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ABSTRACT 

On most massively parallel architectures, the actual communication performance re

mains much less than the hardware capabilities. The main reason for this difference lies 

in the dynamic routing, because the software mechanisms for managing the routing 

represent a large overhead. This article presents experimental studies on benchmark 

programs concerning scientific computing; the results show that most communication 

patterns in application programs are predictable at compile-time. An execution model 

is proposed that utilizes this knowledge such that predictable communications are di

rectly compiled and dynamic communications are emulated by scheduling an appropri

ate set of compiled communications. The performance of the model is evaluated, show

ing that performance is better in static cases and gracefully degrades with the growing 

complexity and dynamic aspect of the communication patterns. © 1995 by John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

Parallel architectures suffer from a recurrent 

problem. which is the large gap between peak and 

actual performance. Despite the progress in hard

ware and software, most recent experimental 

studies [ 1. 6, 241 show that the actual perfor

mance usually remains below the peak. One major 

cause of this sobering fact is the data transfer and 

especially the interconnection network. For in

stance, recent studies [ 6, 11] show that the best 

performance figures are achieved by programs 
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that have the lowest remote data access to float

ing-point operations ratio. 

Although communication seems to be the bot

tleneck for parallel architectures. not much is 

known about the characteristics of the communi

cations used by parallel programs. The first objec

tive of this article is to give some experimental 

results about the statistical distribution of the 

communication patterns. The communications 

that are known at compile-time will be called 

static and those that can only be determined at 

run-time will be called dynamic. To obtain satis

factory statistics, a significant benchmark set has 

been studied: this set amounts to around 25.000 

lines of code written in various dialects of parallel 

Fortran. The set is composed of two parts: The 

first is a set of scientific parallel codes, partially 

handwritten and partially generated by automatic 

parallelization; the second is a subset of library 
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routines from LAPACK. The dynamic (run-time) 

occurrences of both static and dynamic communi

cation schemes have been gathered. The main 

result is that static communications are nearly ex

clusive in parallelized code,; and dominant in uo;er 

programs, whereas the situation is much more 

complex in library routines. 

\Ve are interested in this taxonomy (static/ dy

namic) not for classification purposes but because 

a considerable speedup in parallel computations 

can be achieved by a careful exploitation of the 

compile-time information about static communi

cations. In fact.. a parallel execution model where 

the communications are computed at compile

time can achieve the hardware's raw performance 

for the moo;t frequently used static communication 

schemes. This contrasts with the actual communi

cation perforn1ance of most parallel architecture,;. 

which is dominated by the communication proto

col overhead. However. the m·erall speedup must 

take into account the contribution,.; of all com

munication types .. both static and dynamic (Am

dahl's law). The task is then to assess the penalty 

of compiling the dynamic communications. This 

is verT difficult. hecausP manv factor,; arP in-. . 
volved .. and it is almost impossible to quantify 

thPir respective impact,; and interactions. ]\ever

theless. meaningful results can be derived by eval

uating. for broad classPs of communication 

scheme,;. the speedup achievPd on each elm;,.; by 

the static execution model. As a testbed. WP com

part' the C~l-:J communication figures with tlw 

expected performance of the static model. Th(• 

speedup is significant. even in the dynamic ca,.;e. 

The rest of this article i,c.; organizPd as follows. 

The first ,c.;ection discu>i>it'S dynamic routing. the 

basic conununication nwchanisn1 of almost all 

parallel architectures. and the background of 

compiled communications. The second section 

presents a classification of cornrnunication 

schemes. The third section is devoted to the ex

periments. methodolo~;y .. and results. Finally. we 

assess the cost of emulating dynamic communica

tions in the static model and present the expected 

perforn1ance. 

2 BACKGROUND 

2.1 Dynamic Routing 

Almost all massively parallel architectures use 

asynchronous dynamic routing, which mean,; that 

the routing circuits in each network node deter

mine the path of each message at run-time. This 

requires extra hardware (the routing circuits) and 

network bandwidth (the address header carried bv 

each message). The routing is asynchronous in the 

sense that the latency of the messages depends on 

the network load, thus is unknown: a processor/ 

network interface is necessary to synchronize the 

message and the computing threads. The over

head of this interface is large: For instance .. it costs 

more than 90% of the latency of the Paragon ma

chine [13], and it is from 3 to 90 J..tS for the CYI-5 

[20, 23]. 

One could expect that, for large data transfers. 

this overhead would ultimately vanish. In fact. a 

significant part of the effort in practical parallel 

programming is careful data organization in order 

to pack the data such that the transfers are of the 

appropriate size; a lot of research is devoted to 

sophisticated compilation techniques. such as 

message vectorization. with the same goal [28]. 

However.. the startup penalty is so high that Pffec

tive use of the network is extremelY difficult. For 

instance .. to use half of the peak bandwidth of the 

network. the message size mu,;t be more than 1 

kilobvte for thP G\f -5: to reach full usc of the 

bandwidth. the messagp size must be more than 8 

kilobyte [ 61. 

Yloreover. parallel sciPntific program,.; arP 

highly synchronous. becau:oe communications 

come from parallel array statPments: in general. 

consecutive cornmunications must proceed only 

in lockstep fashion. Thus, the major opportunity 

to enlarge the message size comes from virlualiza

tion. ln a data-parallellanguage. the parallelism is 

not limited: For instance. the FORALL instruc

tion has the semantics of evaluating first the 

righthand side of an assignment. then performing 

the assignment. However. the available parallel

ism on a particular computer is clearly limited by 

the number of proceo;sors. To take into account 

the limitation of the actual parallel computer.. the 

unlimited parallelism of the source code is folded 

on the limited parallel computer by automa

tic or user-defined distributions such as cvclic. 

block, or block-cyclic. This is virtualization. 

For instance, consider the parallel assignment 

Forall (i = 0: 14) a(i) = b(i + 1) on a four-proces

sor machine. Each processor has to iterate se

quentially over its own piece of arrays a and b to 

exchange data and compute. In particular.. each 

processor sends to another one from three to four 

array elements; sending one piece of data by mes

sage is highly inefficient: aggregating data to be 

sent to one processor in one message is known as 

message vectorization [ 16]. However. message 

vectorization is limited by the virtualization ratio 

(roughly speaking, the ratio between the size of a 



FORALL index set and the machine size). A high 

startup penalty limits the efficiency of massively 

parallel architecturt>s on huge problt>ms. This 

overhead can be greatly reduced if analyzing the 

communications at compile-time provides some 

knowledge of the communication behavior at run

time. The hardware design and software tools that 

provide efficient means to use this knowledge have 

been developed in the PT AH project. They are 

beyond the scope of this article: the architecture is 

described in [ 4] and the principles of the compiler 

in [10]. 

