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Abstract—Database developers today use data access APIs 
such as ADO.NET to execute SQL queries from their 
application. These applications often have security problems 
such as SQL injection vulnerabilities and performance 
problems such as poorly written SQL queries. However 
today’s compilers have little or no understanding of data 
access APIs or DBMS, and hence the above problems can go 
undetected until much later in the application lifecycle. We 
present a framework that adapts traditional program analysis 
by leveraging understanding of data access APIs in order to 
identify such problems early on during application 
development. Our framework can analyze database 
application binaries that use ADO.NET data access APIs. We 
show how our framework can be used for a variety of analysis 
tasks such as SQL injection detection, workload extraction, 
identifying performance problems, and verifying data 
integrity constraints in the application. 

I. INTRODUCTION 
Relational databases are widely used in today’s 

applications.  These database applications are often written 
in popular programming languages such as C++, C#, Java 
etc. When the application needs to access data residing in 
the relational database server, it uses data access APIs such 
as ODBC, JDBC and ADO.NET for executing SQL 
statements. Application developers today, rely on 
integrated development environments (IDE) such as 
Microsoft Visual Studio [19] or Eclipse [4], which provide 
a variety of powerful tools to help develop, debug and 
analyze their applications.  

However, today’s development environments have 
limited understanding of the interactions between the 
application and the DBMS. Thus a large number of security, 
correctness and performance issues can do undetected 
during the development phase of the application.  

A well known example of such a security problem is 
SQL injection vulnerability. Applications that execute SQL 
queries based on user input are at risk of being 
compromised by malicious users who can inject SQL code 
as part of the user input to gain information that they 
should not. Several high profile web applications (including 
the United Nations web site [15]) have been hacked using 
SQL injection. Detecting SQL injection vulnerability at 
application development time can help developers correct 
the problem even before the application is deployed into 
production.  

Similarly, applications can have correctness or 
performance problems due to the way the queries are 
constructed or used. For example, there can be mismatch 

between the data type used in the application (e.g. int) and 
the data type of the column in the database (smallint). Such 
a mismatch is not detected by today’s application 
development tools, which can lead to unexpected 
application behavior at runtime. 

In this paper, we present a framework for analyzing 
database application binaries to automatically identify 
security, correctness and performance problems in the 
database application. Our idea is to adapt data and control 
flow analysis techniques of traditional optimizing 
compilers [1] by leveraging our understanding of data 
access APIs and the database domain to provide a set of 
analysis services on top of the existing compiler. These 
services include: (a) Extracting the set of SQL statements 
that can execute in the application. (b) Identifying 
properties of the SQL statements such as tables and 
columns referenced. (c) Extracting parameters used in the 
queries and their binding to program variables. (d) 
Extracting properties of how the SQL statement results are 
used in the application. (e) Analyzing user input and their 
propagation to SQL statements. Using the above services, 
we have built “vertical” tools for: detecting SQL injection 
vulnerability, extracting the SQL workload from 
application binary, identifying opportunities for SQL query 
performance optimizations, and identifying potential data 
integrity violations.  

Our framework supports analysis within a single basic 
block, across basic blocks within a function, as well as 
across functions. We use the Phoenix compiler framework 
[7] as the underlying infrastructure. In our current 
implementation we can analyze applications that use the 
ADO.NET data access APIs. In principle, our techniques 
can be extended to handle other APIs such as ODBC or 
JDBC. We report preliminary results of running our tool on 
a few real world applications.  

The rest of this paper is organized as follows. In Section 
II we describe a set of motivating examples for static 
analysis of database applications. We present an overview 
of our architecture and describe each of the services in our 
framework in Section III. In Section IV we outline some of 
the verticals we have built using the services. We describe 
how we adapt data and control flow analysis to take 
advantage of knowledge of data access APIs. In Section V 
we present our experience of running the tool on a few real 
world applications. We discuss related work in Section VI 
and conclude in Section VII. 
 



 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. MOTIVATING EXAMPLES 
We provide motivating scenarios for static analysis of 

database applications. The scenarios below refer to 
common database application problems such as security, 
data integrity, and performance.  
 
Example 1. Detecting SQL Injection Vulnerability.  

Consider the sample code shown in Figure 1, for a C# 
application that allows the user to search the product 
catalog. The application retrieves rows from a table in the 
database that contains the user submitted string.  The user 
input is read from an Edit Box control in the function 
onLookupButtonClick. In turn, it invokes the 
LookupProduct function that does the actual lookup in 
the Products table using a dynamically constructed SQL 
query. The query is executed using the ExecuteReader 
method of the SqlCommand object. 

