

A Static Analysis Framework for
Database Applications

 Arjun Dasgupta Vivek Narasayya Manoj Syamala
 University of Texas, Arlington Microsoft Research Microsoft Research
arjun.dasgupta@mavs.uta.edu viveknar@microsoft.com manojsy@microsoft.com

Abstract—Database developers today use data access APIs
such as ADO.NET to execute SQL queries from their
application. These applications often have security problems
such as SQL injection vulnerabilities and performance
problems such as poorly written SQL queries. However
today’s compilers have little or no understanding of data
access APIs or DBMS, and hence the above problems can go
undetected until much later in the application lifecycle. We
present a framework that adapts traditional program analysis
by leveraging understanding of data access APIs in order to
identify such problems early on during application
development. Our framework can analyze database
application binaries that use ADO.NET data access APIs. We
show how our framework can be used for a variety of analysis
tasks such as SQL injection detection, workload extraction,
identifying performance problems, and verifying data
integrity constraints in the application.

I. INTRODUCTION
Relational databases are widely used in today’s

applications. These database applications are often written
in popular programming languages such as C++, C#, Java
etc. When the application needs to access data residing in
the relational database server, it uses data access APIs such
as ODBC, JDBC and ADO.NET for executing SQL
statements. Application developers today, rely on
integrated development environments (IDE) such as
Microsoft Visual Studio [19] or Eclipse [4], which provide
a variety of powerful tools to help develop, debug and
analyze their applications.

However, today’s development environments have
limited understanding of the interactions between the
application and the DBMS. Thus a large number of security,
correctness and performance issues can do undetected
during the development phase of the application.

A well known example of such a security problem is
SQL injection vulnerability. Applications that execute SQL
queries based on user input are at risk of being
compromised by malicious users who can inject SQL code
as part of the user input to gain information that they
should not. Several high profile web applications (including
the United Nations web site [15]) have been hacked using
SQL injection. Detecting SQL injection vulnerability at
application development time can help developers correct
the problem even before the application is deployed into
production.

Similarly, applications can have correctness or
performance problems due to the way the queries are
constructed or used. For example, there can be mismatch

between the data type used in the application (e.g. int) and
the data type of the column in the database (smallint). Such
a mismatch is not detected by today’s application
development tools, which can lead to unexpected
application behavior at runtime.

In this paper, we present a framework for analyzing
database application binaries to automatically identify
security, correctness and performance problems in the
database application. Our idea is to adapt data and control
flow analysis techniques of traditional optimizing
compilers [1] by leveraging our understanding of data
access APIs and the database domain to provide a set of
analysis services on top of the existing compiler. These
services include: (a) Extracting the set of SQL statements
that can execute in the application. (b) Identifying
properties of the SQL statements such as tables and
columns referenced. (c) Extracting parameters used in the
queries and their binding to program variables. (d)
Extracting properties of how the SQL statement results are
used in the application. (e) Analyzing user input and their
propagation to SQL statements. Using the above services,
we have built “vertical” tools for: detecting SQL injection
vulnerability, extracting the SQL workload from
application binary, identifying opportunities for SQL query
performance optimizations, and identifying potential data
integrity violations.

Our framework supports analysis within a single basic
block, across basic blocks within a function, as well as
across functions. We use the Phoenix compiler framework
[7] as the underlying infrastructure. In our current
implementation we can analyze applications that use the
ADO.NET data access APIs. In principle, our techniques
can be extended to handle other APIs such as ODBC or
JDBC. We report preliminary results of running our tool on
a few real world applications.

The rest of this paper is organized as follows. In Section
II we describe a set of motivating examples for static
analysis of database applications. We present an overview
of our architecture and describe each of the services in our
framework in Section III. In Section IV we outline some of
the verticals we have built using the services. We describe
how we adapt data and control flow analysis to take
advantage of knowledge of data access APIs. In Section V
we present our experience of running the tool on a few real
world applications. We discuss related work in Section VI
and conclude in Section VII.

II. MOTIVATING EXAMPLES
We provide motivating scenarios for static analysis of

database applications. The scenarios below refer to
common database application problems such as security,
data integrity, and performance.

Example 1. Detecting SQL Injection Vulnerability.

Consider the sample code shown in Figure 1, for a C#
application that allows the user to search the product
catalog. The application retrieves rows from a table in the
database that contains the user submitted string. The user
input is read from an Edit Box control in the function
onLookupButtonClick. In turn, it invokes the
LookupProduct function that does the actual lookup in
the Products table using a dynamically constructed SQL
query. The query is executed using the ExecuteReader
method of the SqlCommand object.

If the user submits a string such as “Garmin StreetPilot”,
then the query string constructed at Line 1 in the
LookupProduct function is: “select sku,
description, price from Products where
description like '%Garmin StreetPilot%'”.
Now consider a malicious user who submits a string such
as “' OR 1=1; DROP TABLE Products -- ”. The query
string constructed on Line 1 is now: “select sku,

description, price from Products where
description like '%' OR 1=1; DROP TABLE
Products -- %'”. Thus, the original intent of the
query is modified due to the concatenation of user input. As
a result, when the query is executed on Line 5, this has the
undesirable effects of first returning all rows in the
Products table to the user and then dropping the table.