The results presented in this article indicate 

that. at least in scientific programs. a large part of 

the communications can be determined from 

analvsis of source code. :VIoreoyer. almost all other 

programs proyide information that can be used to 

limit the communications overhead. ln fact. the 

idea that a lot of communication patterns in scien

tific programs can be determined at compile-time 

is the cornerstone of vectorizers and automatic 

parallelizers. In the following sections .. we con

sider a number of parallel programs, and quantify 

this idea. 

2.2 Compiled Communications 

In the static execution modeL all the parameters 

of the communications are computed at compile

time. This model has been exemplified in the IB:VI 

GF11 [171. in the iWarp ConSet [2.5 ]. and by the 

Communication Compiler of TMC CM-2 [7]. The 

model assumes an off-line routed network. Off

line means that the message paths are computed 

in the back-end compiler, by a "communication 

generator" that is an equivalent for communica

tion of the code generator for computation. All the 

physical parameters of a communication are then 

computed at compile-time. At run-time. the 

switch settings are simply scheduled under pro

gram control. This is opposite to the on-line rout

ing model, where the message paths are deter

mined at run-time, the network routing circuits 

acting on the addresses as an interpreter. The 

compilation problem is to embed the communica

tion graph into the physical network. 

Off-line routing improves the network through

put, by removing the overhead of address headers 

encapsulated within each message. As no more 

routing decisions have to be made, the latency can 

ultimately be reduced to the hardware propaga

tion delay. Finally, shifting the routing task from 

run-time to compile-time allows more complex 

routing algorithms, resulting in better resource 

(links and buffers) utilization. Theoretical studies 
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[15 .. 21.. 22] show that. for somP interconnection 

networks. off-line routing is feasible in the sen,.;e 

that the off-line routing algorithm has acceptable 

complexity. and may be asymptotically optimal 

[19]. The practical experiment,.; on the C\I-2 [7! 

show that a one order of magnitude ;-;peedup can 

be achieved by off-line routing on the hypercube. 

without anv additional hardware: the simulated 

annealing algorithm provides global optimization 

of the link allocation. 

Off-line routing suppo,.;es that the communica

tion generator may be fed with the communication 

graph. which has been constructed by the com

piler. This issue is beyond the scope of thi:-; article: 

however. recent research in the message-passing 

framework [14, 28], and in the static framework 

[101 provides techniques to tackle this issue. 

:Moreover, these techniques remove the potential 

drawback of the first experiments on the C\1-2. 

which was the long compilation time: As a formal 

description of the graph can he exhibited, the 

complexity of the off-line routing process can be 

simplified in many cases. 

3 COMMUNICATION PATTERNS 

As our benchmarks are written in data parallel 

Fortran (C:Vl Fortran, Fortran 90. high-rwrfor

mance Fortran [HPFJ), the following discussion 

uses an HPF syntax. However.. this only exempli

fies the main data-parallel communication fea

ture: The communications are implicit. derived 

from operations on parallel data structures (arrays 

in Fortran). ln HPF, parallel data operations 

come from, either FORALL loops or array nota

tions, or Intrinsics that summarize multiple paral

lel data operations. As each of these structures 

involves parallel array references. our taxonomy 

begins with a classification of parallel references. 

3.1 Parallel References 

A typical parallel construct is a nest of FORALL 

loops as illustrated next: 

Forall (i 1 = a1 b1 

For all ( iz a2 

Forall Un an bn Cn) 

A(e1 , e 2 , ... , en] = F(B[f1, f2, 

.. · , fnJ, · · ·) 

endforall 

endforall 

endforall 
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where ak and bk may depend on it for l < k. For 

shorL it can be summarized in the following 

pseudosyntax: 

Forall I in :5' 

A[f(I)] = F(B[g(I)], ... ) 

endforall 

where I is the vector of parallel indices (i1 , 

i2, .... in)· :5' is the convex polyhedron (see ex

ample below) defining the loop bounds, A and B 

are two arrays, and finally. A l/(1)] and B[g(IJJ are 

two parallel reference:,;. 

A typical parallel reference is a reference to an 

m-dimensional arrav A. in a ne:ot of n FORALL 

loops: A[e1. e2, . .. , en,L where e, are functions 

of the FORALL subscripts (another syntax is the 

parallel array reference A[u 1 : b 1 : c 1 •...• an,: 

bm : c 111 ], which can be expressed with a FORALL 

syntax). Analytical analysis can be performed at 

compile-time only if the e1 are affine in the 

FORALL subscripts, with integer coefficients. i.e .. 

n 

ei = 2.a1JIJ + b1 . 
j~l 

An affine reference can be written A [JJI + C]. 
where JJ is a m X n integer matrix and L' a vector 

in Z"'. ~·e give an example from Jacobi's method 

for the Laplace solver: 

Forall (i=2:9,j=2:9) 

A (i, j) =(A (i-1, j) +A (i+l, j) +A (i, j-1) 

+A(i,j+l)) *0. 25 

endforall 

Here. there are five parallel reference:,; to A ( 1 store 

and 4 fetches): the first one ~4(i - 1. j)) may be 

expressed with: 

:'v/=(6 ~).c 

:5'= 

Affine references where J/ and l · onlv include 

numerical constants are called static and non

static affine references are called parametric. For 

example the parallel reference A(i- 1.j) i:o static. 

whereas a reference such as A (i + k. j) will be 

parametric if k is a variable which is not a 

FORALL index, as in the following assignment: 

do k ... 

Forall i 

.. . =A(i + k) 

This scheme is dominant in LAPACK routine:,;. 

ln fact. a finer classification would be possible: 

If the vector C is a scalar variable .. the reference 

can occasionally be determined at compile-time: 

for instance, if U linearly depends on sequential 

loop subscripts, as in the previous example. How

ever. using this information in the static execution 

model would require the unrolling of the sequen

tial loop to compute the communication patterns. 

As the sequential index set is almost always too 

large to allow this optimization. there is no point in 

using a finer classification. 

In our benchmarks. nonlinear references were 

represented by gather and scatter operations. 

where the array subscripts are themselves arrav 

elements: the generic form being A [ L l /]]. 

