
A Static Approach for Compiling

Communications in Parallel Scientific

Programs

DAMIEN GAUTIER DE LAHAUT AND CECILE GERMAIN

LRI CNRS-Universite Paris-Sud, LRI Bat 490, 91405 ORSAY CEDEX, Paris, France; e-mail: {gautier, cecile}@lrifr

ABSTRACT

On most massively parallel architectures, the actual communication performance re

mains much less than the hardware capabilities. The main reason for this difference lies

in the dynamic routing, because the software mechanisms for managing the routing

represent a large overhead. This article presents experimental studies on benchmark

programs concerning scientific computing; the results show that most communication

patterns in application programs are predictable at compile-time. An execution model

is proposed that utilizes this knowledge such that predictable communications are di

rectly compiled and dynamic communications are emulated by scheduling an appropri

ate set of compiled communications. The performance of the model is evaluated, show

ing that performance is better in static cases and gracefully degrades with the growing

complexity and dynamic aspect of the communication patterns. © 1995 by John Wiley &

Sons, Inc.

1 INTRODUCTION

Parallel architectures suffer from a recurrent

problem. which is the large gap between peak and

actual performance. Despite the progress in hard

ware and software, most recent experimental

studies [1. 6, 241 show that the actual perfor

mance usually remains below the peak. One major

cause of this sobering fact is the data transfer and

especially the interconnection network. For in

stance, recent studies [6, 11] show that the best

performance figures are achieved by programs

Received September 1994
Revised February 1995

© 1995 by John Wiley & Sons. Inc.

Scientific Programming, \'ol. 4. pp. 291-:W.') (199.";)

CCC 1058-9244/95/040291-15

that have the lowest remote data access to float

ing-point operations ratio.

Although communication seems to be the bot

tleneck for parallel architectures. not much is

known about the characteristics of the communi

cations used by parallel programs. The first objec

tive of this article is to give some experimental

results about the statistical distribution of the

communication patterns. The communications

that are known at compile-time will be called

static and those that can only be determined at

run-time will be called dynamic. To obtain satis

factory statistics, a significant benchmark set has

been studied: this set amounts to around 25.000

lines of code written in various dialects of parallel

Fortran. The set is composed of two parts: The

first is a set of scientific parallel codes, partially

handwritten and partially generated by automatic

parallelization; the second is a subset of library

292 GACTIER DE LAHACT A'-'D GERvlAI"

routines from LAPACK. The dynamic (run-time)

occurrences of both static and dynamic communi

cation schemes have been gathered. The main

result is that static communications are nearly ex

clusive in parallelized code,; and dominant in uo;er

programs, whereas the situation is much more

complex in library routines.

\Ve are interested in this taxonomy (static/ dy

namic) not for classification purposes but because

a considerable speedup in parallel computations

can be achieved by a careful exploitation of the

compile-time information about static communi

cations. In fact.. a parallel execution model where

the communications are computed at compile

time can achieve the hardware's raw performance

for the moo;t frequently used static communication

schemes. This contrasts with the actual communi

cation perforn1ance of most parallel architecture,;.

which is dominated by the communication proto

col overhead. However. the m·erall speedup must

take into account the contribution,.; of all com

munication types .. both static and dynamic (Am

dahl's law). The task is then to assess the penalty

of compiling the dynamic communications. This

is verT difficult. hecausP manv factor,; arP in-. .
volved .. and it is almost impossible to quantify

thPir respective impact,; and interactions.]\ever

theless. meaningful results can be derived by eval

uating. for broad classPs of communication

scheme,;. the speedup achievPd on each elm;,.; by

the static execution model. As a testbed. WP com

part' the C~l-:J communication figures with tlw

expected performance of the static model. Th(•

speedup is significant. even in the dynamic ca,.;e.

The rest of this article i,c.; organizPd as follows.

The first ,c.;ection discu>i>it'S dynamic routing. the

basic conununication nwchanisn1 of almost all

parallel architectures. and the background of

compiled communications. The second section

presents a classification of cornrnunication

schemes. The third section is devoted to the ex

periments. methodolo~;y .. and results. Finally. we

assess the cost of emulating dynamic communica

tions in the static model and present the expected

perforn1ance.

2 BACKGROUND

2.1 Dynamic Routing

Almost all massively parallel architectures use

asynchronous dynamic routing, which mean,; that

the routing circuits in each network node deter

mine the path of each message at run-time. This

requires extra hardware (the routing circuits) and

network bandwidth (the address header carried bv

each message). The routing is asynchronous in the

sense that the latency of the messages depends on

the network load, thus is unknown: a processor/

network interface is necessary to synchronize the

message and the computing threads. The over

head of this interface is large: For instance .. it costs

more than 90% of the latency of the Paragon ma

chine [13], and it is from 3 to 90 J..tS for the CYI-5

[20, 23].

One could expect that, for large data transfers.

this overhead would ultimately vanish. In fact. a

significant part of the effort in practical parallel

programming is careful data organization in order

to pack the data such that the transfers are of the

appropriate size; a lot of research is devoted to

sophisticated compilation techniques. such as

message vectorization. with the same goal [28].

However.. the startup penalty is so high that Pffec

tive use of the network is extremelY difficult. For

instance .. to use half of the peak bandwidth of the

network. the message size mu,;t be more than 1

kilobvte for thP G\f -5: to reach full usc of the

bandwidth. the messagp size must be more than 8

kilobyte [61.

Yloreover. parallel sciPntific program,.; arP

highly synchronous. becau:oe communications

come from parallel array statPments: in general.

consecutive cornmunications must proceed only

in lockstep fashion. Thus, the major opportunity

to enlarge the message size comes from virlualiza

tion. ln a data-parallellanguage. the parallelism is

not limited: For instance. the FORALL instruc

tion has the semantics of evaluating first the

righthand side of an assignment. then performing

the assignment. However. the available parallel

ism on a particular computer is clearly limited by

the number of proceo;sors. To take into account

the limitation of the actual parallel computer.. the

unlimited parallelism of the source code is folded

on the limited parallel computer by automa

tic or user-defined distributions such as cvclic.

block, or block-cyclic. This is virtualization.

For instance, consider the parallel assignment

Forall (i = 0: 14) a(i) = b(i + 1) on a four-proces

sor machine. Each processor has to iterate se

quentially over its own piece of arrays a and b to

exchange data and compute. In particular.. each

processor sends to another one from three to four

array elements; sending one piece of data by mes

sage is highly inefficient: aggregating data to be

sent to one processor in one message is known as

message vectorization [16]. However. message

vectorization is limited by the virtualization ratio

(roughly speaking, the ratio between the size of a

FORALL index set and the machine size). A high

startup penalty limits the efficiency of massively

parallel architecturt>s on huge problt>ms. This

overhead can be greatly reduced if analyzing the

communications at compile-time provides some

knowledge of the communication behavior at run

time. The hardware design and software tools that

provide efficient means to use this knowledge have

been developed in the PT AH project. They are

beyond the scope of this article: the architecture is

described in [4] and the principles of the compiler

in [10].

The results presented in this article indicate

that. at least in scientific programs. a large part of

the communications can be determined from

analvsis of source code. :VIoreoyer. almost all other

programs proyide information that can be used to

limit the communications overhead. ln fact. the

idea that a lot of communication patterns in scien

tific programs can be determined at compile-time

is the cornerstone of vectorizers and automatic

parallelizers. In the following sections .. we con

sider a number of parallel programs, and quantify

this idea.

