The assumptions that R > 0 and V > 0 further
imply that Q must be strictly proper to ensure finiteness
of the norm. We would therefore like to solve

minimize
∥

∥P11 + P12QP21

∥

∥

subject to Q ∈ RH2 ∩ S
(8)

where RH2 is the set of strictly proper rational functions
with stable poles. Note that the Q-substitution is invert-
ible, and its inverse is K = Q(I + P22Q)−1. So solving
(8) will give us a solution to the original problem (7).

4 Main Results

In this section, we present our main result: explicit solu-
tions to (7) and (8). We begin with some assumptions.

A1. R > 0 and V > 0

A2. (A,B2) and (A,W ) are controllable

A3. (C1, A) and (Q,A) are observable

Next, we present the equations we will need to solve in
order to construct the optimal controller. First, we have
two control CAREs and their associated gains

X = CARE(A,B,Q,R)

K = −R−1BTX
(9)

X̃ = CARE(A,B2, Q,R22)

K̃ = −R−1
22 B

T

2 X̃ =
[

K̃1 K̃2

]
(10)

Next, we have the analogous set of estimation equations.

Y = CARE(AT, CT,W, V )

L = −Y CTV −1
(11)

Ỹ = CARE(AT, CT

1 ,W, V11)

L̃ = −Ỹ CT

1 V
−1
11 =

[

L̃1

L̃2

]

(12)

Finally, we define a pair of coupled linear equations that
must also be solved for Φ and Ψ.

(A22 +B22K̃2)
TΦ+ Φ(A11 + L̃1C11)

+ ET

2 (X̃ −X)(L̃− E2ΨCT

11V
−1
11 )C11 = 0

(A22 +B22K̃2)Ψ + Ψ(A11 + L̃1C11)
T

+B22(K̃ −R−1
22 B

T

22ΦE
T

1 )(Ỹ − Y )E1 = 0

(13)

Note that these equations are linear in Φ and Ψ and
can be solved easily; for example, they may be written
in standard Ax = b form using the Kronecker product.
Finally, we define two new gains:

K̂ = K̃ −R−1
22 B

T

22ΦE
T

1

L̂ = L̃− E2ΨCT

11V
−1
11

(14)

What follows are the main results of the paper.

Theorem 1. Suppose assumptions A1–A3 hold. Then

(9)–(12) have stabilizing solutions, (13) has a unique so-

lution, and an optimal solution to (8) is given by

Qopt =








A+BK L̂C1 0 −L̂ET

1

0 A+B2K̂ + L̂C1 −B2K̂ −L̂ET

1

0 0 A+ LC −L

K −E2K̂ E2K̂ 0









(15)

Theorem 2. Suppose assumptions A1–A3 hold. An op-

timal solution to (7) is given by

Kopt =







A+BK + L̂C1 0 −L̂ET

1

BK −B2K̂ A+ LC +B2K̂ −L

K − E2K̂ E2K̂ 0







(16)

5 State Dimension

First, note that Qopt and Kopt have the correct block-
triangular structure. We can also verify that Qopt is sta-
ble; the eigenvalues of its A-matrix are the eigenvalues of
A + BK, A11 + L̃1C11, and A22 + B22K̃2, and A + LC

which are stable by construction.

The formula (16) gives an upper bound on the state
dimension of the optimal controller. If A11 ∈ R

n1×n1

and A22 ∈ R
n2×n2 , then Kopt has at most 2n1 + 2n2

states. However, notice that this number may be different
in a decentralized implementation. In particular, if the
two controllers do not communicate with one another,
the first controller needs a realization of K11 while the
second controller needs a realization of

[

K21 K22

]

. In
this case, the first controller will have n1+n2 states, and
the second controller will have 2n1 +2n2 states. Note as
well that if we make the problem centralized by removing
the structural constraint on the controller, the optimal
controller requires n1 + n2 states.

6 Proof of Main Results

Our general technique is to separate the decentral-
ized problem (8) into two coupled centralized problems.
Through further manipulations, we solve the resulting
set of coupled optimality conditions. To this end, we will
need the solution of a general type of H2 optimization
problem

minimize ‖P11 + P12QP21‖

subject to Q ∈ RH2

(17)

but unlike (8), the Pij have different A matrices in their
state-space realizations.
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Lemma 3. Suppose P11, P12, and P21 are matrices of

stable transfer functions with state-space realizations

P11 =

[

A J

G 0

]

P12 =

[

Ã B

F H

]

P21 =

[

Â M

C N

]

Note that A, Ã, and Â may be different matrices. Sup-

pose there exists stabilizing solutions to the CAREs

X = CARE(Ã, B,Q,R), K = −R−1BTX

Y = CARE(ÂT, CT,W, V ), L = −Y CTV −1

Then, there exists unique solutions to the equations

Z̃ = LYAP
(

(Ã+BK)T, A, (F +HK)TG
)

Ẑ = LYAP
(

A, (Â+ LC)T, J(M + LN)T
) (18)

Furthermore, a solution to (17) is given by

Qopt = −W−1
L

[

A JNT + ẐCT

BTZ̃ +HTG 0

]

W−1
R

(19)
where WL and WR are defined by

WL =

[

Ã B

−R1/2K R1/2

]

WR =

[

Â −LV 1/2

C V 1/2

]

Proof. This problem is called the H2 model-matching
problem, and can be solved by writing out the optimal-
ity condition and using spectral factorization techniques.
See for example [14, §13].