3.2 FORALL Communications 

In the typical parallel instruction 

Forall I in :5' 

A[f(I)) = B[g(I)] + ... 
endforall 

the assignment creates corr1n1unication patterns 

where. for each/, the source is the processor own

ing the reference B [g(I) ]. and the destination is the 

processor owning the reference A [f(l)]. The pat

terns depend on the computation location rule 

and on the mapping. We consider the Owner 

Computes Rule, which is used by most existing 

parallel compilers and assumed by many re

searchers in this field: it means that the comput

ing processor is the destination processor. The 

mapping between arrays is created by the ALIGN 

directives. If an array is compressed along one di

mension, the corresponding FORALL subscript 

must not be considered for classification because 

it is not a parallel dimension. For instance, if A is 

of dimension 2 and compressed along its second 

dimension. then A (i. j) is located on the same pro

cessor as A(i, 0). \Vith these assumptions, a com

munication occurs for each array in the righthand 

side of the parallel assignmenL if combining the 

mapping and the Owner Computes Rule does not 

result in an intraprocessor assignment. The com

munication is labeled by the worse case of the two 



references, e.g .. left and right member affine static 

will re,.;ult in a static communication. but a one

member nonaffine will result in a nonaffine com

munication and so on. 

A typical usE' of thE' FORALL notation is to dt'

scribt' partial permutations of thE' index ,;et. Al

though the FORA.LL ,;yntax does not fJrt'cludt' 

more complex schenws. dficient programmin;r 

would encapsulate such patterns in intrin,.;ic,; to 

take advanta;re of dw global communication ft'a

tures of the target architecturP. 

3.3 Intrinsic Communications 

In data-parallel Fortran lan;ruages. complex data 

transfers can be described by special functions 

that are part of intrinsics. The most important 

communication intrin,;ics implement multireduc

tion (multiple many-to-one communication). 

multibroadcast (multiple one-to-many). special 

permutations. and gather/ scatter operations. 

The reduction intrinsics art' SUM. ALL. ANY. 

MAXVAL .. MINVAL. MAXLOC. MINLOC. Tlwy com

pute tlw result of applying an associati\e operator 

to all the clements of their array argument. ThP 

respectiYe operators are sum. logical and. logical 

or. max. min: :\IAXLOC !resp. \11'\LOC': returns 

the location of thP maximal lresp. minimal! yaJup. 

The reduction intrin,.;ics have three panuneters: 

for instance. SUM (ARRAY, DIM, MASK) adds the 

elements of ARRAY along the dimen,.;ion DIM. se

lecting the PlPmPnts dPscrilwd by MASK. \\. e con

sidt'red that a reduction intrinsic is static as soon 

as the ARRAY parameter is a static reference and 

the DIM parmneter is a constant: Tlw unit ele

ment of the operator \e.g .. 0 or 0.0 for a SUM. or 

IEEE -x for a floating-point MINVAL; can replace 

the masked rPferences. and this local te,.;t can be 

done at run-tirne. 

The intrinsic SPREAD allow,; hroadca,.;ts and 

segmented broadcasts: An n-dinwnsional array is 

replicated to create an 11 + 1 dimen,;ional one. 

The syntax is SPREAD (SOURCE, DIM, NCOP

IES) : to cornpute tht> conHnunication schenw at 

compile-time. the SOURCE parameter mu,;t be a 

static reference and DIM n1ust lw a constant :in 

this case. the pattern is considered as static). In 

the following. we call broadcast a one-to-many 

pattern, multibroadcast a segmented broadcast. 

reduction a reduction that result,; in a :-;calar. and 

multirt'duction a segmented reduction. 

Examples of special permutations intrinsics are 

the cvclic and nonc,clic SHIFTS and TRANSPOSE. . . 
All these intrinsic;; :-;ummarize a FORALL per-

P \KALLEL SUE'\TIFIC PHOCKA\IS 295 

mutation and require the same analy,;is. \lore 

complex intrinsics. such as MATMUL and DOT

PRODUCT. are intended to allow an optimal imple

mentation of basic lirwar algebra opPrators. These 

intrinsics will be considered as static if their pa

rarneters are static or scalar constants. 

4 EXPERIMENTAL RESULTS 

4.1 The Benchmark Set 

Three benchmark sets haYe !wen analyzPd (TahiP 

1 ). The first. called :\PAC in the following. is the 

applications benchmark SE't for Fortran D and 

HPF of the :\orthea,;t Parallel Architecture Center 

at Syracu,;e L;nin~rsity [:2.) j. It includp,; <'omplPte 

applications and matlwmatical packagps for 

dense linear al;rebra. Some applications hm P t\n> 

different versions: the Cluster Spin and Hn i,.;ed 

Simplt'x haYe been rede,;igned for paralkli,-m. 

whereas the ConYPntional Spin and Simplex are 

the straightforward parallt>l n~rsion,; of tilt' wPII

known sequential benchmarks. The ,.,econd set. 

called PRE .. is composed of outputs of ti1P auto

matic parallelizt'r YAST 90 of Pacific Sierra He

search \Yith some handcoded parts. PRE ha,.; I wen 

assemblt'd by J. K. Prentice from ()uctzal C:ompu

tational Associates [:26,. The third is a lwncll!lwrk 

from lniititut Fran<;ais du Perrole :lFP:. \\ e have 

rewritten it as an llPF Yt'rsion and YalidatPd b\ 

IFP. The clas,.;ification of tlw lwnchmarks in three 

categories (kernel. application. and algorithm,;; 

follows the approach used in [2:. 
Apart from dw limitations of any lwnchrnark 

set compared with real applications. this bench

mark set rnay be considered a,.; representati\t_' of 

dense computations. 1\o sparse code is included 

for tlw following reason: Although the prcscnt 

state of the art in al;rorithms for sparst' computa

tions indeed favors <h-namic data :'itructures and 

communications. the situation is quickly C\ olving. 

Recent work r:J" focuses on the dynamic to ,.,tatic 

transformation: hence statistics in thi,; fiPid mm 

not be significant at tl1E' pre,;ent time. 

4.2 Methodology 

The tool used for analysis is a parser built from the 

Tiny tool ,.;et [29:: it consists of an intraproccdural 

constant propagation package and a program for 

autornatic reference analn;i,; ba,.;ed on tilt' ab

stract syntactic repre,.;entation that WP deYeloped. 

The output of these tools is a characterization of 
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Table 1. The Analyzed Benchmarks 

Rt>ndnnark 

Set 

:\'PAC 

PRE 

IFP 

:'\arne 

PI IYSICS Conventional Spin 

PHYSICS Cluster Spin 

\'\' eather climate 

LAPACK Block-QR 

LAPACK Block-Cholesh 

LAPACK Block-LL 

2D-FFT 

Laplace Solver 

Gaussian Elimination 

:\'bodv 

Simplex 

Revised Simplex 

Livermore Fortran Kcrnt>l 

Gas Dnwmics 

Kepler 

IFP 

Size 

in lines 

lJT~ 

-~::>6 

1 "S:3 

1:380 

:)16 

2329 

201 
2h"? 