It can be useful if SQL injection vulnerability in the
application can be detected by simply examining the
application binary. While catching a vulnerability is very
important, observe that ideally such a tool needs to also be
careful not to return (too many) false positives. For
example, many application developers correctly use the
ADO.NET APIs for passing user input as a parameter to a
SQL query (e.g. AddParameter method). In such cases,
the SQL injection detection tool should be able to detect
that there is no injection vulnerability since user input
cannot be interpreted as code by the DBMS.

Example 2. Workload Extraction.

The ability to identify the workload, i.e. set of SQL
statements that can be executed by an application can be
useful during application development time. For example,
one important scenario is migrating an application (e.g.
[23]) from one DBMS to another (or from one release of a
DBMS to the next). In this scenario, identifying SQL
statements issued by the application is important since

// Event handler for button click
private void onLookupButtonClick(object sender, EventArgs e)
{

// Get search string from edit box
1. string searchstring = lookupeditbox.Text;
// Call the actual function
2. LookupProduct(searchstring);

}

// Look up the product in database
private void LookupProduct(string searchstring)
{

// Create a ADO.NET SQLCommand object. Represents a SQL statement
1. string cmdtext = "select sku, description, price from Products where

description like '%" + searchstring + "%' ";
2. SqlCommand cmd = new SqlCommand(cmdtext, dbConnection);
// Does user want to sort the result or not?

3. if (SortRows()){ cmdtext += " order by price "; }
// Sets the SQL statement to execute at the data source.

4. cmd.CommandText = cmdtext;
// Execute the query

5. SQLDataReader rdr = cmd.ExecuteReader();
// iterate through results

6. while (rdr.Read()){/* add to grid */}
}

Figure 1. Example ADO.NET application code.

some statements may need to be modified to adhere to the
syntax and restrictions of the target DBMS. A second
scenario for workload extraction is physical design tuning.
Today’s DBMSs have tools for tuning physical design that
take as input a workload and recommend an appropriate
physical design (e.g. [16][17][18]). Thus extracting a
workload from an application binary can help design a
good initial physical design for the database (e.g., see [9]),
which can be refined once the application is deployed.

Consider the sample code in Figure 1. There are two
possible SQL queries (templates) that can execute at Line 5
– the second query is executed if SortRows() in Line 3
return TRUE:
(1) select sku, description, price

from Products where description
like '%@p1%'

(2) select sku, description, price
from Products where description
like '%@p1%' order by price

In general, the query strings may be constructed across
multiple functions, and thus extraction of the workload can
be non-trivial for arbitrary database applications.

In the above example, the workload was a set of SQL
statements. It can also be useful to extract sequences of
SQL statements as well. For example, it is common in
many applications for a sequence such as: CREATE
TABLE T, INSERT INTO T …, SELECT … FROM S, T,
WHERE…, DROP TABLE T to occur. Capturing such a
sequence from an application binary can enable a tool that
can tune a sequence of statements (e.g. [2]) to be invoked.

Example 3. Identifying Opportunities for SQL Query
Rewriting.
1. Consider the following application code

snippet:cmd.CommandText = “select
sku, price, description from
Products”;

// Execute the query
2. SQLDataReader rdr =

cmd.ExecuteReader();
// iterate through results

3. while (rdr.Read()){
4. s = rdr[0]; // use sku value
5. p = rdr[1]; // use price value
}Observe that there are three projection columns in the

query, but the application references only two when
consuming the query results. In this case, it is useful to
detect this and alert the developer; so that the query
performance can be improved by rewriting the query as
“select sku, price from Products”.

Example 4. Detecting Potential Data Integrity Violations.

In many real-world applications, certain database
integrity constraints are enforced in the application layer
and not the database layer. One reason is that adding a new

constraint to an application that has already been deployed
can be difficult since it can cause operational disruptions. It
is often easier to deploy a modified application module.
This is often true in hosted web service scenarios, where
the DBA might be reluctant to pay the cost of altering an
existing table. Another reason is performance -- integrity
constraint checking in DBMSs can be expensive. Consider
a case where the application developer wants to enforce in
the application code the constraint that the price column of
the Products table always has a value > 0. Suppose the
application code is written as follows:
// Create a ADO.NET SQLCommand object
for an INSERT statement
1. string myQuery = "INSERT INTO

Products (price,sku,description)
 VALUES(@price,@sku,@description)";
2. SqlCommand cmd = new

SqlCommand(myQuery, dbConnection);
 // Bind program variables to the
 parameters
3. cmd.Parameters.Add(new

SqlParameter("@price", myprice));
4. cmd.Parameters.Add(new

SqlParameter("@sku", mysku));
5. cmd.Parameters.Add(new

SqlParameter("@description", mydesc));
// Execute the insert statement

6. cmd.ExecuteNonQuery();

Given a constraint such as [DBName].[Products].[price] >

0 as input, it would be useful if we could automatically
identify all places in the application code where the price
column can potentially be updated, and add for instance, an
assertion at such places in the code. In the above code
snippet, it would be useful to automatically recommend
that inserting the code “Assert (myprice > 0)” before Line 3
validates the given data integrity constraint
[DBName].[Products].[price] > 0. Observe that in order to
provide such a recommendation, it is necessary to: (1)
Know that a DML statement affecting the price column is
occurring in the application code, and (2) Identify the
program variable/expression that is bound to the price
column in the DML statement.

