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ABSTRACT

On most massively paraliel architectures, the actual communication performance re-
mains much less than the hardware capabilities. The main reason for this difference lies
in the dynamic routing, because the software mechanisms for managing the routing
represent a large overhead. This article presents experimental studies on benchmark
programs concerning scientific computing; the results show that most communication
patterns in application programs are predictable at compile-time. An execution model
is proposed that utilizes this knowledge such that predictable communications are di-
rectly compiled and dynamic communications are emulated by scheduling an appropri-
ate set of compiled communications. The performance of the model is evaluated, show-
ing that performance is better in static cases and gracefully degrades with the growing

complexity and dynamic aspect of the communication patterns.  © 1995 by John Wiley &

Sons, Inc.

1 INTRODUCTION

Parallel architectures suffer from a recurrent
problem, which is the large gap between peak and
actual performance. Despite the progress in hard-
ware and software, most recent experimental
studies [1, 6, 24! show that the actual perfor-
mance usually remains below the peak. One major
cause of this sobering fact is the data transfer and
especially the interconnection network. For in-
stance, recent studies [6, 11] show that the best
performance figures are achieved by programs
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that have the lowest remote data access to float-
ing-point operations ratio.

Although communication seems to be the bot-
tleneck for parallel architectures, not much is
known about the characteristics of the communi-
cations used by parallel programs. The first objec-
tive of this article is to give some experimental
results about the statistical distribution of the
communication patterns. The communications
that are known at compile-time will be called
static and those that can only be determined at
run-time will be called dynamic. To obrain satis-
factory statistics, a significant benchmark set has
been studied: this set amounts to around 25,000
lines of code written in various dialects of parallel
Fortran. The set is composed of two parts: The
first is a set of scientific parallel codes, partially
handwritten and partially generated by automatic
parallelization; the second is a subset of library
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routines from LAPACK. The dvnamic (run-time)
occurrences of both static and dvnamic communi-
cation schemes have been gathered. The main
result is that static communications are nearly ex-

clusive in parallelized codes and dominant in user

programs, whereas the situation is much more
complex in library routines.

We are interested in this taxonomy (static/dy-
namic) not for classification purposes but because
a considerable speedup in parallel computations
can be achieved by a careful exploitation of the
compile-time information about static communi-
cations. In fact. a parallel execution model where
the communications are computed at compile-
time can achieve the hardware’s raw performance
for the most frequently used static communication
schemes. This contrasts with the actual communi-
cation performance of most parallel architectures.
which is dominated by the communication proto-
col overhead. However, the overall speedup must
take into account the contributions of all com-
munication types. both static and dvnamic (Am-
dahl’s law). The task is then to assess the penalty
of compiling the dvnamic communications. This
is very difficult. because many factors are in-
volved, and it is almost impossible to quantify
their respective impacts and interactions. Never-
theless, meaningful results can be derived by eval-
uating, for broad classes of communication
schemes. the speedup achieved on each class by
the static execution model. As a testbed. we com-
pare the CM-5 communication figures with the
expected performance of the static model. The
speedup is significant. even in the dynamic case.

The rest of this article is organized as follows.
The first section discusses dvnamic routing. the
basic communication mechanism of almost all

parallel architectures. and the background of

compiled communications. The second section
presenis a classification of communication
schemes. The third section is devoted to the ex-
periments, methodology, and results. Finally. we
assess the cost of emulating dynamic communica-
tions in the static model and present the expected
performance.

2 BACKGROUND

2.1 Dynamic Routing

Almost all massively parallel architectures use
asvnchronous dynamic routing, which means that
the routing circuits in each network node deter-
mine the path of each message at run-time. This
requires extra hardware (the routing circuits) and

network bandwidth (the address header carried by
each message). The routing is asynchronous in the
sense that the latency of the messages depends on
the network load, thus is unknown: a processor/
network interface is necessary to synchronize the
message and the computing threads. The over-
head of this interface is large: For instance, it costs
more than 90% of the latency of the Paragon ma-
chine [13], and it is from 3 to 90 us for the CM-5
[20, 23].