90 

H9 

62:3 
:):)6 

612-J: 
2:30-:' 

:2":'6 
3-t-:' 

each reference and intrinsic in the source COflf'. 

following the classification of Section 2. :\1~xt we 

evaluated the dynamic (run-time) frequencies of 

each communication type by manual examination 

of the code. 

4.3 Results 

Tables 2 to 5 present the statistics. Tables 2 and 4 

give the formal expression as a function of the 

parameters, respectively. for static and dynamir 

communication patterns:. Tables ;:3 and 5 give the 

numerical percentage of the total communication 

patterns. The first column is the benchmark 

Table 2. Formal Expression of Statie Communications 

:\utornatic 

Parallelization Languatre Catt•uorv r . 

:'\r) C\1 Fortran .\pplication 

:'\n C\l Fortran Application 

:'\o C\1 Fortran Application 

:\o C\1 Fortran Algorithm 

:'\o C\1 Fortran Algorithm 

:\o CM Fortran Algorithm 

:\o C.\[ Fortran Alw>rithm 
:\o C\[ Fortran Application 

:\o C\1 Fortran Al;:oritlnn 

'\o C.\1 Fonran Appli,·ation 

:\o C\1 Fortran Appliration 

:\o C.\1 Fortran .\pplieation 

Yes Fortran 90 Kenwl 
Yt>s Fortran 90 Application 

:\o Fortran <)() Application 

:\o IIPF .\ppli('ation 

name. The column labeled '·Loop Parameters"' in 

Tables 2 and 4 is the name of the program param

eters that are used as sequential loops subscripts. 

For instance .. Cluster Spin shows three nested se

quential loops: the indices are Jf .. the number of 

measures. and I and J. which are internal to the 

algorithm. The numbers in parentheses are the 

parameter values used for Tables 3 and 5. if nec

essary: most of them were indicated by the ben

chmark. The following columns give the total 

number of occurrences of each communication 

scheme, for a complete execution of the ben

chmark: the column labeled .. Affine and Cyclic'' 

describes affine communications (all these com-

Benehwark Loop ParamPter~ .\flint• and Cw·li<· Broadc<ht Heduction ::C:Jwcial 

ClustPr Spin 

Conventional Spin 

\\'eather Climatt' 
L\PACK hlock-(lH 

LA.PACK block-<:holesky 

L:\P\CK block-Ll. 

2D-FFT 

Laplace Soher 

(;nussjan ElituinatJon 

:\bodv 

Simplex 

Revised Sirnplex 

Liverwore Fortran Kemel 

Gas Dyruunies 

Keplt>r 

IFP 

'\! 10(), I' 10. J ~:WO 
'\I .1 00 . I 101 

I ;?>• 

:\ ' 1000/. :\'B :(H · 

:\ 10001. :\B 16-t 

:\ 1 000 •. '<B :6-1: 

" :S12i 

I (1000i 

" 
<25.)) 

I 1000) 

I 10001 

I i1 0001 

I 21: 

I (10000' 

T :::Jb:SOOOI 

:\ ·.-t0001 

\1<:2 + :)] + :nJ. \!1 + 21 + 1.1• 
2\1 -tl + 1' 2\1 

6:261 + ;)()() 8001 + 200 -tO::ll + 100 <JI 

.. t:\/\B + " :2:\ 2:\/'\B + "\ 

-tl 

2:\ 
1 ;){ + ]() 

J + 2 

21 2I .)! + 1 

2-tl ()I 21 

161 :SI 

6T 

.39:\ 2 
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Table :3. Static Communications as a Percentage of the Total Communications 

Benchmark Affine and Cn:lic Broadca~t Reduction Special Total ,.;tatic 

Cluster Spin 33.4 

Conventional Spin 97.6 

Weather Climate :24.2 

LAPACK block-QR 0.0 

LAPACK bloek-Choleskv 0.0 

LAPACK block-LC 0.0 

2D-FFT 0.0 

Laplace Solver 80.0 

Gaussian Elimination SO.O 

l'body 100.0 

Simplex 0.0 

Revised Simplex 12 .. '1 

LiYennore Fortran Kernel 52.2 

Gas Dynamics 64.0 

Kepler 0.0 

IFP 100.0 

munications are translations .. apart of LAPACK 

block-QR where the scheme is a matrix trans

pose): the "Broadcast" and "Reduction" 

colurnns are, in generaL multibroadcast;; and 

multireductions: the column "Special" gathers all 

the instances of the intrinsics MATMUL and DOT

PRODUCT and, for the \\~eather Climate ben

chmark, calls to the fast Fourier transfom (FFT) 

library routine. The column "Total" in Tables 3 

and 5 is the partial total of each broad class, static 

and dynamic. 

Most of the application benchmarks have a 

high percentage of static communications. the ex

ceptions being Cluster Spin and Simplex. How-

Table 4. Formal Expression of U~·namic Communications 

Benchmark 

Cluster Spin 

Comentional Spin 

W'eather Climaw 

LAPACK block-()R 

LAPACK bloek-Cholcsh 

LAPACK hlock-LU 

2D-FFT 

Laplace Soh-er 

Gau;;sian Elimination 

l\bodv 

Simplex 

Revised Simplex 

Livermore F onran Kernel 

Gas Dynamics 

Kepler 

IFP 

Loop Parameter;; 

:\1 (Hl01 I (10i. .J 12001 

\1 tHJO, l (10· 

I (5 

.\l(lOOOJ.\B 6"+! 

id 

id 
.\1 (.S12) 

I :1000; 

.\ :z:;.;, 
I 1 0001 

I (1000) 

I (1000> 

I :21, 

I (100001 

T (36.)000! 

:\ (4000) 

2200 

8.\/.\B + -t\ 

\/'<B 

4.\1 + 2.\/.\B 

log2.\ + 1 

.\ 

0.0 16.8 0.0 :J0.2 

0.0 :2.4 0.0 100.0 
29.() 14.9 ().;3 69.0 

17.8 0.0 18.""' :36.S 
0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 20.0 0.0 100.0 

0.0 0.0 0.0 50.0 

0.0 0.0 0.0 100.0 

11 . 1 11.2 0.0 2:2.:3 

12.:J ;~ 1 .:.~ 0.0 56.:3 

0.0 19.6 "! .:3 76.1 

20.0 0.0 0.0 8"!. () 

0.0 0.0 100.0 100.0 

0.0 0.0 0.0 100.0 

ever, these benchmarks are particular implPmen

tations of an application and have another version 

(Conventional Spin and Revised Simplex). which 

is much better for the static model. The IFP 
benchmark is especially interesting: From the se

quential version, it was possible and even easy to 

write a fully static HPF version of the benchmark, 

without any change in the initial algorithm. 