2.2 Compiled Communications

In the static execution modeL all the parameters

of the communications are computed at compile

time. This model has been exemplified in the IB:VI

GF11 [171. in the iWarp ConSet [2.5]. and by the

Communication Compiler of TMC CM-2 [7]. The

model assumes an off-line routed network. Off

line means that the message paths are computed

in the back-end compiler, by a "communication

generator" that is an equivalent for communica

tion of the code generator for computation. All the

physical parameters of a communication are then

computed at compile-time. At run-time. the

switch settings are simply scheduled under pro

gram control. This is opposite to the on-line rout

ing model, where the message paths are deter

mined at run-time, the network routing circuits

acting on the addresses as an interpreter. The

compilation problem is to embed the communica

tion graph into the physical network.

Off-line routing improves the network through

put, by removing the overhead of address headers

encapsulated within each message. As no more

routing decisions have to be made, the latency can

ultimately be reduced to the hardware propaga

tion delay. Finally, shifting the routing task from

run-time to compile-time allows more complex

routing algorithms, resulting in better resource

(links and buffers) utilization. Theoretical studies

P \R\LLEL ::-;ciL\TIFIC PROCK.\~!::-; 293

[15 .. 21.. 22] show that. for somP interconnection

networks. off-line routing is feasible in the sen,.;e

that the off-line routing algorithm has acceptable

complexity. and may be asymptotically optimal

[19]. The practical experiment,.; on the C\I-2 [7!

show that a one order of magnitude ;-;peedup can

be achieved by off-line routing on the hypercube.

without anv additional hardware: the simulated

annealing algorithm provides global optimization

of the link allocation.

Off-line routing suppo,.;es that the communica

tion generator may be fed with the communication

graph. which has been constructed by the com

piler. This issue is beyond the scope of thi:-; article:

however. recent research in the message-passing

framework [14, 28], and in the static framework

[101 provides techniques to tackle this issue.

:Moreover, these techniques remove the potential

drawback of the first experiments on the C\1-2.

which was the long compilation time: As a formal

description of the graph can he exhibited, the

complexity of the off-line routing process can be

simplified in many cases.

3 COMMUNICATION PATTERNS

As our benchmarks are written in data parallel

Fortran (C:Vl Fortran, Fortran 90. high-rwrfor

mance Fortran [HPFJ), the following discussion

uses an HPF syntax. However.. this only exempli

fies the main data-parallel communication fea

ture: The communications are implicit. derived

from operations on parallel data structures (arrays

in Fortran). ln HPF, parallel data operations

come from, either FORALL loops or array nota

tions, or Intrinsics that summarize multiple paral

lel data operations. As each of these structures

involves parallel array references. our taxonomy

begins with a classification of parallel references.

3.1 Parallel References

A typical parallel construct is a nest of FORALL

loops as illustrated next:

Forall (i 1 = a1 b1

For all (iz a2

Forall Un an bn Cn)

A(e1 , e 2 , ... , en] = F(B[f1, f2,

.. · , fnJ, · · ·)

endforall

endforall

endforall

294 GAL TIER DE LAHAL T A"D (;ER.\IAL\

where ak and bk may depend on it for l < k. For

shorL it can be summarized in the following

pseudosyntax:

Forall I in :5'

A[f(I)] = F(B[g(I)], ...)

endforall

where I is the vector of parallel indices (i1 ,

i2, in)· :5' is the convex polyhedron (see ex

ample below) defining the loop bounds, A and B

are two arrays, and finally. A l/(1)] and B[g(IJJ are

two parallel reference:,;.

A typical parallel reference is a reference to an

m-dimensional arrav A. in a ne:ot of n FORALL

loops: A[e1. e2, . .. , en,L where e, are functions

of the FORALL subscripts (another syntax is the

parallel array reference A[u 1 : b 1 : c 1 •...• an,:

bm : c 111], which can be expressed with a FORALL

syntax). Analytical analysis can be performed at

compile-time only if the e1 are affine in the

FORALL subscripts, with integer coefficients. i.e ..

n

ei = 2.a1JIJ + b1 .
j~l

An affine reference can be written A [JJI + C].
where JJ is a m X n integer matrix and L' a vector

in Z"'. ~·e give an example from Jacobi's method

for the Laplace solver:

Forall (i=2:9,j=2:9)

A (i, j) =(A (i-1, j) +A (i+l, j) +A (i, j-1)

+A(i,j+l)) *0. 25

endforall

Here. there are five parallel reference:,; to A (1 store

and 4 fetches): the first one ~4(i - 1. j)) may be

expressed with:

:'v/=(6 ~).c

:5'=

Affine references where J/ and l · onlv include

numerical constants are called static and non

static affine references are called parametric. For

example the parallel reference A(i- 1.j) i:o static.

whereas a reference such as A (i + k. j) will be

parametric if k is a variable which is not a

FORALL index, as in the following assignment:

do k ...

Forall i

.. . =A(i + k)

This scheme is dominant in LAPACK routine:,;.

ln fact. a finer classification would be possible:

If the vector C is a scalar variable .. the reference

can occasionally be determined at compile-time:

for instance, if U linearly depends on sequential

loop subscripts, as in the previous example. How

ever. using this information in the static execution

model would require the unrolling of the sequen

tial loop to compute the communication patterns.

As the sequential index set is almost always too

large to allow this optimization. there is no point in

using a finer classification.

In our benchmarks. nonlinear references were

represented by gather and scatter operations.

where the array subscripts are themselves arrav

elements: the generic form being A [L l /]].

3.2 FORALL Communications

In the typical parallel instruction

Forall I in :5'

A[f(I)) = B[g(I)] + ...
endforall

the assignment creates corr1n1unication patterns

where. for each/, the source is the processor own

ing the reference B [g(I)]. and the destination is the

processor owning the reference A [f(l)]. The pat

terns depend on the computation location rule

and on the mapping. We consider the Owner

Computes Rule, which is used by most existing

parallel compilers and assumed by many re

searchers in this field: it means that the comput

ing processor is the destination processor. The

mapping between arrays is created by the ALIGN

directives. If an array is compressed along one di

mension, the corresponding FORALL subscript

must not be considered for classification because

it is not a parallel dimension. For instance, if A is

of dimension 2 and compressed along its second

dimension. then A (i. j) is located on the same pro

cessor as A(i, 0). \Vith these assumptions, a com

munication occurs for each array in the righthand

side of the parallel assignmenL if combining the

mapping and the Owner Computes Rule does not

result in an intraprocessor assignment. The com

munication is labeled by the worse case of the two

references, e.g .. left and right member affine static

will re,.;ult in a static communication. but a one

member nonaffine will result in a nonaffine com

munication and so on.

A typical usE' of thE' FORALL notation is to dt'

scribt' partial permutations of thE' index ,;et. Al

though the FORA.LL ,;yntax does not fJrt'cludt'

more complex schenws. dficient programmin;r

would encapsulate such patterns in intrin,.;ic,; to

take advanta;re of dw global communication ft'a

tures of the target architecturP.