Example 5. Enforcing Best Practices in Database
Application Coding.

A development manager for an application may want to
enforce a set of best practices in coding for all developers
in the project (similar to FxCop [6]). Examples of such best
practices are:

(a) For a query that returns only one row (e.g. SELECT

COUNT(*) FROM T ….) the application should use
the ExecuteScalar() API (rather than
ExecuteReader()) since it is more efficient.

(b) There should be no “SELECT * …” queries since
this can break the application if the schema of the
underlying tables change Instead applications must
explicitly enumerate all columns in the project clause
of the query.

(c) Avoid data type mismatches. When a program
variable that is bound to a database column has a
different data type than the column, it can result in
unexpected application behavior at runtime.
Detecting such mismatches at compile time allows a
developer to potentially correct the problem before
the application goes into production.

Finally, note that in order to perform the kinds of

analyses described in the above examples, we need to
leverage understanding of the data access APIs (e.g.
SQLCommand.ExecuteReader is an API through
which a query is executed in ADO.NET). In addition in
some of the examples, access to the database schema, SQL
parser, the query optimizer of the DBMS can be exploited
to provide deeper analysis. Consider Example 3 in which a
rewriting of the query is recommended. To quantify the
estimated improvement in performance by such a rewriting,
it is useful to obtain the execution plan of the original and
rewritten query using the query optimizer.

III. ARCHITECTURE OVERVIEW
In Section II we presented motivating examples (or

“verticals”) for static analysis functionality for database
applications. In this section we present our architecture for
implementing such verticals on existing compiler
infrastructure.

We observe that these different verticals from Section II

have significant commonality. For example, the need to
extract the SQL statements that can execute at a particular
ExecuteReader() call in the program is common to
both Workload Extraction (Example 2) and Identifying
Opportunities for SQL Rewriting (Example 3). Similarly,
identifying properties of the SQL such as which columns

are referenced is important in Example 2 and Example 4.
Based on this observation, we have designed a library of
common services that we think are useful for developing
the verticals discussed in Section II.

Our architecture is shown in Figure 2. We build a layer
of static analysis services for database applications (labeled
as Services in the figure) on top of the traditional compiler.
We require an extensible compiler framework that can
support data and control flow analysis, which most modern
compilers support.

We have identified the following five services that we
find useful for the verticals discussed in Section II. We now
briefly describe the functionality offered by each of these
services.

Extract SQL: Given a function in the program binary, this
service returns a set of SQL statement handles. A handle is
a unique identifier that is a (line number, ordinal) pair in
that function. It represents a SQL statement that can
execute at that line number. Referring back to the
LookupProduct function in Figure 1, Extract SQL
returns return two handles {For e.g. - (5,1), (5,2)} ,
corresponding to the two statements that can execute at line
number 5 (the ExecuteReader() invocation in the function).

Identify SQL Properties: Given a handle to a SQL
statement, this service returns properties of the SQL
statement. Currently, the properties we can identify include:
(1) The SQL string itself. (2) Number and database types
of columns in the result of the SQL statement (for SELECT
statements). (3) Tables and columns referenced in the
statement. (4) Optimizer estimated cost of statement. We
note that (2), (3) and (4) above assume access to the
database schema, a SQL parser and the ability to obtain the
execution plan for a given SQL statement. The database
connection to use when accessing the database can be
obtained in one of the following ways: (a) It is provided as
input by the user, (b) Obtained from a configuration file (c)
Automatically obtained by analyzing the connection string
used in the application.

Extract Parameters: Given a handle to a SQL statement
this service returns the parameters of the statement along
with the program variable/expression that is bound to that
parameter, and its data type in the application. Referring to
Example 4, this service returns {(@price, myprice, double),
(@sku, mysku, int), (@description, mydescription, String)}.

Extract Result Usage: Given a handle to a SQL statement,
this service returns properties of how the result set is
consumed in the application. In particular, it returns each
column in the result set that is bound to a variable in the
program, along with the type of the bound program variable.
Referring to Example 3, this service returns { (0, s, int),
(1,p,double)} assuming the types of variables s and p are
int and double respectively.

Figure 2. Static analysis services and verticals
for database applications.

Analyze User Input: Given a handle to a SQL statement
this service identifies all user inputs in the program such
that the user input value v satisfies a “contributes to”
relationship to the SQL string of the statement. A
contributes to relationship is defined as either: (a) v is
concatenated into the SQL string. (b) v is passed into a
function whose results are concatenated into the SQL string.