The category Algorithms presents much more 

diverse results: 50% static communications for 

the l\'o-Bloek Gaussian Elimination. but oo;;, for 

LAPACK block-LC. The reason is that in the LA

PACK subset, the applications are matrix decom

position. but the implementations are block algo-
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Table 5. Dynamic Communications as a Percentage of the Total Communi£~atinns 

ParametriC' 

Benchmark Affiuc and Cvclic Broadcast Heduction Gather Scatlt'r Total 

Clu~ter Spin 0.0 0.0 

Conventional Spin 0.0 0.0 

\Veather Climate 15.5 15.:) 

LAPACK block-QH 36.8 0.0 

LAPACK block-Cholcsky 0.4 98.8 

LAPACK block-Lt 10.8 <i1.9 

2D-FFT 100.0 0.0 

Laplace Solver 0.0 0.0 

Gaussian Elimination 2:J.O 0.0 

:\'body 0.0 0.0 

Simplex :3:3.:3 11.1 

Revised Simplex 1S.8 12.5 

Liv('rmore Fortran Kernel 10.9 

Gas Dvnamics 0.0 
Kepler 0.0 

IFP 0.0 

rithms. As stated in [25], the target architectures 

were multiple instruction multiple data (~lL\JD) 

shared memory, and blockiag increases perfor

mance in this ease by reducing memory traffic. 

The 0.-o-Biock version of the IT decomposition 

(the routine SGETF2) is fully parametric but with 

a much lower conununication count: 2:\" paramet

ric MATMUL and N parametric translations. Ho'w

ever, the applications are inherently dynamic, be

cause they are sequential in either the rows or the 

columns of the basic matrix. A typical communi

cation is 

MATMUL (A(J:N, 1:J-1), A(1:J-1, J)), 

where J is a sequential index. As .I ranges on·r the 

matrix linear size .. no loop unrolling may be con

sidered. On the other hand, although the 2D FFT 

seems fully parametric. this is mostly an imple

mentation artefact: The communication patterns 

of a FFT are the folding onto the processor set of 

the well-known butterf1ies. and are known at eom

pile-timt>. at least if the array argument of the FFT 

is static. 

S PERFORMANCE EVALUATIONS 

The previous results indicate that the static com

munications are frequent enough to dec;erve spe

cific optimizations. such as the static execution 

model. However, Amdahl's law requires a com-

4.3 

0.0 

0.0 

0.0 

0.0 0.0 <i9.R 49.8 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 31.0 
0.0 26.? 0.0 6:3.5 
0.0 O.R 0.0 100.0 

<il.9 .5.'-l: 0.0 100.0 

0.0 0.0 0.0 100.0 
0.0 0.0 0.0 0.0 

2;) 0 0.0 0.1 ;)0.1 

0.0 0.0 0.0 0.0 

22.2 0.0 11.1 
_,,..., ( 

6.2 0.0 6.2 4:3.: 
4.:3 0.0 4.:3 2:l.S 
0.0 0.0 16.0 16.0 
0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

parison with the speedup expected from these op

timizations, and the penalty when executing dy

namic cOininunications. This evaluation needs to 

take into account details of the hardware and soft

ware underlying the static execution model. The 

basic assumptions are the following: 

1. The overall architecture is distributed mem

ory .\11.\ID, with P processors. 

2. The network is strictly synchronous and 

controlled in a lockstep fashion. ln some 

sense. this is the single-program multiple 

data (SP.YlD) execution m<H.leL but us an as

sumption at the hardware level. 

3. For each communication. the data incom

ing from each processor has fixed size. 

4. The routing is ofT-line, which means that 

the routing switches do not proeess at all. 

They only orientate the messages according 

to a configuration giyen hy the processors 

before sending the whole data set. The con

figuration of the switches for one data set is 

called a communication pattern. All the 

useful pattern,; (that the net\\'ork can use in 

a run) are compiled, 

5. The network can realize any permutation in 

constant time. This time is the basic unit of 

the network operations. and is called an ele

menta~· step in the following. 

Among general-purpose commercial parallel ma

chines, none has an interconnection network with 

these properties. However.. such a network has 



been successfully built for the GF1 L a research 

prototype of IB:\1. The iWarp network may be 

used in this mannec although the fact that it is 

primarily intended for message passing raises the 

cost in time of its static use: many research stu(i

ies, especially in the field of optical interconnec

tion networks, consider off-line routed networks 

[27]. For an in-depth pre::;entation of such net

works. see [5, 9, 17]. 

w· e must stress that. as the network cannot do 

any on-line routing .. dynamic patterns have to be 

emulated by a sequence of static (i.e., compile

time computed) patterns. The size of such a se

quence is the emulation cost of dynamic com

munications. 

In the following. we assume that the shape of 

the processor set matches exactly the shape of the 

arrays. and that each processor owns only one da

tum, which has the prescribed size. The issues of 

generating code for cyclically or block-cyclically 

distributed arrays have been successfully treated 

in the PTAH compiler and are not described here. 

The impact of virtualization on performance will 

be outlined in a later section. 

5.1 Permutations 

\V e first consider the simplest parameter penn uta

tions (shifts, cyclic shifts, transpositions) and 

study the ease of gather/ scatter operations later. 

Parametric Shihs 

A one-dimensional parametric shift nun' be de

fined by three parameters: the domain hounds 

and the value of the shift. The following example 

shows a parametric Fhift where the domain i;-; lim

ited by s and f and the shift value is k. 

For all (i = s: f) A. (i) = B (i+k) 

To cope with the domain parameters. the corn

mllnication pattern is extended to all proces:'lors 

(using a temporary array) and the final store is 

conditioned by the membership to the domain. 

'Vithout virtualization.. the prt>vious code be

conles: 

Forall (i 0: P-1) Temp(i) =B(i+k) 

Forall (i 0: P-1) 

Where (s <= i and i <= f) 

A (i) =Temp (i) 

endwhere 

endforall 
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l'\ow, parametric shifts depend only on one pa

rameter, the value of the shift. It is possible to 

define all the communication patterns corn:

sponding to all the shifts inside the processor set. 

and to use k (or k mod Pin the case of virtualiza

tion) to select at run-time the appropriate com

munication pattern. However. each pattern bas a 

significant storage cost; for instance O(P log P) 

bits for a Benes network, leading to O(P2 log P) for 

the P possible shifts (log means log2). A reason

able solution is to use only power of two shifts, and 

to emulate the k-shift by the following procedure: 

PARAMETRIC_SHIFT(V,a,s,f) 

do i=l: P 

if ((a. AND. i) = 1) 

SHIFT(V, i, s, f) 

i = i*2 
en do 

where Vis the array to be shiftecL P the number of 

processors, s and f the limits of the domain of r·. u 

is the value of the shift. and !LVD is bitwi,;e. In this 

ease,. the actual value of u will he k. or k mod P if 

virtualization occurs. Thus. the emulation eosL 

which is the number of patterns to be scheduled, 

is log P. 
For multidimensional shifts like A (i. j) = B(i + 

k1 , j + k2 ) where A and B are matrices. the same 

method holds, except that we have to define the 

input paran1eter a as a vector. A;.,sui:ning that the 

n-dimensional processor geometry ( two-dimen

sional in this example) is linearly mapped to a 

numbering of the processor set, in row (or column) 

major order, the (a 1 , a:2) vector ::;hift ultimately 

produces a shift with value pa 1 + a 2 , where p is 

the extent of the processor geometry in the first 

dimension. 