3.3 Intrinsic Communications

In data-parallel Fortran lan;ruages. complex data

transfers can be described by special functions

that are part of intrinsics. The most important

communication intrin,;ics implement multireduc

tion (multiple many-to-one communication).

multibroadcast (multiple one-to-many). special

permutations. and gather/ scatter operations.

The reduction intrinsics art' SUM. ALL. ANY.

MAXVAL .. MINVAL. MAXLOC. MINLOC. Tlwy com

pute tlw result of applying an associati\e operator

to all the clements of their array argument. ThP

respectiYe operators are sum. logical and. logical

or. max. min: :\IAXLOC !resp. \11'\LOC': returns

the location of thP maximal lresp. minimal! yaJup.

The reduction intrin,.;ics have three panuneters:

for instance. SUM (ARRAY, DIM, MASK) adds the

elements of ARRAY along the dimen,.;ion DIM. se

lecting the PlPmPnts dPscrilwd by MASK. \\. e con

sidt'red that a reduction intrinsic is static as soon

as the ARRAY parameter is a static reference and

the DIM parmneter is a constant: Tlw unit ele

ment of the operator \e.g .. 0 or 0.0 for a SUM. or

IEEE -x for a floating-point MINVAL; can replace

the masked rPferences. and this local te,.;t can be

done at run-tirne.

The intrinsic SPREAD allow,; hroadca,.;ts and

segmented broadcasts: An n-dinwnsional array is

replicated to create an 11 + 1 dimen,;ional one.

The syntax is SPREAD (SOURCE, DIM, NCOP

IES) : to cornpute tht> conHnunication schenw at

compile-time. the SOURCE parameter mu,;t be a

static reference and DIM n1ust lw a constant :in

this case. the pattern is considered as static). In

the following. we call broadcast a one-to-many

pattern, multibroadcast a segmented broadcast.

reduction a reduction that result,; in a :-;calar. and

multirt'duction a segmented reduction.

Examples of special permutations intrinsics are

the cvclic and nonc,clic SHIFTS and TRANSPOSE. . .
All these intrinsic;; :-;ummarize a FORALL per-

P \KALLEL SUE'\TIFIC PHOCKA\IS 295

mutation and require the same analy,;is. \lore

complex intrinsics. such as MATMUL and DOT

PRODUCT. are intended to allow an optimal imple

mentation of basic lirwar algebra opPrators. These

intrinsics will be considered as static if their pa

rarneters are static or scalar constants.

4 EXPERIMENTAL RESULTS

4.1 The Benchmark Set

Three benchmark sets haYe !wen analyzPd (TahiP

1). The first. called :\PAC in the following. is the

applications benchmark SE't for Fortran D and

HPF of the :\orthea,;t Parallel Architecture Center

at Syracu,;e L;nin~rsity [:2.) j. It includp,; <'omplPte

applications and matlwmatical packagps for

dense linear al;rebra. Some applications hm P t\n>

different versions: the Cluster Spin and Hn i,.;ed

Simplt'x haYe been rede,;igned for paralkli,-m.

whereas the ConYPntional Spin and Simplex are

the straightforward parallt>l n~rsion,; of tilt' wPII

known sequential benchmarks. The ,.,econd set.

called PRE .. is composed of outputs of ti1P auto

matic parallelizt'r YAST 90 of Pacific Sierra He

search \Yith some handcoded parts. PRE ha,.; I wen

assemblt'd by J. K. Prentice from ()uctzal C:ompu

tational Associates [:26,. The third is a lwncll!lwrk

from lniititut Fran<;ais du Perrole :lFP:. \\ e have

rewritten it as an llPF Yt'rsion and YalidatPd b\

IFP. The clas,.;ification of tlw lwnchmarks in three

categories (kernel. application. and algorithm,;;

follows the approach used in [2:.
Apart from dw limitations of any lwnchrnark

set compared with real applications. this bench

mark set rnay be considered a,.; representati\t_' of

dense computations. 1\o sparse code is included

for tlw following reason: Although the prcscnt

state of the art in al;rorithms for sparst' computa

tions indeed favors <h-namic data :'itructures and

communications. the situation is quickly C\ olving.

Recent work r:J" focuses on the dynamic to ,.,tatic

transformation: hence statistics in thi,; fiPid mm

not be significant at tl1E' pre,;ent time.

4.2 Methodology

The tool used for analysis is a parser built from the

Tiny tool ,.;et [29:: it consists of an intraproccdural

constant propagation package and a program for

autornatic reference analn;i,; ba,.;ed on tilt' ab

stract syntactic repre,.;entation that WP deYeloped.

The output of these tools is a characterization of

296 GALTIER DE LAHALT A:'\D GER\L\I:'\

Table 1. The Analyzed Benchmarks

Rt>ndnnark

Set

:\'PAC

PRE

IFP

:'\arne

PI IYSICS Conventional Spin

PHYSICS Cluster Spin

\'\' eather climate

LAPACK Block-QR

LAPACK Block-Cholesh

LAPACK Block-LL

2D-FFT

Laplace Solver

Gaussian Elimination

:\'bodv

Simplex

Revised Simplex

Livermore Fortran Kcrnt>l

Gas Dnwmics

Kepler

IFP

Size

in lines

lJT~

-~::>6

1 "S:3

1:380

:)16

2329

201
2h"?

90

H9

62:3
:):)6

612-J:
2:30-:'

:2":'6
3-t-:'

each reference and intrinsic in the source COflf'.

following the classification of Section 2. :\1~xt we

evaluated the dynamic (run-time) frequencies of

each communication type by manual examination

of the code.

4.3 Results

Tables 2 to 5 present the statistics. Tables 2 and 4

give the formal expression as a function of the

parameters, respectively. for static and dynamir

communication patterns:. Tables ;:3 and 5 give the

numerical percentage of the total communication

patterns. The first column is the benchmark

Table 2. Formal Expression of Statie Communications

:\utornatic

Parallelization Languatre Catt•uorv r .

:'\r) C\1 Fortran .\pplication

:'\n C\l Fortran Application

:'\o C\1 Fortran Application

:\o C\1 Fortran Algorithm

:'\o C\1 Fortran Algorithm

:\o CM Fortran Algorithm

:\o C.\[Fortran Alw>rithm
:\o C\[Fortran Application

:\o C\1 Fortran Al;:oritlnn

'\o C.\1 Fonran Appli,·ation

:\o C\1 Fortran Appliration

:\o C.\1 Fortran .\pplieation

Yes Fortran 90 Kenwl
Yt>s Fortran 90 Application

:\o Fortran <)() Application

:\o IIPF .\ppli('ation

name. The column labeled '·Loop Parameters"' in

Tables 2 and 4 is the name of the program param

eters that are used as sequential loops subscripts.

For instance .. Cluster Spin shows three nested se

quential loops: the indices are Jf .. the number of

measures. and I and J. which are internal to the

algorithm. The numbers in parentheses are the

parameter values used for Tables 3 and 5. if nec

essary: most of them were indicated by the ben

chmark. The following columns give the total

number of occurrences of each communication

scheme, for a complete execution of the ben

chmark: the column labeled .. Affine and Cyclic''

describes affine communications (all these com-

Benehwark Loop ParamPter~ .\flint• and Cw·li<· Broadc<ht Heduction ::C:Jwcial

ClustPr Spin

Conventional Spin

\\'eather Climatt'
L\PACK hlock-(lH

LA.PACK block-<:holesky

L:\P\CK block-Ll.