One could expect that, for large data transfers,
this overhead would ultimately vanish. In fact, a
significant part of the effort in practical parallel
programming is careful data organization in order
to pack the data such that the transfers are of the
appropriate size; a lot of research is devoted to
sophisticated compilation techniques, such as
message vectorization, with the same goal [28].
However, the startup penalty is so high that effec-
tive use of the network is exwremely diftficult. For
instance. to use half of the peak bandwidth of the
network. the message size must be more than 1
kilobvte for the CM-5: to reach full use of the
bandwidth. the message size must be more than 8
kilobvte [61.

Moreover. parallel scientilic programs are
highly svnchronous. because communications
come [rom parallel array statements: in general.
consecutive communications must proceed only
in lockstep fashion. Thus, the major opportunity
to enlarge the message size comes from virlualiza-
tion. In a data-parallel language. the parallelism is
not limited: For instance. the FORALL instruc-
tion has the semantics of evaluating lirst the
righthand side of an assignment. then performing
the assignment. However. the available parallel-
ism on a particular computer is clearly limited by
the number of processors. To take into account
the limitadon of the actual parallel computer. the
unlimited parallelism of the source code is folded
on the limited parallel computer by automa-
tc or user-defined distributions such as cyclic.
block, or block—cyclic. This is virtualization.
For instance, consider the parallel assignment
Forall (i = 0: 14) a(i) = b{i + 1) on a four-proces-
sor machine. Each processor has o iterate se-
quentially over its own piece of arrays a and b (o
exchange data and compute. In particular, each
processor sends to another one from three to four
array elements; sending one piece of data by mes-
sage is highly inefficient: aggregating data to be
sent to one processor in one message is known as
message vectorization [16]. However, message
vectorization is limited by the virtualization ratio
(roughly speaking, the ratio between the size of a



FORALL index set and the machine size). A high
startup penalty limits the elficiency of massively
parallel architectures on huge problems. This
overhead can be greatly reduced if analvzing the
communications at compile-time provides some
knowledge of the communication behavior at run-
time. The hardware design and software tools that
provide efficient means to use this knowledge have
been developed in the PTAH project. They are
bevond the scope of this article: the architecture is
described in [4] and the principles of the compiler
n [10].

The results presented in this article indicate
that. at least in scientific programs. a large part of
the communications can be determined from
analysis of source code. Moreover, almost all other
programs provide information that can be used to
limit the communications overhead. In fact. the
idea that a lot of communication patterns in scien-
tific programs can be determined at compile-time
is the cornerstone of vectorizers and automatic
parallelizers. In the following sections, we con-
sider a number of parallel programs, and quantify
this idea.

2.2 Compiled Communications

In the static execution model, all the parameters
of the communications are computed at compile-
time. This model has been exemplified in the [BM
GF11 [17], in the iWarp ConSet [25], and by the
Communication Compiler of TMC CM-2 [7]. The
model assumes an off-line routed network. Off-
line means that the message paths are computed
in the back-end compiler, by a ““‘communication
generator’’ that is an equivalent for communica-
tion of the code generator for computation. All the
physical parameters of a communication are then
computed at compile-time. At run-time. the
switch settings are simply scheduled under pro-
gram control. This is opposite to the on-line rout-
ing model, where the message paths are deter-
mined at run-time, the network routing circuits
acting on the addresses as an interpreter. The
compilation problem is to embed the communica-
tion graph into the physical network.

Off-line routing improves the network through-
put, by removing the overhead of address headers
encapsulated within each message. As no more
routing decisions have to be made, the latency can
ultimately be reduced to the hardware propaga-
tion delay. Finally, shifting the routing task from
run-time to compile-time allows more complex
routing algorithms, resulting in better resource
(links and buffers) utilization. Theoretical studies
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[15. 21. 22] show that. for some interconnection
networks, off-line routing is leasible in the sense
that the off-line routing algorithm has acceptable
complexity. and may be asvmptotically optimal
[19]. The practical experiments on the CM-2 {71
show that a one order of magnitude speedup can
be achieved by off-line routing on the hypercube.
without any additional hardware: the simulated
annealing dlgorlthm provides global optimization
of the hnk allocation.