If the user submits a string such as “Garmin StreetPilot”, 
then the query string constructed at Line 1 in the 
LookupProduct function is: “select sku, 
description, price from Products where   
description like '%Garmin StreetPilot%'”. 
Now consider a malicious user who submits a string such 
as “' OR 1=1; DROP TABLE Products -- ”. The query 
string constructed on Line 1 is now:  “select sku, 

description, price from Products where   
description like '%' OR 1=1; DROP TABLE 
Products -- %'”. Thus, the original intent of the 
query is modified due to the concatenation of user input. As 
a result, when the query is executed on Line 5, this has the 
undesirable effects of first returning all rows in the 
Products table to the user and then dropping the table.  

It can be useful if SQL injection vulnerability in the 
application can be detected by simply examining the 
application binary. While catching a vulnerability is very 
important, observe that ideally such a tool needs to also be 
careful not to return (too many) false positives. For 
example, many application developers correctly use the 
ADO.NET APIs for passing user input as a parameter to a 
SQL query (e.g. AddParameter method). In such cases, 
the SQL injection detection tool should be able to detect 
that there is no injection vulnerability since user input 
cannot be interpreted as code by the DBMS.  

 
Example 2. Workload Extraction.  

The ability to identify the workload, i.e. set of SQL 
statements that can be executed by an application can be 
useful during application development time. For example, 
one important scenario is migrating an application (e.g. 
[23]) from one DBMS to another (or from one release of a 
DBMS to the next). In this scenario, identifying SQL 
statements issued by the application is important since 

// Event handler for button click 
private void onLookupButtonClick(object sender, EventArgs e) 
{ 

// Get search string from edit box 
1. string searchstring = lookupeditbox.Text; 
// Call the actual function 
2. LookupProduct(searchstring); 

} 
 
// Look up the product in database 
private void LookupProduct(string searchstring) 
{ 

// Create a ADO.NET SQLCommand object. Represents a SQL statement  
1. string cmdtext = "select sku, description, price from Products where   

description like '%" + searchstring + "%' "; 
2. SqlCommand cmd = new SqlCommand(cmdtext, dbConnection); 
// Does user want to sort the result or not? 

3. if ( SortRows() ){ cmdtext += " order by price "; } 
// Sets the SQL statement to execute at the data source. 

4. cmd.CommandText = cmdtext; 
// Execute the query 

5. SQLDataReader rdr = cmd.ExecuteReader(); 
// iterate through results 

6. while (rdr.Read()){/* add to grid */} 
} 

Figure 1. Example ADO.NET application code.



 
 

some statements may need to be modified to adhere to the 
syntax and restrictions of the target DBMS. A second 
scenario for workload extraction is physical design tuning. 
Today’s DBMSs have tools for tuning physical design that 
take as input a workload and recommend an appropriate 
physical design (e.g. [16][17][18]). Thus extracting a 
workload from an application binary can help design a 
good initial physical design for the database (e.g., see [9]), 
which can be refined once the application is deployed. 

Consider the sample code in Figure 1. There are two 
possible SQL queries (templates) that can execute at Line 5 
– the second query is executed if SortRows() in Line 3 
return TRUE:  
(1) select sku, description, price 

from Products where   description 
like '%@p1%' 

(2) select sku, description, price 
from Products where   description 
like '%@p1%' order by price 

In general, the query strings may be constructed across 
multiple functions, and thus extraction of the workload can 
be non-trivial for arbitrary database applications. 

In the above example, the workload was a set of SQL 
statements. It can also be useful to extract sequences of 
SQL statements as well. For example, it is common in 
many applications for a sequence such as: CREATE 
TABLE T, INSERT INTO T …, SELECT … FROM S, T, 
WHERE…, DROP TABLE T to occur. Capturing such a 
sequence from an application binary can enable a tool that 
can tune a sequence of statements (e.g. [2]) to be invoked.  
 
Example 3. Identifying Opportunities for SQL Query 
Rewriting. 
1. Consider the following application code 

snippet:cmd.CommandText = “select 
sku, price, description from 
Products”; 

// Execute the query 
2. SQLDataReader rdr = 

cmd.ExecuteReader(); 
// iterate through results 

3. while (rdr.Read()){ 
4.   s = rdr[0]; // use sku value 
5.   p = rdr[1]; // use price value 
}Observe that there are three projection columns in the 

query, but the application references only two when 
consuming the query results. In this case, it is useful to 
detect this and alert the developer; so that the query 
performance can be improved by rewriting the query as 
“select sku, price from Products”.  
 
Example 4. Detecting Potential Data Integrity Violations. 