The observation that allows us to separate the decen-
tralized problem into two centralized problems is as fol-
lows: if we assume Q11 is known, and possibly subopti-
mal, then the problem of finding the optimal

[

Q21 Q22

]

is centralized:

min
∥

∥

∥

(

P11+P12E1Q11E
T

1 P21

)

+P12E2

[

Q21 Q22

]

P21

∥

∥

∥

s.t.
[

Q21 Q22

]

∈ RH2

(20)

Similarly, we may fix Q22. Our centralized optimiza-
tion problem is then:

min

∥

∥

∥

∥

(

P11 + P12E2Q22E
T

2 P21

)

+ P12

[

Q11

Q21

]

ET

1 P21

∥

∥

∥

∥

s.t.

[

Q11

Q21

]

∈ RH2

(21)
Lemmas 4 and 5 give the solutions to (20) and (21), re-
spectively.

Lemma 4. Suppose Q11 ∈ RH2 and has a realization

Q11 =

[

AP BP

CP 0

]

Suppose that stabilizing solutions exist to the CAREs

Y = CARE(AT, CT,W, V ), L = −Y CTV −1

X̃ = CARE(A,B2, Q,R22),

K̃ = −R−1
22 B

T

2 X̃ =
[

K̃1 K̃2

]

Then there exists a unique solution to the equation

[

Φ Z̃3

]

= LYAP

(

(A22 +B22K̃2)
T,

[

A11 0
BPC11 AP

]

,

[

0 (ET

2 X̃B1 + K̃T

2 R21)Cp

]

)

(22)

Furthermore, a solution to (20) is given by

[

Q21 Q22

]

opt
=

[

A22 +B22K̃2 B22

K̃2 I

]

×









A 0 B1CP 0
0 A+ LC 0 −L

0 0 AP BPE
T

1

K̃ K̂ −R−1
22 (B

T

22Z̃3+R21CP ) 0









(23)

where we have defined K̂ = K̃ −R−1
22 B

T

22ΦE
T

1 .

Proof. The components of (20) may be simplified. Rou-
tine algebraic manipulations yield

P11 + P12E1Q11E
T

1 P21 =








A 0 B1CP 0
0 A 0 M

0 BpC1 AP BPE
T

1 N

F F HE1CP 0









and

P12E2 =

[

A22 B22

FE2 HE2

]

Since (20) is centralized, we may apply Lemma 3, and
the optimal

[

Q21 Q22

]

is given by (19). This formula
can be simplified considerably if we take a closer look at
the Sylvester equations (18). The estimation equation,

Ẑ = LYAP

(





A 0 B1CP

0 A 0
0 BpC1 AP



 , (A+ LC)T,





0
W

BPE
T

1 V LT





)

is satisfied by Ẑ =
[

0 Y 0
]T

, which does not depend
on AP , BP , or CP . The control equation

Z̃ = LYAP

(

(A22 +B22K̃2)
T,





A 0 B1CP

0 A 0
0 BPC1 AP



,

[

ET

2 Q ET

2 Q K̃T

2 R21CP

]

)

4



has a first subequation that decouples from the rest, and
whose solution is ET

2 X̃. Indeed, Z̃ must be of the form:

Z̃ =
[

ET

2 X̃ ET

2 X̃ +ΦET

1 Z̃3

]

where Φ and Z̃3 satisfy (22). Substituting into (19) and
simplifying, we obtain (23).

Lemma 5. Suppose Q22 ∈ RH2 and has a realization

Q22 =

[

AQ BQ

CQ 0

]

Suppose that stabilizing solutions exist to the CAREs

X = CARE(A,B,Q,R), K = −R−1BTX

Ỹ = CARE(AT, CT

1 ,W, V11),

L̃ = −Ỹ CT

1 V
−1
11 =

[

L̃1

L̃2

]

Then there exists a unique solution to the equation

[

Ψ

Ẑ3

]

= LYAP

(

[

A22 B22CQ

0 AQ

]

, (A11 + L̃1C11)
T,

[

0

BQ(C2Ỹ E1 + V21L̃
T

1 )

]

)

(24)

Furthermore, a solution to (21) is given by

[

Q11

Q21

]

opt

=









A+BK 0 0 −L̂

0 A 0 −L̃

0 BQC2 AQ (BQV21+Ẑ3C
T

11)V
−1
11

K 0 −E2CQ 0









×

[

A11 + L̃1C11 L̃1

C11 I

]

(25)

where we have defined L̂ = L̃− E2ΨCT

11V
−1
11 .