Off-line routing supposes that the communica-
tion generator may be fed with the communication
graph, which has been construcred by the com-
piler. This issue is bevond the scope of this article:
however, recent research in the message-passing
framework [14, 28], and in the swatic framework
[10] provides techniques to tackle this issue.
Moreover, these techniques remove the potential
drawback of the first experiments on the CM-2,
which was the long compilation time: As a formal
description of the graph can be exhibited, the
complexity of the off-line routing process can be
simplified in many cases.

3 COMMUNICATION PATTERNS

As our benchmarks are written in data parallel
Fortran (CM Fortran, Fortran 90, high-perfor-
mance Fortran [HPF]), the following discussion
uses an HPF syntax. However, this only exempli-
fies the main data-parallel communication fea-
ture: The communications are implicit. derived
from operations on parallel data structures (arravs
in Fortran}. In HPF. parallel dawa operations
come from, either FORALL loops or array nota-
tions, or Intrinsics that summarize multiple paral-
lel data operations. As each of these structures
mvolves parallel array references. our taxonomy
begins with a classification of parallel references.

3.1 Parallel References

A typical parallel construct is a nest of FORALL

loops as illustrated next:

Forall (11 = ap . b1 : Cl)
Forall (i, = a; : by : c»)

Forall (i, = a, : b, : cp)
Ale,, €5, ...,e,] = F(B[f,, 15,
o, Tl o)
endforall
endforall
endforall
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where a; and by may depend on ¢ for { < k. For
short, it can be summarized in the following
pseudosyniax:

Forall I inJ
Af(I)] = F(B[g(D],...)
endforall

where [ is the vector of parallel indices (i,
i, . . . i) T is the convex polvhedron (see ex-
ample below) defining the loop bounds, 4 and B
are two arrays, and {inally. A| f(I}] and B[ g{l)] are
two parallel references.

A typical parallel reference is a reference to an
m-dimensional arrav A. in a nest of n FORALL
loops: Aleq, ea, . . €.], where e; are functions
of the FORALL subscripts (another syntax is the
parallel array reference A[ay : by : ¢ . . . L,
b, : ¢,]. which can be expressed with a FORALL
syntax). Analvtical analysis can be performed at
compile-time only if the e, are affine in the
FORALL subscripts, with integer coefficients. i.e..

e; = ZaijIJ— + bi.

=1

An affine reference can be written A[MI + U7.
where M is a m X n integer matrix and U’ a vector
in Z". We give an example from Jacobi’s method
for the Laplace solver:

Forall (i=2:9,j=2:9)
A(I,j)=(A(i—1,j)+A(it+1,J)+A (1, j-1)
+A (1, j+1))*0.25
endforall

Here. there are five parallel references to A (1 store
and 4 fetches): the first one (A7 — 1. /)) may be
expressed with:

wol(l O (1Y)
J[—(O 1>7L—<O>and

-1 0 2

.. 1 i 9

J = l(h/)’ 0 -1 (j>s 9
0 1 9

Affine references where M and U only include
numerical constants are called static and non-
static affine references are called parametric. For
example the parallel reference A — 1. /) is static.
whereas a reference such as AG + £, j) will be
parametric if kK is a variable which is not a

FORALL index, as in the following assignmenut:

do k
Forall 1
... =A(i + k)

This scheme is dominant in LAPACK routines.

In fact, a finer classification would be possible:
If the vector U is a scalar variable, the reference
can occasionally be determined at compile-time:
for instance, if U linearly depends on sequential
loop subscripts, as in the previous example. How-
ever, using this information in the static execution
model would require the unrolling of the sequen-
tial loop to compute the communication patterns.
As the sequential index set is almost always 100
large to allow this optimization, there is no point in
using a finer classification.

In our benchmarks. nonlinear references were
represented by gather and scatter operations.
where the array subscripts are themselves arrav
elements; the generic form being A[L[[]].