In many real-world applications, certain database 
integrity constraints are enforced in the application layer 
and not the database layer. One reason is that adding a new 

constraint to an application that has already been deployed 
can be difficult since it can cause operational disruptions. It 
is often easier to deploy a modified application module. 
This is often true in hosted web service scenarios, where 
the DBA might be reluctant to pay the cost of altering an 
existing table.  Another reason is performance -- integrity 
constraint checking in DBMSs can be expensive. Consider 
a case where the application developer wants to enforce in 
the application code the constraint that the price column of 
the Products table always has a value > 0.  Suppose the 
application code is written as follows:  
// Create a ADO.NET SQLCommand object 
for an INSERT statement  
1. string myQuery = "INSERT INTO 

Products (price,sku,description)  
   VALUES(@price,@sku,@description)"; 
2. SqlCommand cmd = new 

SqlCommand(myQuery, dbConnection); 
   // Bind program variables to the    
   parameters 
3. cmd.Parameters.Add(new 

SqlParameter("@price", myprice)); 
4. cmd.Parameters.Add(new 

SqlParameter("@sku", mysku)); 
5. cmd.Parameters.Add(new 

SqlParameter("@description", mydesc));   
// Execute the insert statement 

6. cmd.ExecuteNonQuery(); 
 
Given a constraint such as [DBName].[Products].[price] > 

0 as input, it would be useful if we could automatically 
identify all places in the application code where the price 
column can potentially be updated, and add for instance, an 
assertion at such places in the code. In the above code 
snippet, it would be useful to automatically recommend 
that inserting the code “Assert (myprice > 0)” before Line 3 
validates the given data integrity constraint 
[DBName].[Products].[price] > 0. Observe that in order to 
provide such a recommendation, it is necessary to: (1) 
Know that a DML statement affecting the price column is 
occurring in the application code, and (2) Identify the 
program variable/expression that is bound to the price 
column in the DML statement.  
 
Example 5. Enforcing Best Practices in Database 
Application Coding.  

A development manager for an application may want to 
enforce a set of best practices in coding for all developers 
in the project (similar to FxCop [6]). Examples of such best 
practices are:  

 
(a) For a query that returns only one row (e.g. SELECT 

COUNT(*) FROM T ….)  the application should use 
the ExecuteScalar() API (rather than 
ExecuteReader()) since it is more efficient.  



 
 

(b) There should be no “SELECT * …” queries since 
this can break the application if the schema of the 
underlying tables change Instead applications must 
explicitly enumerate all columns in the project clause 
of the query.  

(c) Avoid data type mismatches. When a program 
variable that is bound to a database column has a 
different data type than the column, it can result in 
unexpected application behavior at runtime. 
Detecting such mismatches at compile time allows a 
developer to potentially correct the problem before 
the application goes into production.  

 
Finally, note that in order to perform the kinds of 

analyses described in the above examples, we need to 
leverage understanding of the data access APIs (e.g. 
SQLCommand.ExecuteReader is an API through 
which a query is executed in ADO.NET). In addition in 
some of the examples, access to the database schema, SQL 
parser, the query optimizer of the DBMS can be exploited 
to provide deeper analysis. Consider Example 3 in which a 
rewriting of the query is recommended. To quantify the 
estimated improvement in performance by such a rewriting, 
it is useful to obtain the execution plan of the original and 
rewritten query using the query optimizer.  

III. ARCHITECTURE OVERVIEW 
In Section II we presented motivating examples (or 

“verticals”) for static analysis functionality for database 
applications. In this section we present our architecture for 
implementing such verticals on existing compiler 
infrastructure.  

 
 
 
 
We observe that these different verticals from Section II 

have significant commonality. For example, the need to 
extract the SQL statements that can execute at a particular 
ExecuteReader() call in the program is common to 
both Workload Extraction (Example 2) and Identifying 
Opportunities for SQL Rewriting (Example 3). Similarly, 
identifying properties of the SQL such as which columns 

are referenced is important in Example 2 and Example 4. 
Based on this observation, we have designed a library of 
common services that we think are useful for developing 
the verticals discussed in Section II.  

Our architecture is shown in Figure 2. We build a layer 
of static analysis services for database applications (labeled 
as Services in the figure) on top of the traditional compiler. 
We require an extensible compiler framework that can 
support data and control flow analysis, which most modern 
compilers support.  

We have identified the following five services that we 
find useful for the verticals discussed in Section II. We now 
briefly describe the functionality offered by each of these 
services. 
 
Extract SQL: Given a function in the program binary, this 
service returns a set of SQL statement handles. A handle is 
a unique identifier that is a (line number, ordinal) pair in 
that function. It represents a SQL statement that can 
execute at that line number. Referring back to the 
LookupProduct function in Figure 1, Extract SQL 
returns return two handles {For e.g. -  (5,1), (5,2)} , 
corresponding to the two statements that can execute at line 
number 5 (the ExecuteReader() invocation in the function).  
 
Identify SQL Properties: Given a handle to a SQL 
statement, this service returns properties of the SQL 
statement. Currently, the properties we can identify include: 
(1) The SQL string itself.  (2) Number and database types 
of columns in the result of the SQL statement (for SELECT 
statements).  (3) Tables and columns referenced in the 
statement. (4) Optimizer estimated cost of statement. We 
note that (2), (3) and (4) above assume access to the 
database schema, a SQL parser and the ability to obtain the 
execution plan for a given SQL statement. The database 
connection to use when accessing the database can be 
obtained in one of the following ways: (a) It is provided as 
input by the user, (b) Obtained from a configuration file (c) 
Automatically obtained by analyzing the connection string 
used in the application.   
 