Finally we note that the Extract SQL service cannot
guarantee that all SQL that can be executed by the
application will be extracted. The reason is that in some
cases even the table names in the query may be generated
dynamically. In such cases, the strings extracted by static
analysis will not be syntactically valid SQL statements.
Another example is an IN clause in the query, where the
values in the IN clause are generated inside a loop in the
program. Nevertheless, we have observed that in real world
database applications we are still able to extract a large
fraction of the SQL that can execute in the application by
static analysis alone (see Section V for our experience with
two real world applications.)

IV. IMPLEMENTATION
In this Section we describe the implementation of our

static analysis framework. We first give a brief overview of
the compiler framework (Phoenix [7]) and its services that
we currently rely upon (Section IV-A). Next, we describe
how our static analysis services are built. In Section IV-B
we present the data flow analysis for the case of a single
basic block in the program, and show the key data
structures we use. We then outline how the analysis for a
single basic block can be adapted to leverage our
knowledge of data access APIs (Section IV-C) to achieve
the functionality of different services. Section IV-D
presents our analysis across basic blocks and function units.
Finally, we show how two verticals, SQL Injection
Detection and Detecting Potential Data Integrity Violations
are implemented using the above services.

An overview of our implementation of the static analysis
framework is shown in Figure 3. Our solution takes as
input an application binary (i.e. a DLL or EXE) and
performs custom static analysis on the binary. The output is
a set of security, performance and correctness problems as
identified by the vertical tools described earlier. For certain
verticals, e.g. identifying potential violations of data
integrity constraints, the user can specify a set of
constraints (e.g. Products.Price > 0) as input. Also, based
on user input, we can analyze a single function or all the
function units in the binary.

A. Phoenix Compiler Framework
As mentioned earlier, in our implementation we use the

Phoenix compiler framework [7]. We rely upon this
framework to: (1) Convert the application binary in
Microsoft Intermediate Language (MSIL) into an
intermediate representation (IR) that our analysis operates

upon (MSIL Reader module in Figure 3). (2) Iterate over
function unit(s) within the binary. (3) Provide the flow
graph in order to iterate over basic blocks within a function
unit. (4) Iterate over individual instructions in the IR within
a basic block.) (5) Provide extensions to dynamically
extend the framework types like function units and basic
blocks (6) Provide a call graph that represents the control
flow across function units. For example, referring to Figure
1, there is a call to function LookupProduct from the
function onLookupButtonClick at Line number 2).

B. Data Structure and Flow Analysis for a Basic Block
We now describe how our analysis works for a single

basic block (also referred to as a block). Each block
represents a sequence of IR instructions. The control flow
of the program enters a block at its first instruction and
proceeds sequentially through the instructions in the block
until it reaches the block's last instruction. The IR
instructions corresponding to the function
onLookupButtonClick is shown in Figure 4. Each IR

Figure 3. Implementation of static analysis
framework for ADO.NET applications.

// IR corresponding to Line 1
tv272 = ASSIGN [this]*"FabrikamPort.Form1::
lookupeditbox"

tv273 = CALLVIRT* System.Windows.Forms.Control::
get_Text, tv272

searchstring = ASSIGN tv273

// IR corresponding to Line 2
{*CallTag} = CALL* &FabrikamPort.Form1::
LookupProduct, this, searchstring, {*CallTag},
$L5(EH)

Figure 4. Intermediate representation (IR)
instructions for onLookupButtonClick function

instruction can be mapped into destination operand, opcode
and source operands. Consider the second instruction in
Figure 4. The destination operand is tv273, the opcode is
CALLVIRT, and the source operands are
System.Windows.Forms.Control::get_Text and
tv272.

The key data structure we maintain is a hash table that at
any point during the analysis captures the current values of
the operands referenced in instructions in the basic block.
The hash table that is created after executing the
instructions in Figure 4 is shown in Figure 5. Observe that
the hash table has the destination operand as key (For e.g.
temporary variable tv273 in the example) and associates
the key with a data flow tree. The tree contains nodes that
hold the operands and opcode, similar to algebraic
expression trees [1]. The leaf nodes are other operands or
symbols, while the non-leaf nodes are the opcodes. When
we encounter an assignment (i.e. an ASSIGN IR) to an
operand it results in replacing the current tree associated
with the operand with the data flow tree of the source
operand that it was assigned. The algorithm for
constructing the tree follows the steps similar to the one
outlined in [1].

tv272

tv273

searchstring

lookupedit
box

CALLVIRT

lookupedit
box

CALLVIRT

lookupedit
box

tv272=ASSIGN
[this]*"FabrikamPort.For
m1::lookupeditbox"

tv273=CALLVIRT*
System.Windows.Forms.Control
::get_Text, tv272

searchstring=ASSIGN tv273

Hash Table Data Flow
Tree

Instruction stream

In addition to the operand/opcode information, each

node of the data flow tree also stores and propagates
information necessary for a given static analysis service
such as: (1) The symbols that are referenced by the node, (2)
The line number associated (3) Whether or not the node is
an ADO.NET object (SQLConnection, SQLCommand,
SQLDataReader), (4) Whether the node was part of a
string concatenation operation etc.