Parametric cydie shifts are split into two shifts. 

the modulo part and the nonmodulo part. A 

priori. 2 log P steps are needed but as we can 

interleave the two patterns. the number is only log 

P steps. 

Parametric Transpositions 

The general form is 

Forall (i=sl:fl, j=s2:f2) 

A ( i, j) =B (j, i) 

endforall 

The only parameter required is the domain of 

the transpo:-;ition. One solution is first to do a 

parametric shift of B so that B(sL s2) goes to 
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(0, 0). This can be done in log P steps. The result 

of this first shift is stored in a temporary array. 

Then the transposition of the temporary array 

takes only one step. Finally. the result is stored in 

A with a parametric shift. The whole operation 

takes 2/ogP + 1 steps. 

Gather and Scatter Operations 

These are the most difficult communications for 

the static paradigm. The data referenced are in an 

array dynamically computed. The scatter opera

tion sorts an array B according to indice;; L: 

Forall i ... 

A(L(i) )=B(i) 

And the gather operation is: 

Forall i ... 
A(i)=B(L(i)) 

A parallel gather operation makes sense only if 

the mapping of the index set onto itself is a one

to-one operation. Let array K be defined by 

K(L(i)) = i: the gather operation may be written as 

the scatter operation: A(K(i;) B(i). Building Kat 

run-time requires one gather operation. From 

this, a gather operation is amenable to two scatter 

operations. 

Lsually the gather operation i,.; used to pack an 

array into a smaller one, whereas the scatter oper

ation expands an array. W"e assume first that the 

arravs have the same size and that there i,.; no 

conflict while reading or storing elements. \Ve 

study later array size differences and conflict,;. 

To emulate dynamic routing, the key idea [18] 

is to sort the destination addresses of the data to 

be routed. The sorting algorithm uses the princi

ple of the odd-even merge sorting network. Figure 

1 shows this principle where the list L is to be 

sorted: if the message follows the number of the 

receiver, the network realizes the scatter operation 

communication A (L(i)) = B(i). At each stage of the 

sorting network, crossing links symbolize compar

ison of two values and perhaps their exchange. 

As the switches do not have any logic, the net

work cannot perform the cornparisons. ,,~e simu

late each stage of the odd-even network hy a 

crossing of our network and a comparison inside 

the processors. As the links between the stages are 

static, it is possible to compile each corresponding 

permutation. The number of patterns to schedule 

is log P(log P + 1 )/2, i.e., O(log2 P). 

0®···-1> 3 

([)G) .... 5 1- <D<D 

<&>CD_., I 2-00 

Qi)@->-o 3 -IV® 

0®->-2 4 -()@ 

<D<D ..... 7 5- ([)G) 

(0@->- 6-~® 

<D~-4 7 -<D<V 
B L Sorting Network A 

FIGURE 1 Lsing an odd-even merge sortinl' network 

to realize a scatter operation communication. 

Consider the case where A is larger than B. In 

the example. let L be equal to 3, 5. 1, 0. 4. ? . 6 

and assume that the nenvork sorts the values into 

the sorted list 0. L 3, 4, 5. 6, ? . but the values are 

not all located at their destinations. However, 

sending them to their destination is a monotone 

routing problem. :Vlonotone means that the 

source-to-destination map is a monotone func

tion. We can realize monotone routing using the 

greedy routing algorithm on the butterfly network. 

Monotone routing of a sorted list on hypercubie 

networks is conflict free [181. Figure 2 presents 

the example of monotone routing in the butterfly 

network. On stage k of the butterfly. the network 

transmits the data according to bit k of the desti

nation address. 

msb__... lsb 

000 

001 <D--1 

011 

100 

101 

110 

111 ®-7 

o-
FIGURE 2 :\1onotone routing on a Butterflv network. 



Each stage of the butterfly is emulated by one 

permutation in our network and by the test of bit k 

(for stage k) by the processors. The number of 

permutations scheduled is O(log P). As monotone 

routing is conflict free. the routing process re

mains very simple for the processing elements (no 

buffering or priority managing). 

Storing conflicts are prohibited for a scatter op

eration. but reading conflicts are possible for a 

gather operation. In this case. the communica

tions must be partially sequentialized. First, the 

odd-even sorting network sorts the destinations 

that can be realized without conflict. The sorted 

list shows repetitions at contiguous stages. These 

repetitions lead to conflicts while executing the 

monotone routing. If two idemical references are 

located on the Rame proceRRor. it stores one of 

them in a temporary buffer and carriPs on with the 

routing. then a second Rtage is started for the buf

fered messages. After that. a second scatter oper

ation takes place. This proeed.ure is expensh·e: 

however, the rnost complex case is where a multi

east is hidden in the gather operation. and thus 

will also be expensive with any routing medm

nism. 

5.2 Broadcasts 

Broadcasts and multibroadcasts have two possi

ble origins: one-to-many gather operations and 

the SPREAD intrinsic. Assume the network is a 

Bend network [18". Benes networks are rear

rangeable: Any permutation may be routed with

out conflict. Hence. an elementary stPp is one net

work crosRing in this particular case. However. the 

results may be extended, up to a constant factor. 

to any network emulating the well-known buttedly 

network in a finite number of steps._ becauRe a 

Bend network mav be considered as two back-to

hack butterllv networks [13]. In particular, 

Omega and Inverse Omega networks are topologi

cally equivalent to the butterfly network. 

Consider simple broadcasts; any static broad

east ean be completed in one step and any para

metric broadcast in log P + 1 steps. If the broad

east source is a program scalar, the broadcast 

costs nothing, because all processors own the data 

(by parallel execution of the scalar code or any 

other way). Thus, we need only consider the case 

of broadcasting an element of a parallel array. 

Any input of the Benes network is the root of a P

leaf complete binary tree. Thus, the static broad

cast costs one step. 

A parametric broadcast cannot use the same 
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technique. Even though the broadcastintr tree 

does exisL the exact setting of the switdws is not 

known at compile-time because the position of the 

root is a program variable. The simplest means to 

perform a parametric broadcast is to shift the 

source to a fixed position (e.g .. processor 0) and to 

use a static broadcast. Shifting data is a paramt't

ric point-to-point communication, and has the 

same cost as a parametric translation. 