Proof. The proof is omitted, as it is analogous to that
of Lemma 4.

Remark 6. If we isolate the optimal Q22 from Lemma 4,

it simplifies greatly. Indeed, if we multiply (23) on the

right by E2, we obtain

Q22 =





A22 +B22K̃2 B22K̂ 0
0 A+ LC −LE2

K̃2 K̂ 0



 (26)

Similarly, the optimal Q11 from Lemma 5 simplifies to

Q11 =





A+BK L̂C11 −L̂

0 A11 + L̃1C11 −L̃1

ET

1 K 0 0



 (27)

Remark 6 is the key observation that allows us to
find a relatively simple analytic formula for the optimal
controller. By substituting the result of Lemma 5 into
Lemma 4, or vice-versa, we can obtain a simple set of
equations that characterize the optimal controller.

We are now ready to prove the main result of the paper.

Proof of Theorem 1. Solving (8) is equivalent to si-
multaneously solving (20) and (21). To see why, write
the optimality conditions for each one

ET

2 P
∼

12

(

P11 + P12

[

Q11 0
Q21 Q22

]

P21

)

P∼

21 ∈
[

H⊥
2 H⊥

2

]

P∼

12

(

P11 + P12

[

Q11 0
Q21 Q22

]

P21

)

P∼

21E1 ∈

[

H⊥
2

H⊥
2

]

and note that they are equivalent to

P∼

12

(

P11 + P12

[

Q11 0
Q21 Q22

]

P21

)

P∼

21 ∈

[

H⊥
2 L2

H⊥
2 H⊥

2

]

(28)
which is the optimality condition for (8). It was shown
in [5] that there always exists an optimal rational con-
troller that solves 8. Therefore, there must also exist a
simultaneous solution to (20) and (21).

Assumptions A1–A3 guarantee the existence of stabi-
lizing solutions to (9)–(12). This is a standard result
regarding CAREs. See for example [14, §13]. So we may
apply Lemmas 4 and 5. Thus, there must exist Φ, Ψ,
Z̃3, and Ẑ3 that simultaneously satisfy (22) and (24).
Substituting (27) as (AP , BP , CP ) in (22) and similarly
(26) as (AQ, BQ, CQ) in (24), we obtain two augmented
Sylvester equations. Algebraic manipulation shows that
we must have

Z̃3 =
[

ET

2 (X̃ −X) Φ
]

and Ẑ3 =

[

Ψ

(Ỹ − Y )E1

]

where Φ and Ψ satisfy (13). This establishes existence
and uniqueness of a solution to (13). Upon substituting
these values back into (23) or (25), we obtain an explicit
formula for the blocks of Q. Upon simplification, we
obtain (15).

Proof of Theorem 2 Obtain Qopt from Theorem 1,

and transform using Kopt = Qopt (I + P22Qopt)
−1

. After
some algebraic manipulations and reductions, we arrive
at (16).

7 Conclusion

In Theorem 2, we give an explicit state-space formula for
the solution to the two-player optimal control problem
with output feedback. The construction requires solv-
ing four standard algebraic Riccati equations, as well as
a pair of coupled linear equations. The optimal con-
troller, which was not previously known, has twice as
many states as the original system.
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[6] S. Sabău and N. Martins. On the stabilization of LTI de-
centralized configurations under quadratically invariant
sparsity constraints. In Allerton Conference on Com-
munication, Control, and Computing, pages 1004–1010,
2010.

[7] P. Shah and P. A. Parrilo. A partial order approach to
decentralized control. In IEEE Conference on Decision
and Control, pages 4351–4356, 2008.

[8] P. Shah and P. A. Parrilo. H2-optimal decentralized
control over posets: A state space solution for state-
feedback. In IEEE Conference on Decision and Control,
pages 6722–6727, 2010.

[9] J. Swigart and S. Lall. An explicit state-space solution
for a decentralized two-player optimal linear-quadratic
regulator. In American Control Conference, pages 6385–
6390, 2010.

[10] J. Swigart and S. Lall. Optimal controller synthesis for
a decentralized two-player system with partial output
feedback. In American Control Conference, pages 317–
323, 2011.

[11] P. Voulgaris. Control of nested systems. In American
Control Conference, volume 6, pages 4442–4445, 2000.

[12] H. S. Witsenhausen. A counterexample in stochastic
optimum control. SIAM Journal on Control, 6:131, 1968.

[13] D. Youla, H. Jabr, and J. Bongiorno, J. Modern wiener-
hopf design of optimal controllers–Part II: The multi-
variable case. IEEE Transactions on Automatic Control,
21(3):319–338, 1976.

[14] K. Zhou, J. Doyle, and K. Glover. Robust and optimal
control. Prentice-Hall, 1995.

6