By customizing what information is stored in each node,
we are able to expose each of the different static analysis
services described in Section III (Figure 2). For example, to
expose the user input analysis service we need to track the

operand/symbol referenced in a user input function. This
information is propagated through the data flow analysis
and thus it allows us to track whether the given user input
value can contribute to a SQL string issued at a call site.

C. Exploiting Knowledge of Data Access APIs for Data
Flow Analysis

As mentioned earlier, our static analysis services for
database applications leverage database domain
information including knowledge of data access APIs and
the DBMS itself. For example suppose we encounter an
instruction that calls the following ADO.NET API:
System.Data.SqlClient.SqlCommand::Execut
eReader. We know that ExecuteReader is an API for
executing a SQL statement. We also know (based on the
signature of the API method) that the first argument to the
ExecuteReader is a SQLCommand object and thus is
the second source operand in the instruction.
SQLCommand object has properties like the text of a
command, parameter list, the active SQLConnection object
etc. The data flow analysis (described in Section IV-B
above) will give the current values of the various properties
of the SQLCommand object including its text field.
Observe that the text field of the SQLCommand object is
the SQL string that is executed at the ExecuteReader
instruction.

As a specific example, the call to ExecuteReader (Line 5

of LookupProduct method in Figure 1) has the following IR
representation:
“tv306=CALLVIRT* &[System.Data]
System.Data.SqlClient.SqlCommand ::
ExecuteReader, cmd”

Here tv306 is the destination operand, CALLVIRT is
the opcode and &[System.Data]
System.Data.SqlClient.SqlCommand::Execut
eReader,cmd are respectively the first and second

Figure 5. Hash table of operands and their data flow
trees for the onLookupButtonClick function Figure 6. Data flow tree for cmd object in

LookupProduct function

source operands. Thus, we are able to infer that the symbol
cmd references an ADO.NET SQLCommand Object.

The data flow tree corresponding to the value of cmd in
the hash table is shown in Figure 6. The data flow tree for
the cmd symbol has two sub-trees. These sub-trees
correspond to the SQL text portion and the SQLConnection
object portion of the SQLCommand constructor (Line 2 of
LookupProduct in Table 1). The leaf nodes of the sub-tree
corresponding to the SQL text part captures the static parts
of the SQL (the embedded SQL strings) and the dynamic
part (the searchstring argument). Hence it is possible
to extract the SQL executed at this line number by a
traversal of this sub-tree and concatenating the leaf nodes.

Also observe in Figure 6 the two CALL nodes that are
children of the UNION node refer to string concatenation
methods (For e.g. System.String::Concat).In
general, applications can build SQL strings at different
places in the code and concatenate the fragments to build
the SQL that is executed. Thus we also need to analyze
string concatenation API’s to extract the set of strings that
can be issued by the application at any call site. For
example, suppose we have a statement such
cmd.CommandText = a + b; where a and b are
strings. Then building the tree for cmd.CommandText
involves tracking the CALL to the string concatenation
function and concatenating the text contributed by the data
flow trees for a and b.

Finally, we mention three related points. First, the
UNION node in Figure 6 represents the case the flow
occurs over multiple paths (e.g., an If-Then-Else statement)
and is explained in Section IV-D. Second in addition to
ExecuteReader, we also examine other ADO.NET
APIs in an analogous manner. For example, there are other
APIs such as ExecuteNonQuery, and
ExecuteScalar, where the application can potentially
issue a SQL statement. We also analyze the various
parameter collection APIs (e.g.
System.Data.SqlClient.SqlParameterCollec
tion::Add) in the data client name space for extracting
properties (e.g. data types) of program variables that are
bound to parameters of the SQL statement.

D. Global Data Flow Analysis
In the single block analysis described thus far, for any

operand of interest, it was assumed that its definition could
be traced within the basic block. While this is true for
temporary variables defined within the block itself, in
general certain operands (e.g. the program symbol
searchstring in the LookupProduct function) may
be defined in other basic blocks (within the same or in a
different function). The purpose of the global data flow
analysis that we outline in this section is to enable tracking
the definition of the operand of interest beyond the current
basic block.

The global data flow analysis must account for all the
control paths to a call site such as ExecuteReader. As
described in Section IV-B, we first build the data flow tree
for operands within a basic block. Intuitively, if an operand
cannot be resolved within the block, we do a backward
traversal to one or more predecessor blocks in the call
graph, until the operand’s definition is obtained from the
hash table of that block.

The algorithm for resolving an operand (i.e. a node) is

shown in Figure 7. We recursively iterate over each
predecessor of the current block. Thus, we allow multiple
resolutions (one per path) of the given operand N. If
multiple resolutions occur, then we use a UNION node
whose children represent the alternatives. Observe that the
predecessor block could be in the same or different
function unit – the above algorithm applies to both cases.
The blocks are numbered in depth first order so that the
block id of the current node is always greater than its
predecessor. This property allows us to correctly deal with
cycles caused by loops.