3.2 FORALL Communications

In the typical parallel instruction

Forall 1 in J
A[f(I)] = Blg(I)] +
endforall

the assignment creates communication patterns
where, for each I, the source is the processor own-
ing the reference B[g(/)]. and the destination is the
processor owning the reference A[f(/)]. The pat-
terns depend on the computation location rule
and on the mapping. We consider the Owner
Computes Rule, which is used by most existing
parallel compilers and assumed by manyv re-
searchers in this field: it means that the comput-
ing processor is the destination processor. The
mapping between arravs is created by the ALIGN
directives. If an arrav is compressed along one di-
mension, the corresponding FORALL subscript
must not be considered for classification because
it is not a parallel dimension. For instance, if A is
of dimension 2 and compressed along its second
dimension, then A(i. j) is located on the same pro-
cessor as A{i, 0}. With these assumptions, a com-
munication occurs for each arrav in the righthand
side of the parallel assignment. if combining the
mapping and the Owner Computes Rule does not
result in an intraprocessor assignment. The com-
munication is labeled by the worse case of the two



references, e.g.. left and right member affine static
will result in a static communication. but a one-
member nonaffine will result in a nonaffine com-
munication and so on.

A typical use of the FORALL notation is to de-
scribe partial permutations of the index set. Al-
though the FORALL syntax does not preclude
more complex schemes. efficient programming
would encapsulate such patterns in intrinsics to
take advantage of the global communication fea-
tures of the target architecture.

3.3 Intrinsic Communications

In data-parallel Fortran languages. complex data
transfers can be described by special functions
that are part of intrinsics. The most important
communication intrinsics implement multireduc-
tion (muldple many-to-one communication).
multibroadcast {multiple one-to-many), special
permutations. and gather/scatter operations.

The reduction intrinsics are SUM. ALL. ANY.
MAXVAL, MINVAL. MAXLOC. MINLOC. They com-
pute the result of applving an associative operator
to all the elements of their array argument. The
respective operators are sum, logical and. logical
or. max, min: MAXLOC (resp. MINLOC) returns
the location of the maximal (resp. minimal) value.
The reduction intrinsics have three parameters:
for instance, SUM (ARRAY, DIM, MASK) adds the
elements of ARRAY along the dimension DIM. se-
lecting the elements described by MASK. We con-
sidered that a reduction intrinsic is static as soon
as the ARRAY parameter is a static reference and
the DIM parameter is a constant: The unit ele-
ment of the operator (e.g.. O or 0.0 for a SUM, or
IEEE — for a floating-point MINVAL} can replace
the masked references. and this local test can be
done at run-time.

The intrinsic SPREAD allows broadcasts and
segmented broadcasts: An n-dimensional arrav is
replicated to create an n + 1 dimensional one.
The svntax is SPREAD (SOURCE, DIM, NCOP-
IES) : to compute the communication scheme at
compile-time. the SOURCE parameter must be a
static reference and DIM must be a constant {in
this case, the pattern is considered as static). In
the following. we call broadcast a one-to-many
pattern, multibroadcast a segmented broadeast.
reduction a reduction that results in a scalar. and
multireduction a segmented reduction.

Examples of special permutations intrinsics are
the cvclic and noncycelic SHIFTS and TRANSPOSE.
All these intrinsics summarize a FORALL per-
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mutation and require the same analvsis. More
complex intrinsics. such as MATMUL and DOT-
PRODUCT. are intended to allow an optimal imple-
mentation of basic linear algebra operators. These
intrinsics will be considered as static il their pa-
rameters are static or scalar constants.

4 EXPERIMENTAL RESULTS

4.1 The Benchmark Set

Three benchmark sets have been analyzed {Table
1). The first. called NPAC in the lollowing. is the
applications benchmark set for Fortran D and
HPF of the Northeast Parallel Architecture Center
at Syracuse University [25]. It includes complete
applications and mathematical packages for
dense linear algebra. Some applications have two
different versions: the Cluster Spin and Revised
Simplex have been redesigned for parallelism.
whereas the Conventional Spin and Simplex are
the straightorward parallel versions of the well-
known sequential benchmarks. The second set.
called PRE. is composed of outputs of the auto-
matic parallelizer VAST 90 of Pacilic Sierra Re-
search with some handcoded parts. PRE has heen
assembled by J. K. Prentice from Quetzal Compu-
tational Associates (26 . The third is a benchmark
from Institut Francais du Péwrole (IFP;. We have
rewritten it as an HPF version and validated by
IFP. The classification of the benchmarks in three
categories (kernel. application. and algorithms}
follows the approach used in [2..