Extract Parameters: Given a handle to a SQL statement 
this service returns the parameters of the statement along 
with the program variable/expression that is bound to that 
parameter, and its data type in the application. Referring to 
Example 4, this service returns {(@price, myprice, double), 
(@sku, mysku, int), (@description, mydescription, String)}.   
 
Extract Result Usage: Given a handle to a SQL statement, 
this service returns properties of how the result set is 
consumed in the application. In particular, it returns each 
column in the result set that is bound to a variable in the 
program, along with the type of the bound program variable.  
Referring to Example 3, this service returns { (0, s, int), 
(1,p,double)} assuming the types of variables s and p are 
int and double respectively. 

Figure 2. Static analysis services and verticals 
for database applications. 



 
 

 
Analyze User Input: Given a handle to a SQL statement 
this service identifies all user inputs in the program such 
that the user input value v satisfies a “contributes to” 
relationship to the SQL string of the statement.  A 
contributes to relationship is defined as either: (a) v is 
concatenated into the SQL string. (b) v is passed into a 
function whose results are concatenated into the SQL string.  

Finally we note that the Extract SQL service cannot 
guarantee that all SQL that can be executed by the 
application will be extracted. The reason is that in some 
cases even the table names in the query may be generated 
dynamically. In such cases, the strings extracted by static 
analysis will not be syntactically valid SQL statements. 
Another example is an IN clause in the query, where the 
values in the IN clause are generated inside a loop in the 
program. Nevertheless, we have observed that in real world 
database applications we are still able to extract a large 
fraction of the SQL that can execute in the application by 
static analysis alone (see Section V for our experience with 
two real world applications.) 

IV. IMPLEMENTATION 
In this Section we describe the implementation of our 

static analysis framework. We first give a brief overview of 
the compiler framework (Phoenix [7]) and its services that 
we currently rely upon (Section IV-A). Next, we describe 
how our static analysis services are built. In Section IV-B 
we present the data flow analysis for the case of a single 
basic block in the program, and show the key data 
structures we use. We then outline how the analysis for a 
single basic block can be adapted to leverage our 
knowledge of data access APIs (Section IV-C) to achieve 
the functionality of different services. Section IV-D 
presents our analysis across basic blocks and function units. 
Finally, we show how two verticals, SQL Injection 
Detection and Detecting Potential Data Integrity Violations 
are implemented using the above services. 

An overview of our implementation of the static analysis 
framework is shown in Figure 3. Our solution takes as 
input an application binary (i.e. a DLL or EXE) and 
performs custom static analysis on the binary. The output is 
a set of security, performance and correctness problems as 
identified by the vertical tools described earlier. For certain 
verticals, e.g. identifying potential violations of data 
integrity constraints, the user can specify a set of 
constraints (e.g. Products.Price > 0) as input. Also, based 
on user input, we can analyze a single function or all the 
function units in the binary. 

A. Phoenix Compiler Framework  
As mentioned earlier, in our implementation we use the 

Phoenix compiler framework [7]. We rely upon this 
framework to: (1) Convert the application binary in 
Microsoft Intermediate Language (MSIL) into an 
intermediate representation (IR) that our analysis operates 

upon (MSIL Reader module in Figure 3). (2) Iterate over 
function unit(s) within the binary. (3) Provide the flow 
graph in order to iterate over basic blocks within a function 
unit. (4) Iterate over individual instructions in the IR within 
a basic block. ) (5) Provide extensions to dynamically 
extend the framework types like function units and basic 
blocks (6) Provide a call graph that represents the control 
flow across function units. For example, referring to Figure 
1, there is a call to function LookupProduct from the 
function onLookupButtonClick at Line number 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Data Structure and Flow Analysis for a Basic Block 
We now describe how our analysis works for a single 

basic block (also referred to as a block). Each block 
represents a sequence of IR instructions.  The control flow 
of the program enters a block at its first instruction and 
proceeds sequentially through the instructions in the block 
until it reaches the block's last instruction. The IR 
instructions corresponding to the function 
onLookupButtonClick is shown in Figure 4. Each IR 

Figure 3. Implementation of static analysis 
framework for ADO.NET applications.

// IR corresponding to Line 1 
tv272 = ASSIGN [this]*"FabrikamPort.Form1:: 
lookupeditbox" 

tv273 = CALLVIRT* System.Windows.Forms.Control:: 
get_Text, tv272 

searchstring = ASSIGN tv273 

// IR corresponding to Line 2 
{*CallTag} = CALL* &FabrikamPort.Form1:: 
LookupProduct, this, searchstring, {*CallTag}, 
$L5(EH) 

Figure 4. Intermediate representation (IR) 
instructions for onLookupButtonClick function 



 
 

instruction can be mapped into destination operand, opcode 
and source operands. Consider the second instruction in 
Figure 4. The destination operand is tv273, the opcode is 
CALLVIRT, and the source operands are 
System.Windows.Forms.Control::get_Text and 
tv272. 