ResolveNode
Input: Current block C, Node N not resolved in C
Output: Resolved data flow tree for Node N

1. For each block B in the predecessor list of block C
2. If N’s data flow tree is in block B’s hash table
3. If N’s data flow tree contains unresolved
 symbols
4. For each symbol in the unresolved list
5. ResolveNode(B,symbolnode)
6. Else
7. Replace symbol node N in current block with
 the data flow tree and mark as resolved
8. Else // N’s data flow tree not bound in block B
9. ResolveNode (B,N)
10. If node N is referenced in more than one
 predecessor blocks
11. Add a root UNION node with children as the data
 flow trees referenced in the predecessor blocks

Figure 7. Algorithm for resolving the definition of an
operand outside the current block.

Figure 8. Example of global data flow analysis for
Extract SQL service for LookupProduct function

In Figure 8 we show the basic blocks, and the two SQL

strings that we extract at the ExecuteReader
instruction using our global data flow analysis. Two strings
are possible (with or without the order by clause)
depending on the return value of SortRows().

E. Implementing Verticals
In this section we briefly outline how we implement two
verticals on top of the functionality described in Sections
IV-B to IV-D.

1) SQL Injection Detection Vertical

To recap, a SQL injection attack occurs when
unvalidated user input is used to build a SQL string which
is then executed on the database server. The adversary
injects malicious SQL code in user input that gets executed
by the query in the server.

Our SQL injection detection tool takes as input a set of
function signatures that can supply user input to the
program. For example, this includes a function such as
System.Windows.Forms.Control::get_Text.
Any destination operand in an instruction where the above
function is a source operand is marked as “tainted”. For
example, consider the follow IR instruction:
tv273 = CALLVIRT*
System.Windows.Forms.Control::get_Text,
tv272

In the snippet above, destination operand tv273 is
assigned the return value of get_Text and hence the
node is marked UNSAFE. The data flow analysis outlined
in the previous sections also propagates the “safety”
attribute (SAFE, UNSAFE, MAYBE UNSAFE) from the
source (where the user input is read) to the sink (call site
where the SQL is executed). Therefore, in the case where
user data is propagated to the SQL string without passing
through any other functions, the resulting SQL will also be
reported as UNSAFE. If the user input is passed into a
function (e.g. a validation function) whose return value is
propagated to the SQL string, we mark it as MAYBE
UNSAFE. If the user input is passed in as a parameter to
the SQL (using one of the ADO.NET APIs for passing
parameters), we mark the SQL string as SAFE. Note that
the SQL that is executed and the sink line number are
gathered by using the “Extract SQL” service outlined in
Section III. As described above, given a handle to the SQL
statement we use the “Analyze User Input” service to
identify all user inputs in the program such that the user
input value contributes to the SQL.

In typical applications, it is common that code where the
user data is read in and where the SQL is actually executed
are in different functions. Thus, our ability to perform inter-
function analysis is very useful in such scenarios.

2) Identifying Potential Data Integrity Violations

As explained in Example 4 database applications
sometime enforce data integrity checks in the application
code rather than using database integrity checking
functionality such as CHECK constraints. Our vertical tool
for detecting violations of data integrity constraints takes as
input a set of constraints specified by the user. Currently
we support constraints of the form
(Database.Table.Column Op Value), where Op is a
comparison operator and Value is a literal.

Consider the case where the application developer wants
to enforce the following check constraint “Products.price >
0.0”. Today the application developer would need to scan
for all INSERT and UPDATE statements on the Products
table in the application source code and identify the
program variables that are bound to the column price in the
INSERT/UPDATE statement. Then the developer would
need to add code (e.g. an assertion on that program
variable).The above steps are automated by our static
analysis tool (see Appendix A for a screenshot of the
functionality of our tool).

Each constraint expression input by the user is parsed to
obtain the table and column on which the constraint is
specified. During our data flow analysis (Section IV-B to
IV-D) the tool looks for INSERT or UPDATE statements
on the object referenced in the input constraint expression.
This is done by extracting the SQL statement and parsing it
to extract the table/column information as well as statement
type (INSERT/UPDATE) (“Identify SQL Properties”
service outlined in Section III). We also capture the
association of the parameter name to the column in the
INSERT/UPDATE statement by analyzing the ADO.NET
APIs for passing parameters to SQL (“Extract Parameters”
service outlined in Section III). Since we are able to capture
the association of the parameter name to the column in the
database, we can automatically recommend the assertion in
the application code that will verify the data integrity
constraint specified by the user. The application developer
can review such a recommendation and an assertion in the
code.

V. EXPERIENCE ON REAL WORLD APPLICATIONS
In this section we briefly report our initial experiences of

running our static analysis tools on a few real world
database applications:

Microsoft’s Conference Management Toolkit (CMT):
CMT [12] is a web application sponsored by Microsoft
Research that handles workflow for an academic
conference.