2D-FFT

Laplace Soher

(;nussjan ElituinatJon

:\bodv

Simplex

Revised Sirnplex

Liverwore Fortran Kemel

Gas Dyruunies

Keplt>r

IFP

'\! 10(), I' 10. J ~:WO
'\I .1 00 . I 101

I ;?>•

:\ ' 1000/. :\'B :(H ·

:\ 10001. :\B 16-t

:\ 1 000 •. '<B :6-1:

" :S12i

I (1000i

"
<25.))

I 1000)

I 10001

I i1 0001

I 21:

I (10000'

T :::Jb:SOOOI

:\ ·.-t0001

\1<:2 + :)] + :nJ. \!1 + 21 + 1.1•
2\1 -tl + 1' 2\1

6:261 + ;)()() 8001 + 200 -tO::ll + 100 <JI

.. t:\/\B + " :2:\ 2:\/'\B + "\

-tl

2:\
1 ;){ +]()

J + 2

21 2I .)! + 1

2-tl ()I 21

161 :SI

6T

.39:\ 2

PARALLEL SCIE'\TlFIC PROGRA:\IS 297

Table :3. Static Communications as a Percentage of the Total Communications

Benchmark Affine and Cn:lic Broadca~t Reduction Special Total ,.;tatic

Cluster Spin 33.4

Conventional Spin 97.6

Weather Climate :24.2

LAPACK block-QR 0.0

LAPACK bloek-Choleskv 0.0

LAPACK block-LC 0.0

2D-FFT 0.0

Laplace Solver 80.0

Gaussian Elimination SO.O

l'body 100.0

Simplex 0.0

Revised Simplex 12 .. '1

LiYennore Fortran Kernel 52.2

Gas Dynamics 64.0

Kepler 0.0

IFP 100.0

munications are translations .. apart of LAPACK

block-QR where the scheme is a matrix trans

pose): the "Broadcast" and "Reduction"

colurnns are, in generaL multibroadcast;; and

multireductions: the column "Special" gathers all

the instances of the intrinsics MATMUL and DOT

PRODUCT and, for the \\~eather Climate ben

chmark, calls to the fast Fourier transfom (FFT)

library routine. The column "Total" in Tables 3

and 5 is the partial total of each broad class, static

and dynamic.

Most of the application benchmarks have a

high percentage of static communications. the ex

ceptions being Cluster Spin and Simplex. How-

Table 4. Formal Expression of U~·namic Communications

Benchmark

Cluster Spin

Comentional Spin

W'eather Climaw

LAPACK block-()R

LAPACK bloek-Cholcsh

LAPACK hlock-LU

2D-FFT

Laplace Soh-er

Gau;;sian Elimination

l\bodv

Simplex

Revised Simplex

Livermore F onran Kernel

Gas Dynamics

Kepler

IFP

Loop Parameter;;

:\1 (Hl01 I (10i. .J 12001

\1 tHJO, l (10·

I (5

.\l(lOOOJ.\B 6"+!

id

id
.\1 (.S12)

I :1000;

.\ :z:;.;,
I 1 0001

I (1000)

I (1000>

I :21,

I (100001

T (36.)000!

:\ (4000)

2200

8.\/.\B + -t\

\/'<B

4.\1 + 2.\/.\B

log2.\ + 1

.\

0.0 16.8 0.0 :J0.2

0.0 :2.4 0.0 100.0
29.() 14.9 ().;3 69.0

17.8 0.0 18.""' :36.S
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 20.0 0.0 100.0

0.0 0.0 0.0 50.0

0.0 0.0 0.0 100.0

11 . 1 11.2 0.0 2:2.:3

12.:J ;~ 1 .:.~ 0.0 56.:3

0.0 19.6 "! .:3 76.1

20.0 0.0 0.0 8"!. ()

0.0 0.0 100.0 100.0

0.0 0.0 0.0 100.0

ever, these benchmarks are particular implPmen

tations of an application and have another version

(Conventional Spin and Revised Simplex). which

is much better for the static model. The IFP
benchmark is especially interesting: From the se

quential version, it was possible and even easy to

write a fully static HPF version of the benchmark,

without any change in the initial algorithm.

The category Algorithms presents much more

diverse results: 50% static communications for

the l\'o-Bloek Gaussian Elimination. but oo;;, for

LAPACK block-LC. The reason is that in the LA

PACK subset, the applications are matrix decom

position. but the implementations are block algo-

2200

21

21

Paramt·tric

Hcductiou

.\

21

I

21

~pecial

;)"\

2.\/.\B

2'< + .\/l\B

."1\11.1

I + 1

I+ 1

21

il

298 CAtTIER DE LAHACT A:\'D GER\1Al:\'

Table 5. Dynamic Communications as a Percentage of the Total Communi£~atinns

ParametriC'

Benchmark Affiuc and Cvclic Broadcast Heduction Gather Scatlt'r Total

Clu~ter Spin 0.0 0.0

Conventional Spin 0.0 0.0

\Veather Climate 15.5 15.:)

LAPACK block-QH 36.8 0.0

LAPACK block-Cholcsky 0.4 98.8

LAPACK block-Lt 10.8 <i1.9

2D-FFT 100.0 0.0

Laplace Solver 0.0 0.0

Gaussian Elimination 2:J.O 0.0

:\'body 0.0 0.0

Simplex :3:3.:3 11.1

Revised Simplex 1S.8 12.5

Liv('rmore Fortran Kernel 10.9

Gas Dvnamics 0.0
Kepler 0.0

IFP 0.0

rithms. As stated in [25], the target architectures

were multiple instruction multiple data (~lL\JD)

shared memory, and blockiag increases perfor

mance in this ease by reducing memory traffic.

The 0.-o-Biock version of the IT decomposition

(the routine SGETF2) is fully parametric but with

a much lower conununication count: 2:\" paramet

ric MATMUL and N parametric translations. Ho'w

ever, the applications are inherently dynamic, be

cause they are sequential in either the rows or the

columns of the basic matrix. A typical communi

cation is

MATMUL (A(J:N, 1:J-1), A(1:J-1, J)),

where J is a sequential index. As .I ranges on·r the

matrix linear size .. no loop unrolling may be con

sidered. On the other hand, although the 2D FFT

seems fully parametric. this is mostly an imple

mentation artefact: The communication patterns

of a FFT are the folding onto the processor set of

the well-known butterf1ies. and are known at eom

pile-timt>. at least if the array argument of the FFT

is static.

S PERFORMANCE EVALUATIONS

The previous results indicate that the static com

munications are frequent enough to dec;erve spe

cific optimizations. such as the static execution

model. However, Amdahl's law requires a com-

4.3

0.0

0.0

0.0

0.0 0.0 <i9.R 49.8

0.0 0.0 0.0 0.0

0.0 0.0 0.0 31.0
0.0 26.? 0.0 6:3.5
0.0 O.R 0.0 100.0

<il.9 .5.'-l: 0.0 100.0

0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0

2;) 0 0.0 0.1 ;)0.1

0.0 0.0 0.0 0.0

22.2 0.0 11.1
_,,..., (

6.2 0.0 6.2 4:3.:
4.:3 0.0 4.:3 2:l.S
0.0 0.0 16.0 16.0
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

parison with the speedup expected from these op

timizations, and the penalty when executing dy

namic cOininunications. This evaluation needs to

take into account details of the hardware and soft

ware underlying the static execution model. The

basic assumptions are the following:

1. The overall architecture is distributed mem

ory .\11.\ID, with P processors.