Apart from the limitatdons of any benchmark
set compared with real applications. this bench-
mark set mav be considered as representative of
dense computations. No sparse code is included
for the following reason: Although the present
state of the art in algorithms for sparse computa-
tons indeed favors dvnamic data structures and
communications, the situation is quickly evolving.
Recent work [37 focuses on the dynamic to static
ransformation; hence statstics in this field may
not be significant at the present time.

4.2 Methodology

The tool used for analvsis is a parser built from the
Tinv ol set [291: it consists of an intraprocedural
constant propagation package and a program for
automatic reference analvsis based on the ab-
stract svntactic representation that we developed.
The output of these tools is a characterization of
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Table 1. The Analyzed Benchmarks
Benchmark Size Automartic
Set Name in lines Parallehization Language Category

PIYSICS Conventional Spin 933 No CM Fortran Application
PHYSICS Cluster Spin 456 No CM Fortran Application
Weather climate 1783 No CM Fortran Application
LAPACK Block-QR 1380 No CM Fortran Algorithm
LAPACK Block-Cholesky 516 No CM Fortran Algorithm

NPAC LAPACK Block-LU 2529 No CM Fortran Algorithm
2D-FFT 201 No CM Fortran Algorithm
Laplace Solver 267 No CM Fortran Application
Gaussian Elimination 90 No CM Fortran Algorithm
Nbody 149 No CM Formran Application
Simplex 623 No CM Fortran Application
Revised Simplex 556 No CM Fortran Application
Livermore Fortran Kemel 6124 Yes Fortran 90 Kernel

PRLE Gas Dynamics 2307 Yes Fortran 90 Application
Kepler 276 No Fortran 90 Application

IFp IFP 547 No HPEF Application

each reference and intrinsic in the source code.
following the classification of Section 2. Next we

evaluated the dvnamic (run-time) frequencies of

each communication tvpe by manual examination
of the code.

4.3 Results

Tables 2 to 5 present the statistics. Tables 2 and 4
give the formal expression as a function of the
parameters, respectively. for static and dynamic
communication patterns: Tables 3 and 5 give the
nunerical percentage of the total communication
patterns. The first column is the benchmark

name. The column labeled *"Loop Parameters™ in
Tables 2 and 4 is the name of the program param-
eters that are used as sequential loops subscripts.
For instance, Cluster Spin shows three nested se-
quential loops: the indices are M. the number of
measures, and I and J. which are internal to the
algorithm. The numbers in parentheses are the
parameter values used for Tables 3 and 3. if nec-
essarv: most of them were indicated by the ben-
chmark. The following columns give the 1o1al
number of occurrences of each communication
scheme, for a complete execution of the ben-
chmark: the column labeled ““Affine and Cyelic™
describes affine communications (all these com-

Table 2. Formal Expression of Static Communications

Benchmark

Loop Parameters

Aftine and Cyelic Broadeast

Reduction

Special

Cluster Spin
Conventional Spin
Weather Climate
LLAPACK block-QR
LAPACK block-Cholesky
LAPACK block-LU
2D-FFT

Laplace Solver

Gaussian Elimination
Nbody

Simplex

Revised Simplex
Livermore Fortran Kernel
Gas Dyvnamics

Kepler

IFP

M 10031100 ] 2008

M (1000 1110;
15

N (1000% NB (64}
N 110001, NB (64"
N (1000% NB 64
N 512)

1 (1000}

N (255}

1 {1000}

I 11000

1 {1000}

121}

I (16000

T 363000}

N 4000}

Mi2 + 31+ 215

M+ 20+ 1)

2Mi41 + 1 2N\
6261 + 300 8001 + 200 4031 + 100 9]
4N/NB + N 2N IN/NB + N
4] ]
2N
151 + 16

i P+ 2
2] 21 SE+ 1
2.4] 9] 21
10l Sl

6T

39N 2
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Table 3. Static Communications as a Percentage of the Total Communications