SearchTogether [13]: An application that allow multiple
users to collaborate on web search.

Fabrikam: A Security Training application. An internal
application developed by the security training group at
Microsoft to demonstrate SQL injection vulnerability.

For each application we report our evaluation of the
Workload Extraction vertical (see Example 2). Our
methodology is to compare the workload extracted by our
tool with the workload obtained by manual inspection of
the application code. The summary of results is shown in
Table 1.

The column “Total # SQL statements” reports the
number of that SQL statements that we were able to
manually identify by examining the source code of the
application. The column “# SQL statements extracted”
refers to the number of statements that were extracted by
our static analysis tool. Along with the SQL statements we
were able to extract parameter information as well (as
described in Section V-C). Thus, even though the actual
parameter values are not known at compile time, we are
able to extract syntactically valid queries, e.g., it is possible
to obtain a query execution plan for such queries. CMT and
SearchTogether applications both mostly use parameterized
stored procedures.

Application Lines of
Code

Total #
SQL
statements

SQL
statements
extracted

CMT 36000+ 621 350
SearchTogether 1700+ 40 35
Fabrikam 500+ 10 10

The cases where we were not able to extract SQL strings

were due to the following reasons:
1. Today there many ADO.NET API’s exposed by the

providers that are used in these applications. Our
current implementation does not cover the entire
surface area of all the ADO.NET APIs.

2. In some cases in SearchTogether, the SQLCommand
object is a member variable of a class. The object is
constructed in one method and referenced in another
method. In this case, the global data flow analysis of
our current implementation is not sufficient since the
variable (the SQLCommand object in this case) is not
passed across the two methods. Capturing this case
requires tracking additional state of the SQLCommand
object, which our current implementation does not.

We also ran our SQL injection detection tool on all the
three applications. We detected no SQL injection
vulnerabilities in CMT and SearchTogether. In these
applications user input is bound to parameters and executed
as parameterized SQL. As expected, in Fabrikam (the

security training application), we were able to identify the
SQL injection vulnerabilities. Figure 9 shows a screenshot
of our tool indicating the SQL injection vulnerability in one
method. The left hand pane shows the functions in the
binary. The SQL Information grid shows the SQL string,
the SQL injection status (UNSAFE in this example). It also
shows the actual line number in the code where the user
input (leading to this vulnerability) originated, and the line
number where the SQL statement is executed.

VI. RELATED WORK
FxCop [6] is an application that analyzes managed code

assemblies (code that targets the .NET Framework common
language runtime) and reports information about the
assemblies, such as possible design, localization,
performance, and security improvements. Unlike our
framework however, FxCop has minimal support for
detecting problems associated with database applications.
Also, FxCop only performs local analysis within a single
basic block, whereas our techniques extend to multiple
blocks within and across function units.

There is a body of work (an example is [14]) on
identifying SQL injection vulnerabilities using static
analysis. One complementary aspect of this work compared
to ours is their focus on “understanding” the validation
functions through which user input is propagated, in order
to determine whether the validation is adequate to prevent
an injection attack. In contrast we focus on a framework of
services (such as user input analysis) using which it is
possible to build tools for SQL injection detection.

The work in [10] presents string analysis techniques to
collect the possible strings that can be passed into a certain
function (e.g. an application interface). This is similar to
the Extract SQL service in our architecture. There are two
key differences compared to our approach: (a) We only
need to generate SQL strings whereas in [10] all strings are
analysed, which can lead to better efficiency for database
applications. (b) Second, as described in Section III, we

Table 1. Summary of results for workload
extraction.

Figure 9. Output of the tool for SQL injection
detection.

support a set of static analysis services beyond extracting
SQL, which are not present in [10].

There is also recent work for a different “vertical” using
static program analysis: identifying the impact of schema
changes on database applications [22]. They use the
technique of program slicing to improve scalability of
dataflow analysis. In principle, this technique can also be
leveraged in our analysis.

Environments for language integrated querying (e.g.,
LINQ [5]) and frameworks that facilitate easy development
of SQL applications (e.g. Oracle ADF [20]) are emerging.
For programs written in LINQ, a query is a first class object
that is understood by the compiler. Thus some of the
problems such as SQL injection vulnerability are mitigated
in this setting. However, several other motivating examples
presented in Section II are still relevant even for database
applications that use LINQ. Thus the ideas presented in this
paper can extend even to LINQ programs.

There is a class of tools that attempt to bridge the gap
between application and database profiling tools by
instrumenting application binaries and logging relevant
information at runtime (e.g., [3][10][21]). Our framework
is complementary to this approach since we are able to
detect several problems at compile time using static
analysis. In fact, static analysis can be used to identify
points in the application code that require instrumentation
(e.g., identify functions where SQL statement can execute),
and thus can make runtime profiling more efficient.