2. The network is strictly synchronous and

controlled in a lockstep fashion. ln some

sense. this is the single-program multiple

data (SP.YlD) execution m<H.leL but us an as

sumption at the hardware level.

3. For each communication. the data incom

ing from each processor has fixed size.

4. The routing is ofT-line, which means that

the routing switches do not proeess at all.

They only orientate the messages according

to a configuration giyen hy the processors

before sending the whole data set. The con

figuration of the switches for one data set is

called a communication pattern. All the

useful pattern,; (that the net\\'ork can use in

a run) are compiled,

5. The network can realize any permutation in

constant time. This time is the basic unit of

the network operations. and is called an ele

menta~· step in the following.

Among general-purpose commercial parallel ma

chines, none has an interconnection network with

these properties. However.. such a network has

been successfully built for the GF1 L a research

prototype of IB:\1. The iWarp network may be

used in this mannec although the fact that it is

primarily intended for message passing raises the

cost in time of its static use: many research stu(i

ies, especially in the field of optical interconnec

tion networks, consider off-line routed networks

[27]. For an in-depth pre::;entation of such net

works. see [5, 9, 17].

w· e must stress that. as the network cannot do

any on-line routing .. dynamic patterns have to be

emulated by a sequence of static (i.e., compile

time computed) patterns. The size of such a se

quence is the emulation cost of dynamic com

munications.

In the following. we assume that the shape of

the processor set matches exactly the shape of the

arrays. and that each processor owns only one da

tum, which has the prescribed size. The issues of

generating code for cyclically or block-cyclically

distributed arrays have been successfully treated

in the PTAH compiler and are not described here.

The impact of virtualization on performance will

be outlined in a later section.

5.1 Permutations

\V e first consider the simplest parameter penn uta

tions (shifts, cyclic shifts, transpositions) and

study the ease of gather/ scatter operations later.

Parametric Shihs

A one-dimensional parametric shift nun' be de

fined by three parameters: the domain hounds

and the value of the shift. The following example

shows a parametric Fhift where the domain i;-; lim

ited by s and f and the shift value is k.

For all (i = s: f) A. (i) = B (i+k)

To cope with the domain parameters. the corn

mllnication pattern is extended to all proces:'lors

(using a temporary array) and the final store is

conditioned by the membership to the domain.

'Vithout virtualization.. the prt>vious code be

conles:

Forall (i 0: P-1) Temp(i) =B(i+k)

Forall (i 0: P-1)

Where (s <= i and i <= f)

A (i) =Temp (i)

endwhere

endforall

PARALLEL SCIE.\TIFIC PHOGRA\IS 299

l'\ow, parametric shifts depend only on one pa

rameter, the value of the shift. It is possible to

define all the communication patterns corn:

sponding to all the shifts inside the processor set.

and to use k (or k mod Pin the case of virtualiza

tion) to select at run-time the appropriate com

munication pattern. However. each pattern bas a

significant storage cost; for instance O(P log P)

bits for a Benes network, leading to O(P2 log P) for

the P possible shifts (log means log2). A reason

able solution is to use only power of two shifts, and

to emulate the k-shift by the following procedure:

PARAMETRIC_SHIFT(V,a,s,f)

do i=l: P

if ((a. AND. i) = 1)

SHIFT(V, i, s, f)

i = i*2
en do

where Vis the array to be shiftecL P the number of

processors, s and f the limits of the domain of r·. u

is the value of the shift. and !LVD is bitwi,;e. In this

ease,. the actual value of u will he k. or k mod P if

virtualization occurs. Thus. the emulation eosL

which is the number of patterns to be scheduled,

is log P.
For multidimensional shifts like A (i. j) = B(i +

k1 , j + k2) where A and B are matrices. the same

method holds, except that we have to define the

input paran1eter a as a vector. A;.,sui:ning that the

n-dimensional processor geometry (two-dimen

sional in this example) is linearly mapped to a

numbering of the processor set, in row (or column)

major order, the (a 1 , a:2) vector ::;hift ultimately

produces a shift with value pa 1 + a 2 , where p is

the extent of the processor geometry in the first

dimension.

Parametric cydie shifts are split into two shifts.

the modulo part and the nonmodulo part. A

priori. 2 log P steps are needed but as we can

interleave the two patterns. the number is only log

P steps.

Parametric Transpositions

The general form is

Forall (i=sl:fl, j=s2:f2)

A (i, j) =B (j, i)

endforall

The only parameter required is the domain of

the transpo:-;ition. One solution is first to do a

parametric shift of B so that B(sL s2) goes to

300 GACTIER DE LAHACT A.'\D GER\1AL'\

(0, 0). This can be done in log P steps. The result

of this first shift is stored in a temporary array.

Then the transposition of the temporary array

takes only one step. Finally. the result is stored in

A with a parametric shift. The whole operation

takes 2/ogP + 1 steps.

Gather and Scatter Operations

These are the most difficult communications for

the static paradigm. The data referenced are in an

array dynamically computed. The scatter opera

tion sorts an array B according to indice;; L:

Forall i ...

A(L(i))=B(i)

And the gather operation is:

Forall i ...
A(i)=B(L(i))

A parallel gather operation makes sense only if

the mapping of the index set onto itself is a one

to-one operation. Let array K be defined by

K(L(i)) = i: the gather operation may be written as

the scatter operation: A(K(i;) B(i). Building Kat

run-time requires one gather operation. From

this, a gather operation is amenable to two scatter

operations.

Lsually the gather operation i,.; used to pack an

array into a smaller one, whereas the scatter oper

ation expands an array. W"e assume first that the

arravs have the same size and that there i,.; no

conflict while reading or storing elements. \Ve

study later array size differences and conflict,;.

To emulate dynamic routing, the key idea [18]

is to sort the destination addresses of the data to

be routed. The sorting algorithm uses the princi

ple of the odd-even merge sorting network. Figure

1 shows this principle where the list L is to be

sorted: if the message follows the number of the

receiver, the network realizes the scatter operation

communication A (L(i)) = B(i). At each stage of the

sorting network, crossing links symbolize compar

ison of two values and perhaps their exchange.

As the switches do not have any logic, the net

work cannot perform the cornparisons. ,,~e simu

late each stage of the odd-even network hy a

crossing of our network and a comparison inside

the processors. As the links between the stages are

static, it is possible to compile each corresponding

permutation. The number of patterns to schedule

is log P(log P + 1)/2, i.e., O(log2 P).

0®···-1> 3

([)G) 5 1- <D<D

<&>CD_., I 2-00

Qi)@->-o 3 -IV®

0®->-2 4 -()@

<D<D 7 5- ([)G)

(0@->- 6-~®

<D~-4 7 -<D<V
B L Sorting Network A

FIGURE 1 Lsing an odd-even merge sortinl' network

to realize a scatter operation communication.