The key data structure we maintain is a hash table that at 
any point during the analysis captures the current values of 
the operands referenced in instructions in the basic block. 
The hash table that is created after executing the 
instructions in Figure 4 is shown in Figure 5. Observe that 
the hash table has the destination operand as key (For e.g. 
temporary variable tv273 in the example) and associates 
the key with a data flow tree. The tree contains nodes that 
hold the operands and opcode, similar to algebraic 
expression trees [1]. The leaf nodes are other operands or 
symbols, while the non-leaf nodes are the opcodes. When 
we encounter an assignment (i.e. an ASSIGN IR) to an 
operand it results in replacing the current tree associated 
with the operand with the data flow tree of the source 
operand that it was assigned. The algorithm for 
constructing the tree follows the steps similar to the one 
outlined in [1].  
 

tv272

tv273

searchstring   

lookupedit
box

CALLVIRT

lookupedit
box

CALLVIRT

lookupedit
box

tv272=ASSIGN 
[this]*"FabrikamPort.For
m1::lookupeditbox"

tv273=CALLVIRT* 
System.Windows.Forms.Control
::get_Text, tv272

searchstring=ASSIGN tv273

Hash Table Data Flow 
Tree

Instruction stream

 
 

 
 
In addition to the operand/opcode information, each 

node of the data flow tree also stores and propagates 
information necessary for a given static analysis service 
such as: (1) The symbols that are referenced by the node, (2) 
The line number associated (3) Whether or not the node is 
an ADO.NET object (SQLConnection, SQLCommand, 
SQLDataReader), (4) Whether the node was part of a 
string concatenation operation etc.  

By customizing what information is stored in each node, 
we are able to expose each of the different static analysis 
services described in Section III (Figure 2). For example, to 
expose the user input analysis service we need to track the 

operand/symbol referenced in a user input function. This 
information is propagated through the data flow analysis 
and thus it allows us to track whether the given user input 
value can contribute to a SQL string issued at a call site.  

 

C. Exploiting Knowledge of Data Access APIs for Data 
Flow Analysis 

As mentioned earlier, our static analysis services for 
database applications leverage database domain 
information including knowledge of data access APIs and 
the DBMS itself. For example suppose we encounter an 
instruction that calls the following ADO.NET API: 
System.Data.SqlClient.SqlCommand::Execut
eReader. We know that ExecuteReader is an API for 
executing a SQL statement. We also know (based on the 
signature of the API method) that the first argument to the 
ExecuteReader is a SQLCommand object and thus is 
the second source operand in the instruction. 
SQLCommand object has properties like the text of a 
command, parameter list, the active SQLConnection object 
etc. The data flow analysis (described in Section IV-B 
above) will give the current values of the various properties 
of the SQLCommand object including its text field. 
Observe that the text field of the SQLCommand object is 
the SQL string that is executed at the ExecuteReader 
instruction.  

 
 

 
 
As a specific example, the call to ExecuteReader (Line 5 

of LookupProduct method in Figure 1) has the following IR 
representation: 
“tv306=CALLVIRT* &[System.Data] 
System.Data.SqlClient.SqlCommand :: 
ExecuteReader, cmd” 

Here tv306 is the destination operand, CALLVIRT is 
the opcode and &[System.Data] 
System.Data.SqlClient.SqlCommand::Execut
eReader,cmd are respectively the first and second 

Figure 5. Hash table of operands and their data flow 
trees for the onLookupButtonClick function Figure 6. Data flow tree for cmd object in 

LookupProduct function 



 
 

source operands. Thus, we are able to infer that the symbol 
cmd references an ADO.NET SQLCommand Object. 

The data flow tree corresponding to the value of cmd in 
the hash table is shown in Figure 6. The data flow tree for 
the cmd symbol has two sub-trees. These sub-trees 
correspond to the SQL text portion and the SQLConnection 
object portion of the SQLCommand constructor (Line 2 of 
LookupProduct in Table 1).   The leaf nodes of the sub-tree 
corresponding to the SQL text part captures the static parts 
of the SQL (the embedded SQL strings) and the dynamic 
part (the searchstring argument). Hence it is possible 
to extract the SQL executed at this line number by a 
traversal of this sub-tree and concatenating the leaf nodes.   

Also observe in Figure 6 the two CALL nodes that are 
children of the UNION node refer to string concatenation 
methods (For e.g. System.String::Concat).In 
general, applications can build SQL strings at different 
places in the code and concatenate the fragments to build 
the SQL that is executed. Thus we also need to analyze 
string concatenation API’s to extract the set of strings that 
can be issued by the application at any call site. For 
example, suppose we have a statement such 
cmd.CommandText = a + b; where a and b are 
strings. Then building the tree for cmd.CommandText 
involves tracking the CALL to the string concatenation 
function and concatenating the text contributed by the data 
flow trees for a and  b.  