VII. CONCLUSION
Static analysis tools for database applications can

significantly enhance the ability for developers to identify
security, correctness and performance problems in the
application during the development phase of the application
lifecycle. We present such a framework for database
applications using the ADO.NET data access APIs. Our
framework consists of a core set of static analysis services.
We have built verticals such as SQL injection detection,
workload extraction and identifying data integrity
violations using these services; and performed initial
evaluation on real world database applications.

Identifying other core static analysis services and
vertical tools is an important area of future work.
Incorporating such functionality into compilers that support
language integrated querying can also be useful. Another
interesting problem is to understand how static analysis can
improve runtime profiling of database applications and
vice-versa.

ACKNOWLEDGMENT
We thank Nicolas Bruno, Pramod Joisha, Ravi

Ramamurthy and Surajit Chaudhuri for their feedback on
this work.

REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques

and Tools. Addison Wesley.
[2] S. Agrawal, E. Chu, V. Narasayya: Automatic physical design

tuning: workload as a sequence. In Proceedings of the ACM
SIGMOD 2006.

[3] S.Chaudhuri, V.Narasayya, M.Syamala. Bridging the Application
and DBMS Profiling Divide for Database Application Developers.
In Proceedings of the VLDB 2007.

[4] Eclipse. Open Source IDE. http://www.eclipse.org
[5] LINQ: .NET Language Integrated Querying.

http://msdn.microsoft.com .
[6] FxCop: Application for analyzing managed code assemblies.

http://msdn.microsoft.com .
[7] Phoenix Compiler Framework.

http://research.microsoft.com/phoenix/compiler.aspx.
[8] N. Bruno, P. Castro: Towards Declarative Queries on Adaptive

Data Structures. ICDE 2008.
[9] S. Tata, L. Qiao, G. Lohman: On common tools for databases - The

case for a client-based index advisor. SMDB 2008. ICDE
Workshops.

[10] HP Diagnostics software (formerly Mercury). J2EE Performance,
SAP Diagnostics, .NET, ERP/CRM Diagnostics.
http://www.mercury.com/us/products/diagnostics/

[11] E. Martin, T. Xie. Understanding software application interfaces
via string analysis. International Conference on Software
Engineering, 2006.

[12] Microsoft Conference Management Service (CMT).
http://msrcmt.research.microsoft.com/cmt/

[13] Microsoft SearchTogether application.
http://research.microsoft.com/searchtogether/

[14] G. Wassermann, Z. Su . Sound and precise analysis of web
applications for injection vulnerabilities. ACM SIGPLAN
conference on Programming Language Design and Implementation
(PLDI), 2007.

[15] United Nations VS SQL Injections.
http://hackademix.net/2007/08/12/united-nations-vs-sql-injections/

[16] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, M.
Syamala. Database Tuning Advisor for Microsoft SQL Server 2005.
In Proceeding of VLDB 2004.

[17] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-
Arellano, S. Fadden. DB2 Design Advisor: Integrated Automatic
Physical Database Design. In Proceedings of VLDB 2004.

[18] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, M. Ziauddin.
Automatic SQL Tuning in Oracle 10g. Index tuning. In
Proceedings of VLDB 2004.

[19] Microsoft Visual Studio. http://msdn.microsoft.com/vstudio .
[20] Oracle Application Development Framework.

http://www.oracle.com/technology/products/adf/index.html
[21] A. Cheung, S. Madden. Performance Profiling with Endoscope, an

Acquisitional Software Monitoring Framework. In Proceedings of
VLDB 2008.

[22] A. Maule, W. Emmerich, and D.S. Rosenblum. Impact Analysis of
Database Schema Changes. In Proceedings of International
Conference on Software Engineering (ICSE) 2008.

[23] SQL Server Migration Assistant.
http://www.microsoft.com/sqlserver/2005/en/us/migration-
oracle.aspx

APPENDIX A
Figure 10 illustrates a code snippet for the example of

detecting of potential data integrity violation in the
application code (see Example 4 in Section II). The
function button_insert_click inserts a row to the
Products table in the database. The constraint that the

application wants to enforce is that the Price column of the
Products table is greater than 0, i.e. [Products].[Price] > 0.

The tool takes in as input the application binary. The
user also specifies the database constraint
([Products].[Price] > 0 in this case). Figure 11 shows a
screenshot of the tool after the static analysis is complete.
The left pane shows the classes and methods corresponding
to the binary. The right pane has the following information:
(1) The fully formed SQL statement and the line number in
the application where the SQL can execute. (2) Information
about the parameters that are bound to the SQL statement.

These include the parameter name, the data type and the
application variable that is bound to the SQL parameter. (3)
The application constraint corresponding to the input
database constraint specified by the user and the line
number where it should be added. In this example the
Constraints Analysis pane shows that expression (price1 >
0), where price1 is an application variable, will enforce the
database constraint [Products].[Price] > 0 if it is placed at
line number 279 in the application code.

 Figure 10. Code snippet for the scenario in Example 4 -- detecting potential data integrity violations.

Figure 11. Screenshot of the tool showing that the expression Assert(price1 > 0) can be added to the
code to validate the given database constraint Products.price > 0.