Consider the case where A is larger than B. In

the example. let L be equal to 3, 5. 1, 0. 4. ? . 6

and assume that the nenvork sorts the values into

the sorted list 0. L 3, 4, 5. 6, ? . but the values are

not all located at their destinations. However,

sending them to their destination is a monotone

routing problem. :Vlonotone means that the

source-to-destination map is a monotone func

tion. We can realize monotone routing using the

greedy routing algorithm on the butterfly network.

Monotone routing of a sorted list on hypercubie

networks is conflict free [181. Figure 2 presents

the example of monotone routing in the butterfly

network. On stage k of the butterfly. the network

transmits the data according to bit k of the desti

nation address.

msb__... lsb

000

001 <D--1

011

100

101

110

111 ®-7

o-
FIGURE 2 :\1onotone routing on a Butterflv network.

Each stage of the butterfly is emulated by one

permutation in our network and by the test of bit k

(for stage k) by the processors. The number of

permutations scheduled is O(log P). As monotone

routing is conflict free. the routing process re

mains very simple for the processing elements (no

buffering or priority managing).

Storing conflicts are prohibited for a scatter op

eration. but reading conflicts are possible for a

gather operation. In this case. the communica

tions must be partially sequentialized. First, the

odd-even sorting network sorts the destinations

that can be realized without conflict. The sorted

list shows repetitions at contiguous stages. These

repetitions lead to conflicts while executing the

monotone routing. If two idemical references are

located on the Rame proceRRor. it stores one of

them in a temporary buffer and carriPs on with the

routing. then a second Rtage is started for the buf

fered messages. After that. a second scatter oper

ation takes place. This proeed.ure is expensh·e:

however, the rnost complex case is where a multi

east is hidden in the gather operation. and thus

will also be expensive with any routing medm

nism.

5.2 Broadcasts

Broadcasts and multibroadcasts have two possi

ble origins: one-to-many gather operations and

the SPREAD intrinsic. Assume the network is a

Bend network [18". Benes networks are rear

rangeable: Any permutation may be routed with

out conflict. Hence. an elementary stPp is one net

work crosRing in this particular case. However. the

results may be extended, up to a constant factor.

to any network emulating the well-known buttedly

network in a finite number of steps._ becauRe a

Bend network mav be considered as two back-to

hack butterllv networks [13]. In particular,

Omega and Inverse Omega networks are topologi

cally equivalent to the butterfly network.

Consider simple broadcasts; any static broad

east ean be completed in one step and any para

metric broadcast in log P + 1 steps. If the broad

east source is a program scalar, the broadcast

costs nothing, because all processors own the data

(by parallel execution of the scalar code or any

other way). Thus, we need only consider the case

of broadcasting an element of a parallel array.

Any input of the Benes network is the root of a P

leaf complete binary tree. Thus, the static broad

cast costs one step.

A parametric broadcast cannot use the same

PARALLEL SCIE:'\TIFIC PROGH:\MS 301

technique. Even though the broadcastintr tree

does exisL the exact setting of the switdws is not

known at compile-time because the position of the

root is a program variable. The simplest means to

perform a parametric broadcast is to shift the

source to a fixed position (e.g .. processor 0) and to

use a static broadcast. Shifting data is a paramt't

ric point-to-point communication, and has the

same cost as a parametric translation.

Significant results have been obtained about

the implementation of the most general multi

broadcast patterns on butterfly and otlwr hyper

cubic networks [18]. However. their implemenla

tion in the static execution model incurs extremelv

high costs because they invoke irregular ;;eg

mented prefix operations. Thus. the problern of

compiling multibroadcast patterns mu"t he eare

fullv stated.

Consider the following legal HPF code:

Forall I

A(I) = B(L(I))

\Vith L non one-to-one. there are only two wayR

to compile such patterns: serializing the FORALl.,

loop,, as shown previously. or using Leighton's

general algorithm [18'. HoweveL rheo;e gather

based multibroadeasts are extremelv rare in our

benchmarks. The reason is perhaps that a clever

user will avoid that programming ,;tyle: Recogniz

ing the hidden broadcast may be quite difficult for

a compiler, whatever the execution model. .\Iany

architectures do offer special spreading or scan

ning hardware. and optimal exploitation of these

features requires the broadcast to be exprt>ssed as

a SPREAD. if possible. Thus. we consider the im

plementation of a SPREAD intrinsic.

l~sing the SPREAD intrinsic.. a ;;tatie

multispread can be completed in one step ..

whereas if parametric, it requin's 2 log P + 1

steps.

We only outline the proof. To avoid a lot of

subscripts, we consider the generic example

B = SPRE4D (A(k, a: b), DIM= L NCOPIES ==
n). The result is a two-dimensional arra\' B, with

B(i,j) A(k,j) for all i andj, 1 s i nand as

j s b.

Consider the following data distribution: Each

processor set has a virtual bidimensional p X q

geometry, with p and q integer powers of 2. p.q =
P and log p = r. Each processor has two coordi

nates (s 1, s2) with 0 s s 1 s p - 1 and 0 s s2 s q -

1 and each reference A (i,j) is located on processor

number (i- 1,j- 1). When a processor is consid-

302 G\CTIEH DE L\IIALT /\:\D GER\L\L\

A(l,l) 0

A(l,2) 1

A(2,1) 2

A(2,2) 3

A(3, 1) 4

A(3,2) 5

A(4,1) 6

FIGUHE 3 SPREAD (A(3. 1: 2), 1, 4l. Ea('h dark

node forward~ its input to its two outpuh: dml lirw~

show tlw path,.;.

ered as a netw·ork input. its identification mlmher

is p.s 1 + s2 • \\'hen k is a constarlt. the paradif!

rnatic :-;pread is static. The principle of tht~ mu!ti

broadca,.;t is to tbP the IJLmerflv nPtwork when:'

staf!es 0 to r - 1 are broad('astinp: and staw·s r to

lop: P realize a direct tnmsmis:-;ion of their valtws.

Fip:ure :3 gives an example. with p = 4 and q = 2.

\\'ith Dl\l equal to 2. we would han· to corl:-iider

the n:'verse butterfly. \lore p:eneral dimensions

come under the same analysi:-;. a" it depends <Hlly

on the divi:-;ion of a proees:-;or addn:'ss into lop: p

hits for the fixed dimensions plus log q bit:-; for tlw

parallel dimension,.;.

If the dimension of an array is not a power of 2.

we embed the array in an ana y of powt~r of 2 size.

execute the multispread on the temporary array

and conditionally store the result according to dw

real size.

As the Benes network includes two back-to

hack butterfh networks. it can emulate this action

in one su·p so that the muhibroadcast using the

SPREAD intrinsic takf's one ,;tep.

In the parametric ca:-;e. the log P factor couw:-;

from a parametric translation. \Vith yector - k

call that we compile SPREAD (A(k. a: h DI\1= 1.

:\COPIES+ n J::. Thu:-;. row k of A will he copie(l

onto the first row of B and a static spread can take

place in one stt>p. Finally .. \Ye haYe to nwve the

rt>su!t to the correct position with another para

metric tran:-;lation requiring log P ;;teps. :\;; a re

mark. if DI\l is a variable, we can compile the

static spread for each dimen:sion because the

number of dimen,.;ion,; is f!enerally low. \loreon'r..

if the domain of the rnultispread is nuiahle. af!ain

a global multispread can lw pt>rformed on a tem

porary array and conditionally store the data ac

cording to the real domain.