Significant results have been obtained about 

the implementation of the most general multi

broadcast patterns on butterfly and otlwr hyper

cubic networks [18]. However. their implemenla

tion in the static execution model incurs extremelv 

high costs because they invoke irregular ;;eg

mented prefix operations. Thus. the problern of 

compiling multibroadcast patterns mu"t he eare

fullv stated. 

Consider the following legal HPF code: 

Forall I 

A(I) = B(L(I)) 

\Vith L non one-to-one. there are only two wayR 

to compile such patterns: serializing the FORALl., 

loop,, as shown previously. or using Leighton's 

general algorithm [ 18'. HoweveL rheo;e gather

based multibroadeasts are extremelv rare in our 

benchmarks. The reason is perhaps that a clever 

user will avoid that programming ,;tyle: Recogniz

ing the hidden broadcast may be quite difficult for 

a compiler, whatever the execution model. .\Iany 

architectures do offer special spreading or scan

ning hardware. and optimal exploitation of these 

features requires the broadcast to be exprt>ssed as 

a SPREAD. if possible. Thus. we consider the im

plementation of a SPREAD intrinsic. 

l~sing the SPREAD intrinsic.. a ;;tatie 

multispread can be completed in one step .. 

whereas if parametric, it requin's 2 log P + 1 

steps. 

We only outline the proof. To avoid a lot of 

subscripts, we consider the generic example 

B = SPRE4D (A(k, a: b), DIM= L NCOPIES == 
n). The result is a two-dimensional arra\' B, with 

B(i,j) A(k,j) for all i andj, 1 s i nand as 

j s b. 

Consider the following data distribution: Each 

processor set has a virtual bidimensional p X q 

geometry, with p and q integer powers of 2. p.q = 
P and log p = r. Each processor has two coordi

nates (s 1, s2 ) with 0 s s 1 s p - 1 and 0 s s2 s q -

1 and each reference A (i,j) is located on processor 

number (i- 1,j- 1). When a processor is consid-
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A(l,l) 0 

A(l,2) 1 

A(2,1) 2 

A(2,2) 3 

A(3, 1) 4 

A(3,2) 5 

A(4,1) 6 

FIGUHE 3 SPREAD (A(3. 1: 2), 1, 4l. Ea('h dark 

node forward~ its input to its two outpuh: dml lirw~ 

show tlw path,.;. 

ered as a netw·ork input. its identification mlmher 

is p.s 1 + s2 • \\'hen k is a constarlt. the paradif!

rnatic :-;pread is static. The principle of tht~ mu!ti

broadca,.;t is to tbP the IJLmerflv nPtwork when:' 

staf!es 0 to r - 1 are broad('astinp: and staw·s r to 

lop: P realize a direct tnmsmis:-;ion of their valtws. 

Fip:ure :3 gives an example. with p = 4 and q = 2. 

\\'ith Dl\l equal to 2. we would han· to corl:-iider 

the n:'verse butterfly. \lore p:eneral dimensions 

come under the same analysi:-;. a" it depends <Hlly 

on the divi:-;ion of a proees:-;or addn:'ss into lop: p 

hits for the fixed dimensions plus log q bit:-; for tlw 

parallel dimension,.;. 

If the dimension of an array is not a power of 2. 

we embed the array in an ana y of powt~r of 2 size. 

execute the multispread on the temporary array 

and conditionally store the result according to dw 

real size. 

As the Benes network includes two back-to

hack butterfh networks. it can emulate this action 

in one su·p so that the muhibroadcast using the 

SPREAD intrinsic takf's one ,;tep. 

In the parametric ca:-;e. the log P factor couw:-; 

from a parametric translation. \Vith yector - k 

call that we compile SPREAD (A(k. a: h DI\1= 1. 

:\COPIES+ n J::. Thu:-;. row k of A will he copie(l 

onto the first row of B and a static spread can take 

place in one stt>p. Finally .. \Ye haYe to nwve the 

rt>su!t to the correct position with another para

metric tran:-;lation requiring log P ;;teps. :\;; a re

mark. if DI\l is a variable, we can compile the 

static spread for each dimen:sion because the 

number of dimen,.;ion,; is f!enerally low. \loreon'r.. 

if the domain of the rnultispread is nuiahle. af!ain 

a global multispread can lw pt>rformed on a tem

porary array and conditionally store the data ac

cording to the real domain. 

These figures may seem quite hif!h: however. 

all the available parallelism is t:xploited. \lore

over. for static multihroadcasts, the solution is op

timal in the sense that there is only one stt>p. This 

contrasts for instance with the C.\[-;) broadca:-;tinl! 

capabilities. which are limited to one processor at 

a time. 

5.3 Multireduction 

The (multi- ;reduction differs from tiH" (multi- .!dif

fusion in the sense that the network ha.s to conl

bine Yalues. Combining \·alues means that the 

network switches can forward a uniquP n:':-;uh 

cmnputcd frorn it:; inpws by an a:-;sociatiYe opera

tor (sum, max). w·e can realize the static (multi

reduction by combining butterfly with our net

work: Each stage of the butterfly is exeeuted b~· a 

crossinf! of our network and the combininp: opera

tion is realized on the processors. Thus. the num

ber of routinf! steps is equal to the number of 

fltaf!es in the butterfly. i.e .. lof! P. 

In the ease of parametric (multi- ·:reduction. 

again we process a parm11etric ,;hift to move ti'w 

data to a fixed position (for instance hep:inninl! at 

procesflor Oj: then we apply the :-ita tic (multi-, rt>

duetion with a conditional store and proces,.; a 

parametric shift to mm·e the result to the correct 

position. Thus. it take:-; :3 lop: P steps. 

5.4 Special lntrinsics and Functions 

We have already shown that tlw FFT with a ,.;tatie 

arp:ument may he transformed into a fully "tatic 

routine. Systolic alwJrithms provide fully :-;tatic im

plementations of the linear alf.:ebra intrinsics. For 

instance .. the followillf! alf!orithm rt>alize"' MAT

MUL (MATRIX-A, MATRIX-B) : 

C matrix conditioning 
For all (i 1: n) 

CSHIFT(MATRIX-A, DIM=2, i-1) 

For all (i = 1: m) 

CSHIFT(AMTRIX-B, DIM=1, i-1) 

R=O 
C iterative computation 

do k 1, n 

R R + MATRIX-A * MATRIX-B 

CSHIFT(MATRIX-A, DIM=2, 1) 

CSHIFT(MATRIX-B, DIM=1, 1) 

end do 
C the *product is a pointwise product 



This alf!orithm was first designed for rt-'Wions 

that are similar to our objective. i.e .. to f!et the best 

performance from a f!rid network and to avoid 

general communications. The grid network may. 

in turn. be emulated under the general assump

tions stated at the lwginning of this section. with 

one step for each of the grid ::\E\\-S (~orth East 

\\·est South: directions. 