Finally, we mention three related points. First, the 
UNION node in Figure 6 represents the case the flow 
occurs over multiple paths (e.g., an If-Then-Else statement) 
and is explained in Section IV-D. Second in addition to 
ExecuteReader, we also examine other ADO.NET 
APIs in an analogous manner.  For example, there are other 
APIs such as ExecuteNonQuery, and 
ExecuteScalar, where the application can potentially 
issue a SQL statement. We also analyze the various 
parameter collection APIs (e.g. 
System.Data.SqlClient.SqlParameterCollec
tion::Add) in the data client name space for extracting 
properties (e.g. data types) of program variables that are 
bound to parameters of the SQL statement. 

 

D. Global Data Flow Analysis 
In the single block analysis described thus far, for any 

operand of interest, it was assumed that its definition could 
be traced within the basic block. While this is true for 
temporary variables defined within the block itself, in 
general certain operands (e.g. the program symbol 
searchstring in the LookupProduct function) may 
be defined in other basic blocks (within the same or in a 
different function). The purpose of the global data flow 
analysis that we outline in this section is to enable tracking 
the definition of the operand of interest beyond the current 
basic block.  

The global data flow analysis must account for all the 
control paths to a call site such as ExecuteReader. As 
described in Section IV-B, we first build the data flow tree 
for operands within a basic block. Intuitively, if an operand 
cannot be resolved within the block, we do a backward 
traversal to one or more predecessor blocks in the call 
graph, until the operand’s definition is obtained from the 
hash table of that block.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithm for resolving an operand (i.e. a node) is 

shown in Figure 7. We recursively iterate over each 
predecessor of the current block. Thus, we allow multiple 
resolutions (one per path) of the given operand N. If 
multiple resolutions occur, then we use a UNION node 
whose children represent the alternatives. Observe that the 
predecessor block could be in the same or different 
function unit – the above algorithm applies to both cases. 
The blocks are numbered in depth first order so that the 
block id of the current node is always greater than its 
predecessor. This property allows us to correctly deal with 
cycles caused by loops. 

 
 
 
 

ResolveNode 
Input: Current block C, Node N not resolved in C 
Output: Resolved data flow tree for Node N 

 
1. For each block B in the predecessor list of block C 
2.    If  N’s data flow tree is in block B’s hash table  
3.       If N’s data flow tree contains unresolved    
             symbols  
4.          For each symbol in the unresolved list 
5.             ResolveNode(B,symbolnode) 
6.       Else 
7.          Replace symbol node N in current block with  
                the data flow tree and mark as resolved 
8.    Else // N’s data flow tree not bound in block B 
9.       ResolveNode (B,N) 
10.    If node N is referenced in more than one 
          predecessor blocks 
11.      Add a root UNION node with children as the data  
            flow trees referenced in the predecessor blocks 

Figure 7. Algorithm for resolving the definition of an 
operand outside the current block. 

Figure 8. Example of global data flow analysis for 
Extract SQL service for LookupProduct function 



 
 

 
 
In Figure 8 we show the basic blocks, and the two SQL 

strings that we extract at the ExecuteReader 
instruction using our global data flow analysis. Two strings 
are possible (with or without the order by clause) 
depending on the return value of SortRows(). 

E. Implementing Verticals 
In this section we briefly outline how we implement two 
verticals on top of the functionality described in Sections 
IV-B to IV-D. 
 
1) SQL Injection Detection Vertical 

To recap, a SQL injection attack occurs when 
unvalidated user input is used to build a SQL string which 
is then executed on the database server.  The adversary 
injects malicious SQL code in user input that gets executed 
by the query in the server.  

Our SQL injection detection tool takes as input a set of 
function signatures that can supply user input to the 
program. For example, this includes a function such as 
System.Windows.Forms.Control::get_Text. 
Any destination operand in an instruction where the above 
function is a source operand is marked as “tainted”.  For 
example, consider the follow IR instruction: 
tv273 = CALLVIRT* 
System.Windows.Forms.Control::get_Text, 
tv272 

In the snippet above, destination operand tv273 is 
assigned the return value of get_Text and hence the 
node is marked UNSAFE. The data flow analysis outlined 
in the previous sections also propagates the “safety” 
attribute (SAFE, UNSAFE, MAYBE UNSAFE) from the 
source (where the user input is read) to the sink (call site 
where the SQL is executed). Therefore, in the case where 
user data is propagated to the SQL string without passing 
through any other functions, the resulting SQL will also be 
reported as UNSAFE. If the user input is passed into a 
function (e.g. a validation function) whose return value is 
propagated to the SQL string, we mark it as MAYBE 
UNSAFE. If the user input is passed in as a parameter to 
the SQL (using one of the ADO.NET APIs for passing 
parameters), we mark the SQL string as SAFE. Note that 
the SQL that is executed and the sink line number are 
gathered by using the “Extract SQL” service outlined in 
Section III. As described above, given a handle to the SQL 
statement we use the “Analyze User Input” service to 
identify all user inputs in the program such that the user 
input value contributes to the SQL. 