These figures may seem quite hif!h: however.

all the available parallelism is t:xploited. \lore

over. for static multihroadcasts, the solution is op

timal in the sense that there is only one stt>p. This

contrasts for instance with the C.\[-;) broadca:-;tinl!

capabilities. which are limited to one processor at

a time.

5.3 Multireduction

The (multi- ;reduction differs from tiH" (multi- .!dif

fusion in the sense that the network ha.s to conl

bine Yalues. Combining \·alues means that the

network switches can forward a uniquP n:':-;uh

cmnputcd frorn it:; inpws by an a:-;sociatiYe opera

tor (sum, max). w·e can realize the static (multi

reduction by combining butterfly with our net

work: Each stage of the butterfly is exeeuted b~· a

crossinf! of our network and the combininp: opera

tion is realized on the processors. Thus. the num

ber of routinf! steps is equal to the number of

fltaf!es in the butterfly. i.e .. lof! P.

In the ease of parametric (multi- ·:reduction.

again we process a parm11etric ,;hift to move ti'w

data to a fixed position (for instance hep:inninl! at

procesflor Oj: then we apply the :-ita tic (multi-, rt>

duetion with a conditional store and proces,.; a

parametric shift to mm·e the result to the correct

position. Thus. it take:-; :3 lop: P steps.

5.4 Special lntrinsics and Functions

We have already shown that tlw FFT with a ,.;tatie

arp:ument may he transformed into a fully "tatic

routine. Systolic alwJrithms provide fully :-;tatic im

plementations of the linear alf.:ebra intrinsics. For

instance .. the followillf! alf!orithm rt>alize"' MAT

MUL (MATRIX-A, MATRIX-B) :

C matrix conditioning
For all (i 1: n)

CSHIFT(MATRIX-A, DIM=2, i-1)

For all (i = 1: m)

CSHIFT(AMTRIX-B, DIM=1, i-1)

R=O
C iterative computation

do k 1, n

R R + MATRIX-A * MATRIX-B

CSHIFT(MATRIX-A, DIM=2, 1)

CSHIFT(MATRIX-B, DIM=1, 1)

end do
C the *product is a pointwise product

This alf!orithm was first designed for rt-'Wions

that are similar to our objective. i.e .. to f!et the best

performance from a f!rid network and to avoid

general communications. The grid network may.

in turn. be emulated under the general assump

tions stated at the lwginning of this section. with

one step for each of the grid ::\E\\-S (~orth East

\\·est South: directions.

5.5 Comparison

Comparisons between theoretical studies and ac

tual machines are both presumptuous and unre

alistic. Thus. the following results are not in

tended to compare what would be the execution of

any program on the C\1-.) and on a possible static

machine. \\-e consider the figures from the G\1-.")

network only as a testbed. i.e .. giving the orders of

magnitude for the performance of a recent dy

narnic routing network.

Two pararneter,.; charactcrizP the rwrformance

of a network: Let r111 be the maximal rwtwork

bandwidth per node and s the time to transmit a

zero-sized rnesSaf!e. To an approximation. r111 de

pends on the network bandwidth and on the

source and destination memory bandwidth. \\ ith

pipelincd cornn1unications. the latency of a data

transfer is

T = s + Llr111 • .1 .•

where Lis the data transfer size.\\ ith careful op

timization. in the infinite data-size limit. tlw per

formance will be limited only by the proce,;sor· s

perfornwnce if the conununication -to-computa

tion ratio i:-; lower than 1. and by the asymptotic

network perforrnance (r
11

,) if this ratio is larger than

1. In fact. assuming equal bandwidth perfor

mance .. being better on .. little .. problems is the

only advantaf!e that one model has over the other.

\\c consider two characteristic figures for this

comparison: T and L 1u. the size for which the

network reaches half of it:-; maximal bandwidth.

L 1; 2 is the communication analog of the so-called

rz 112 for vector cornputations [12:. T n1easure,; the

performance for program:-; where significant data

transfer pipelininer is not possible. The reason rna~

be a very low virtualization ratio or the peculiar

characteristics of the algorithm. For instance" a

blocked algorithm with block data distribution will

provide few comrnunications: if the communica

tions are not overlapped with the computations.

r-t will give the actual performance in most prac

tical cases. On the other hand. L 1u gives one esti

mate of what would be an effective size for a prob-

P.\RALLEL ::-ICIE'..:TIFIC PROGR.\:\1::-1 303

lem if the communications dominatP the

computations. but can be arranged to exploit fully

the network bandwidth in the asymptotic limit.

.\1any different values of the C\1-3 · s perfor

mance have been reported. \\·e consider the ex

perimental values in [:2:31 with the vendor mes

sage-passing library C.\1.\ID 1.:3.1. and the values

associated with the Active ::\Iessage model 18]. It

should be noted that C.\1::\lD 1.:3.1 i,.; the lowest

level f!eneral-purpose communication library and

may be considered as assembly-le\el program

filing. The results are based on permutation com

munications.

For the static network. we wanted to asse,.;,.; two

speedups separately. The first comes from the

static execution model. a,.;stuning off-the-shelf

technolOf..'Y for the network design. The second

comes from the fact that a network intended for

this model can be desif!ned with a more aggressiw

technology than a message-passing network. be

cause its functionalities are simpler. Hence. \\T

consider two cases: equal bandwidth perforrnance

and the network we are currently designing l-1:

(fast network in the following). For the equal

bandwidth network. we han~ to assess raw hard

ware latency for a ;) 12-processor machine. for

which the figures of the C::\1-.") cannot he used be

cause they involve the routing delay. \\ e consider

a 600 ns latency: this llf!Ure '.\·as reached by the

GF11 using 1983 technology [1":'1. Table 6 shows

the estimates for the translations patterns using

formula 1. For the C::\1-3. the results do not de

pend on the distinction static or parametric. For

the static network. we use the results of Section

3.1: thus. the parametric value forTi,; nirw times

its value for the static case (u:oing log 312 = 9):

thi:-; con1es frorn the fact that the consecuti\T

translations must proceed in a lockstep fashion.

Both implementations of the static model outper

form the C::\1-3 network with the vendor rnessage

passiner library by one to two order,; of magni

tude:-;. \\-ith active messages. both static networks

are better for the static translations. but onh· the

fast network remains better for the parametric

ones.

As no data conr:erning broadcasts and rPduc

tions were available to the authors. we had to limit

our numerical comparisons to the tran:-;lation

case. l\'evertheless. we must ,;tress the following:

for the CM-3. hroadca~ts and reduction,.; use the

control network: as it i:-; a usual binary tree [20 j.
no muhioperations are allowed. Thu,;. ewn if

multioperations incur high penalization in our

modeL this may be lower than pure sequentializa

tion.

304 GAuTIER DE LAIIACT A:'\D GER:VlA[\

Table 6. Performance for Static and Dynamic Routing

C\1-3 Static

c:mm Actin' \Ies,;af!C>' Equal Bandwidth Fast Network

I\ctwork rm (MByte/s) 10

parameters s (p,s) 97

Static T 93

translation L 1/2 (Byte) 970

Parametric T 93

translation L 1/2 970

6 CONCLUSION

The key idea of the static model is to adapt the

IUSC principle to communications. i.e ... to be op

timal on the most frequent cases and correct on

the others. Both the experimental results and the

gross performance evaluations developed in this

article show that the static model provides a sig

nificant speedup over dynamic routing. However.

these figures isolate the network behavior.

whereas the static model has consequences in

other parts of a parallel architecture. With syn

chronous communications. all the processors

have to be synchronized at eaeh network cycle,

'fhis synchronization may he realized either by

synchronization barriers or by a dedicated proces

sor architecture. Synchronization barriers are the

simplest solution, but may create overhead, be

cause they preclude efficient network pipelining.