5.5 Comparison 

Comparisons between theoretical studies and ac

tual machines are both presumptuous and unre

alistic. Thus. the following results are not in

tended to compare what would be the execution of 

any program on the C\1-.) and on a possible static 

machine. \\-e consider the figures from the G\1-.") 

network only as a testbed. i.e .. giving the orders of 

magnitude for the performance of a recent dy

narnic routing network. 

Two pararneter,.; charactcrizP the rwrformance 

of a network: Let r111 be the maximal rwtwork 

bandwidth per node and s the time to transmit a 

zero-sized rnesSaf!e. To an approximation. r111 de

pends on the network bandwidth and on the 

source and destination memory bandwidth. \\ ith 

pipelincd cornn1unications. the latency of a data 

transfer is 

T = s + Llr111 • .1 .• 

where Lis the data transfer size.\\ ith careful op

timization. in the infinite data-size limit. tlw per

formance will be limited only by the proce,;sor· s 

perfornwnce if the conununication -to-computa

tion ratio i:-; lower than 1. and by the asymptotic 

network perforrnance (r
11

,) if this ratio is larger than 

1. In fact. assuming equal bandwidth perfor

mance .. being better on .. little .. problems is the 

only advantaf!e that one model has over the other. 

\\c consider two characteristic figures for this 

comparison: T and L 1u. the size for which the 

network reaches half of it:-; maximal bandwidth. 

L 1; 2 is the communication analog of the so-called 

rz 112 for vector cornputations [12:. T n1easure,; the 

performance for program:-; where significant data 

transfer pipelininer is not possible. The reason rna~ 

be a very low virtualization ratio or the peculiar 

characteristics of the algorithm. For instance" a 

blocked algorithm with block data distribution will 

provide few comrnunications: if the communica

tions are not overlapped with the computations. 

r-t will give the actual performance in most prac

tical cases. On the other hand. L 1u gives one esti

mate of what would be an effective size for a prob-
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lem if the communications dominatP the 

computations. but can be arranged to exploit fully 

the network bandwidth in the asymptotic limit. 

.\1any different values of the C\1-3 · s perfor

mance have been reported. \\·e consider the ex

perimental values in [:2:31 with the vendor mes

sage-passing library C.\1.\ID 1.:3.1. and the values 

associated with the Active ::\Iessage model 18]. It 

should be noted that C.\1::\lD 1.:3.1 i,.; the lowest 

level f!eneral-purpose communication library and 

may be considered as assembly-le\el program

filing. The results are based on permutation com

munications. 

For the static network. we wanted to asse,.;,.; two 

speedups separately. The first comes from the 

static execution model. a,.;stuning off-the-shelf 

technolOf..'Y for the network design. The second 

comes from the fact that a network intended for 

this model can be desif!ned with a more aggressiw 

technology than a message-passing network. be

cause its functionalities are simpler. Hence. \\T 

consider two cases: equal bandwidth perforrnance 

and the network we are currently designing l-1: 

(fast network in the following). For the equal 

bandwidth network. we han~ to assess raw hard

ware latency for a ;) 12-processor machine. for 

which the figures of the C::\1-.") cannot he used be

cause they involve the routing delay. \\ e consider 

a 600 ns latency: this llf!Ure '.\·as reached by the 

GF11 using 1983 technology [1":'1. Table 6 shows 

the estimates for the translations patterns using 

formula 1. For the C::\1-3. the results do not de

pend on the distinction static or parametric. For 

the static network. we use the results of Section 

3.1: thus. the parametric value forTi,; nirw times 

its value for the static case (u:oing log 312 = 9): 

thi:-; con1es frorn the fact that the consecuti\T 

translations must proceed in a lockstep fashion. 

Both implementations of the static model outper

form the C::\1-3 network with the vendor rnessage

passiner library by one to two order,; of magni

tude:-;. \\-ith active messages. both static networks 

are better for the static translations. but onh· the 

fast network remains better for the parametric 

ones. 

As no data conr:erning broadcasts and rPduc

tions were available to the authors. we had to limit 

our numerical comparisons to the tran:-;lation 

case. l\'evertheless. we must ,;tress the following: 

for the CM-3. hroadca~ts and reduction,.; use the 

control network: as it i:-; a usual binary tree [20 j. 
no muhioperations are allowed. Thu,;. ewn if 

multioperations incur high penalization in our 

modeL this may be lower than pure sequentializa

tion. 
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Table 6. Performance for Static and Dynamic Routing 

C\1-3 Static 

c:mm Actin' \Ies,;af!C>' Equal Bandwidth Fast Network 

I\ctwork rm (MByte/s) 10 

parameters s (p,s) 97 

Static T 93 

translation L 1/2 (Byte) 970 

Parametric T 93 

translation L 1/2 970 

6 CONCLUSION 

The key idea of the static model is to adapt the 

IUSC principle to communications. i.e ... to be op

timal on the most frequent cases and correct on 

the others. Both the experimental results and the 

gross performance evaluations developed in this 

article show that the static model provides a sig

nificant speedup over dynamic routing. However. 

these figures isolate the network behavior. 

whereas the static model has consequences in 

other parts of a parallel architecture. With syn

chronous communications. all the processors 

have to be synchronized at eaeh network cycle, 

'fhis synchronization may he realized either by 

synchronization barriers or by a dedicated proces

sor architecture. Synchronization barriers are the 

simplest solution, but may create overhead, be

cause they preclude efficient network pipelining. 

For the second solution, the supersealar design 

and complex memory hiPrarchy of n~cent micro

processor architectures create many pipeline haz

ards. As adjusting the instruction threads by the 

compiler may be impossible, a VLIW -style archi

tecture is recommended, 

More generally, the current situation in parallel 

architectures is unbalanced. :Vlany detailed stud

ies arc available about the performance of the 

processor's different parts (functional units. 

caches. . , . ). However, experimental data about 

communications are sparse. and, except in a very 

few cases, ntainly cnncPrn simple and synthetic 

situations. Our future research in this area will 

gather other experimental data about applica

tions: in particular, the development of HPF to 

provide richer semantics than previous paralld 

Fortran and better communication statistics. In 

addition. we want to investigate the possible soft

ening of the static modeL e.g., using synchronous 

on-line routing in multistage networks would allow 

the direct execution of a set of dvnan1ie communi

cations. 
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