In typical applications, it is common that code where the 
user data is read in and where the SQL is actually executed 
are in different functions. Thus, our ability to perform inter-
function analysis is very useful in such scenarios.  

 
 

2) Identifying Potential Data Integrity Violations 

As explained in Example 4 database applications 
sometime enforce data integrity checks in the application 
code rather than using database integrity checking 
functionality such as CHECK constraints.  Our vertical tool 
for detecting violations of data integrity constraints takes as 
input a set of constraints specified by the user. Currently 
we support constraints of the form 
(Database.Table.Column Op Value), where Op is a 
comparison operator and Value is a literal.  

Consider the case where the application developer wants 
to enforce the following check constraint “Products.price > 
0.0”.  Today the application developer would need to scan 
for all INSERT and UPDATE statements on the Products 
table in the application source code and identify the 
program variables that are bound to the column price in the 
INSERT/UPDATE statement. Then the developer would 
need to add code (e.g. an assertion on that program 
variable).The above steps are automated by our static 
analysis tool (see Appendix A for a screenshot of the 
functionality of our tool).  

Each constraint expression input by the user is parsed to 
obtain the table and column on which the constraint is 
specified.  During our data flow analysis (Section IV-B to 
IV-D) the tool looks for INSERT or UPDATE statements 
on the object referenced in the input constraint expression. 
This is done by extracting the SQL statement and parsing it 
to extract the table/column information as well as statement 
type (INSERT/UPDATE) (“Identify SQL Properties” 
service outlined in Section III). We also capture the 
association of the parameter name to the column in the 
INSERT/UPDATE statement by analyzing the ADO.NET 
APIs for passing parameters to SQL (“Extract Parameters” 
service outlined in Section III). Since we are able to capture 
the association of the parameter name to the column in the 
database, we can automatically recommend the assertion in 
the application code that will verify the data integrity 
constraint specified by the user. The application developer 
can review such a recommendation and an assertion in the 
code.  

 

V. EXPERIENCE ON REAL WORLD APPLICATIONS 
In this section we briefly report our initial experiences of 

running our static analysis tools on a few real world 
database applications:  

 
Microsoft’s Conference Management Toolkit (CMT):  
CMT [12] is a web application sponsored by Microsoft 
Research that handles workflow for an academic 
conference.  

SearchTogether [13]: An application that allow multiple 
users to collaborate on web search.  



 
 

Fabrikam: A Security Training application. An internal 
application developed by the security training group at 
Microsoft to demonstrate SQL injection vulnerability.  

For each application we report our evaluation of the 
Workload Extraction vertical (see Example 2). Our 
methodology is to compare the workload extracted by our 
tool with the workload obtained by manual inspection of 
the application code. The summary of results is shown in 
Table 1.  

The column “Total # SQL statements” reports the 
number of that SQL statements that we were able to 
manually identify by examining the source code of the 
application. The column “# SQL statements extracted” 
refers to the number of statements that were extracted by 
our static analysis tool. Along with the SQL statements we 
were able to extract parameter information as well (as 
described in Section V-C). Thus, even though the actual 
parameter values are not known at compile time, we are 
able to extract syntactically valid queries, e.g., it is possible 
to obtain a query execution plan for such queries. CMT and 
SearchTogether applications both mostly use parameterized 
stored procedures. 

 
 

 
 

Application Lines of 
Code 

Total # 
SQL 
statements   

# SQL 
statements 
extracted 

CMT 36000+ 621 350 
SearchTogether 1700+ 40 35 
Fabrikam  500+ 10 10 

 
 
The cases where we were not able to extract SQL strings 

were due to the following reasons: 
1. Today there many ADO.NET API’s exposed by the 

providers that are used in these applications. Our 
current implementation does not cover the entire 
surface area of all the ADO.NET APIs. 

2. In some cases in SearchTogether, the SQLCommand 
object is a member variable of a class. The object is 
constructed in one method and referenced in another 
method. In this case, the global data flow analysis of 
our current implementation is not sufficient since the 
variable (the SQLCommand object in this case) is not 
passed across the two methods. Capturing this case 
requires tracking additional state of the SQLCommand 
object, which our current implementation does not.  

 
We also ran our SQL injection detection tool on all the 
three applications. We detected no SQL injection 
vulnerabilities in CMT and SearchTogether. In these 
applications user input is bound to parameters and executed 
as parameterized SQL. As expected, in Fabrikam (the 

security training application), we were able to identify the 
SQL injection vulnerabilities. Figure 9 shows a screenshot 
of our tool indicating the SQL injection vulnerability in one 
method. The left hand pane shows the functions in the 
binary. The SQL Information grid shows the SQL string, 
the SQL injection status (UNSAFE in this example). It also 
shows the actual line number in the code where the user 
input (leading to this vulnerability) originated, and the line 
number where the SQL statement is executed. 
 