For the second solution, the supersealar design

and complex memory hiPrarchy of n~cent micro

processor architectures create many pipeline haz

ards. As adjusting the instruction threads by the

compiler may be impossible, a VLIW -style archi

tecture is recommended,

More generally, the current situation in parallel

architectures is unbalanced. :Vlany detailed stud

ies arc available about the performance of the

processor's different parts (functional units.

caches. . , .). However, experimental data about

communications are sparse. and, except in a very

few cases, ntainly cnncPrn simple and synthetic

situations. Our future research in this area will

gather other experimental data about applica

tions: in particular, the development of HPF to

provide richer semantics than previous paralld

Fortran and better communication statistics. In

addition. we want to investigate the possible soft

ening of the static modeL e.g., using synchronous

on-line routing in multistage networks would allow

the direct execution of a set of dvnan1ie communi

cations.

10

:3.:3
10

0.6

1.4

6

128

0.3

0.-t

.39

:3.()

39

't. 1

:3:3

4.1 12.6

6 :3:3

ACKNOWLEDGMENTS

The authors thank F. Cappello. F. Delaplace. and

D. Etiemble for many fruitful discussions. The de

tailed comments of the anonnnous referees were

of great help in making this article more readable.

REFERENCES

[1) D. Bailev. et aL, ·'_'\AS parallel benchmark,.;

results." in Supercomputing 92. :'\ew York: IEEE

Computer Soeiety Press. 1992. pp. :386-:3~l:3.

[2] .\1. Berry. G. Cybenko, and .1. Larson. '·Scientiiic

benchmark characterizations.·· Parallel Com

pvt.. Vol. 17. pp. 117:3-1194. 1991.

A. Bik and H. WijksofL "Compilation technique;;

for sparse matrix computations.·· in Pnw. of lu

lemational C'onference on Supercomputing.

199:3. p. 4HJ.

:4] F. Cappello. et aL ·'Balanced diMributed mem

ory parallel computers:· in :!2nd /ntcrrwtiorwl

Conference on Parallel Proce8sing. 199:.~.

F. Cappello and C. Germain. "Towards hif!h

communication pr'rformanct.' throuf!h compiled

communications on a circuit-switclwd intercon

nection network.' • in 1st IEJ~'E -~1 mposium on

lfigh Performance Computer Architef·ture. 1993.

p. 44.

[6] H. Cyphccr. A. 1 Io. S. Konstantinidou. and P.

.\1essina. ·• Architectural requirements of parallel

scientific applications with explicit communica

tion." in 20th International Symposium on Com

puler Architecture. 199:3. p. 2.

E. DahL "':\lappinp: and compiled communication

on the Connection \lachine system.·· in :'ith Dis

tributed .\Icmory Computing Cor~ference. 1990,

~31 V. Eicken. et aL '·Active rnessa,ges: A mechanism

for integrated communication and computation.··

in 19th lntemalional !::J:rmpo:;ium on Computer

Architecture, 1992. p. 236.

[9] A. Feldmann. T. M. Stricker. and T. E. Warfel.

·'Supporting sets of arbitrarY connections on

iW arp through communication context

switches .. , in 5th ACM Symposium on Algorithms

and Architectures. 1993, p. 203.

[10] C. Germain. F. Delaplace, and R. Carlier. "·A

static execution model for data parallelism." Par

allel Processing Lett .. vol. 4. pp. 367-3?8. Dec.

1994.

[11] R. W. Hockncy and C. R. Jesshope. Parallel

Computers 2. lOP, 1988.

[12] R. Ilockney. "·Performance parameters and

benchmarking of supercomputers. Parallel

Comput., vol. 1?. pp. 1111-11:30. 1991.

[13] !."TEL Scientific Computers. Paragon XP/S

Product Overview. Intel. 1991.

[14] F. lrigoin. eta!.. "·A linear algebra framework for

static HPF code distribution."' in -fth Interna

tional Workshop on Compilers for Parallel Com

pulers. 1993. p. 11 ?.

[15] K. Iwama. E. .\liyano, and Y. Kambayashi.

·"Routing problems on the mesh of buses.·· in 8rd

ISAAC. 1992, p. 155.

[16] C. Koelbel, ·"Compile time generation of regular

communication patterns.·· in Supercomuting '91.

1991.p.101.

[17] M. Kumar. "·Unique design concept,; in GF11

and their impact on performance ... IBJ;f]. Res.

Deu .. vol. 36. pp. 990-999. 1992.

[18j F. Leighton. Parallel Algorithms and Architec

tures . .\Iorgan Kaufmann. 1992.

[19] C. Leiserson. "'Fat-trees: Uniw·rsal networks for

hardware-efficient supercomputing. IEEf..'

Trans. Comput .. vol. 34. pp. 892-901. Oct.

1985.

[20] C. E. Leiserson. eta!.. .. The network architecture

PARALLEL SCIE."TIFIC PROGRA.\IS 305

of the Connection :VIa chine C.\1-5 ... in SPAA '92.

1992. p. 2?2.

[21] J. Lenfant. ·"A versatile mechanism to move data

in an array processor. .. IA'L'L' Trans. Comput ..

vol. 34. pp. 506-522. June 1985.

[22] G. Lev, :\. Pippenger. and L. \'aliant. ··A fast

parallel algorithm for routing in permutation net

works." IEEE Trans. Comput .. mi. 30. pp. 93-

100. Feb. 1981.

[231 M. Lin. et a!.. "·Performance evaluations of the

C:Vf-.5 interconnection network ... in CO.HPCO.Y

98. 1\ew York: IEEE Computer SociPty Press.

1993. pp. 189-198.

[24] 0. Lubeck and .\f. Simmons. "The performance

realities of massively parallel processors: A case

study," in Supercomputing 92. :\ew York: IEEE

Computer Society Press. 1992. pp. 551-560.

[251 A. G. Mohamed. eta!.. .. Applications hf'llchmark

set for Fortran-D and high performance fortran ...

1\ortheast Parallel Architecture Center. Svracuse

University. Tech. Rep. TR-SCCS 32?.

[26] J. K. Prentice. "'A performance benchmark studv

of Fortran 90 compilers ... Fortran] .. vol. ::>.
1993.

[2?1 C. Qiao and R. Melhem ... Reconfiguration with

time-division multiplexed .\H."s for multiproces

sor communications." IEEE Trans. Parallel Dis

trib. Systems. vol. 5, pp .. 3:3?-3."i2. 199-t.

[28] C. W. Tseng, .. An optimizing Fortran D compiler

for :VliMD distributed memory machines ... PhD

Thesis. Rice Cniversitv. 1993.

[29] M. Wolfe. "Tiny: A loop restructuring resParch

tool. .. Oregon GraduatP Institute of Science and

Technology. Tech. Rt>p. 1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