 
 
 
 

VI. RELATED WORK 
FxCop [6] is an application that analyzes managed code 

assemblies (code that targets the .NET Framework common 
language runtime) and reports information about the 
assemblies, such as possible design, localization, 
performance, and security improvements. Unlike our 
framework however, FxCop has minimal support for 
detecting problems associated with database applications. 
Also, FxCop only performs local analysis within a single 
basic block, whereas our techniques extend to multiple 
blocks within and across function units.   

There is a body of work (an example is [14]) on 
identifying SQL injection vulnerabilities using static 
analysis. One complementary aspect of this work compared 
to ours is their focus on “understanding” the validation 
functions through which user input is propagated, in order 
to determine whether the validation is adequate to prevent 
an injection attack. In contrast we focus on a framework of 
services (such as user input analysis) using which it is 
possible to build tools for SQL injection detection.   

The work in [10] presents string analysis techniques to 
collect the possible strings that can be passed into a certain 
function (e.g. an application interface). This is similar to 
the Extract SQL service in our architecture. There are two 
key differences compared to our approach: (a) We only 
need to generate SQL strings whereas in [10] all strings are 
analysed, which can lead to better efficiency for database 
applications. (b) Second, as described in Section III, we 

Table 1. Summary of results for workload 
extraction. 

Figure 9. Output of the tool for SQL injection 
detection. 



 
 

support a set of static analysis services beyond extracting 
SQL, which are not present in [10].  

There is also recent work for a different “vertical” using 
static program analysis: identifying the impact of schema 
changes on database applications [22]. They use the 
technique of program slicing to improve scalability of 
dataflow analysis. In principle, this technique can also be 
leveraged in our analysis.  

Environments for language integrated querying (e.g., 
LINQ [5]) and frameworks that facilitate easy development 
of SQL applications (e.g. Oracle ADF [20]) are emerging. 
For programs written in LINQ, a query is a first class object 
that is understood by the compiler. Thus some of the 
problems such as SQL injection vulnerability are mitigated 
in this setting. However, several other motivating examples 
presented in Section II are still relevant even for database 
applications that use LINQ. Thus the ideas presented in this 
paper can extend even to LINQ programs.  

There is a class of tools that attempt to bridge the gap 
between application and database profiling tools by 
instrumenting application binaries and logging relevant 
information at runtime (e.g., [3][10][21]). Our framework 
is complementary to this approach since we are able to 
detect several problems at compile time using static 
analysis. In fact, static analysis can be used to identify 
points in the application code that require instrumentation 
(e.g., identify functions where SQL statement can execute), 
and thus can make runtime profiling more efficient.  

VII.  CONCLUSION 
Static analysis tools for database applications can 

significantly enhance the ability for developers to identify 
security, correctness and performance problems in the 
application during the development phase of the application 
lifecycle. We present such a framework for database 
applications using the ADO.NET data access APIs. Our 
framework consists of a core set of static analysis services. 
We have built verticals such as SQL injection detection, 
workload extraction and identifying data integrity 
violations using these services; and performed initial 
evaluation on real world database applications.  

Identifying other core static analysis services and 
vertical tools is an important area of future work. 
Incorporating such functionality into compilers that support 
language integrated querying can also be useful. Another 
interesting problem is to understand how static analysis can 
improve runtime profiling of database applications and 
vice-versa.  
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APPENDIX A 
Figure 10 illustrates a code snippet for the example of 

detecting of potential data integrity violation in the 
application code (see Example 4 in Section II). The 
function button_insert_click inserts a row to the 
Products table in the database. The constraint that the 



 
 

application wants to enforce is that the Price column of the 
Products table is greater than 0, i.e. [Products].[Price] > 0. 

The tool takes in as input the application binary. The 
user also specifies the database constraint 
([Products].[Price] > 0 in this case). Figure 11 shows a 
screenshot of the tool after the static analysis is complete. 
The left pane shows the classes and methods corresponding 
to the binary. The right pane has the following information: 
(1) The fully formed SQL statement and the line number in 
the application where the SQL can execute. (2) Information 
about the parameters that are bound to the SQL statement. 

These include the parameter name, the data type and the 
application variable that is bound to the SQL parameter. (3) 
The application constraint corresponding to the input 
database constraint specified by the user and the line 
number where it should be added. In this example the 
Constraints Analysis pane shows that expression (price1 > 
0), where price1 is an application variable, will enforce the 
database constraint [Products].[Price] > 0 if it is placed at 
line number 279 in the application code. 
 

 

 
 
 Figure 10. Code snippet for the scenario in Example 4 -- detecting potential data integrity violations. 



 
 

 

Figure 11. Screenshot of the tool showing that the expression Assert(price1 > 0) can be added to the 
code to validate the given database constraint Products.price > 0. 

 