Benchmark Affine and Cyclic Broadeast Reduction Special Toral static
Cluster Spin 33.4 0.0 16.8 0.0 50.2
Conventional Spin 97.6 0.0 2.4 0.0 100.0
Weather Climate 24.2 29.6 14.9 0.3 69.0
LAPACK block-QR 0.0 7.8 0.0 18.7 36.5
LAPACK block-Cholesky 0.0 0.0 0.0 0.0 0.0
LAPACK block-LU 0.0 0.0 0.0 0.0 0.0
2D-FFT 0.0 0.0 0.0 0.0 0.9
Laplace Solver 80.0 0.0 20.0 0.0 160.0
Gaussian Elimination 50.0 0.0 0.0 0.0 50.0
Nbody 100.0 0.0 0.0 0.0 100.0
Simplex 0.0 11.1 11.2 0.0 22.3
Revised Simplex 12.5 12.5 31.3 0.0 56.3
Livermore Fortran Kernel 52.2 0.0 19.6 4.3 76.1
Gas Dvnamics 64.0 20.0 0.0 0.0 84.0
Kepler 0.0 0.0 0.0 100.0 100.0
IFpP 100.0 0.0 0.0 0.0 100.0

munications are translations, apart of LAPACK
block-QR where the scheme is a mairix trans-
pose); the “Broadecast” and “Reduction”
columns are. in general, muldbroadcasts and
multireductions; the column **Special’” gathers all
the instances of the intrinsics MATMUL and DOT-
PRODUCT and, for the Weather Climate ben-
chmark. calls to the fast Fourier transfom (FFT)
library routine. The column “*Total’” in Tables 3
and 5 is the partial total of each broad class, static
and dynamic.

Most of the application benchmarks have a
high percentage of static communications. the ex-
ceptions being Cluster Spin and Simplex. How-

Table 4. Formal Expression of Dynamic Communications

ever, these benchmarks are particular implemen-
tations of an application and have another version
(Conventional Spin and Revised Simplex). which
is much better for the static model. The IFP
benchmark is especially interesting: From the se-
quential version, it was possible and even easy to
write a fully static HPF version of the benchmark,
without any change in the inidal algorithm.

The category Algorithms presents much more
diverse results: 50% static communications for
the No-Block Gaussian Elimination. but 0% for
LAPACK block-LU. The reason is thatin the LA-
PACK subset, the applications are matrix decom-
position. but the implementations are block algo-

Parametrie

Benchmark Loop Parameters Aftine and Cyolic Broadceast Reduction Special Gather-Scauter
Cluster Spin M 100171 {10}. ] {200) ML)
Conventional Spin M 10031 (103

Weather Climate 15 2200 2200

LAPACK block-QR N {1000} NB {64} 8N/NB + 4N 3N

LAPACK block-Cholesky id N/NB +N\ 2N/NB

LAPACK block-1.U id 4N + 2N/NB N#/NB NZ/NB 2N + N/NB
2D-FFT N{512) logoN + 1

Laplace Solver 1{1000)

Gaussian Elimination N (2535 N AN 1
Nbody 11000

Simplex {1000 31 i 21 I+ 1
Revised Simplex 11000} 31 21 | [+1
Livermore Forwran Kernel 121 51 21 21 21
Gas Dynamics I (10000} +

Kepler T (365000}
IFp N (4000
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Table 5. Dynamic Communications as a Percentage of the Total Communications

Parametric
Benchmark Affine and Cyclic Broadeast Reduction Speetal Gather Scatter Total
Cluster Spin 0.0 0.0 0.0 0.0 49.8 49.8
Conventional Spin 0.0 0.0 0.0 0.0 0.0 (.0
Weather Climate 155 155 0.0 0.0 0.0 31.0
LAPACK block-QR 36.8 0.0 0.0 26.7 0.0 63.5
LAPACK block-Cholesky 0.4 98.8 0.0 0.8 0.0 100.0
LAPACK block-LU 16.8 41.9 41.9 5.4 0.0 100.0
2D-FFT 100.0 0.0 0.0 0.0 0.0 100.0
Laplace Solver 0.0 0.0 0.0 0.0 0.0 0.0
Gaussian Elimination 25.0 0.0 25.0 0.0 0.1 50.1
Nbody 0.0 0.0 0.0 0.0 0.0 0.0
Simplex 33.3 11.1 222 0.0 11.1 7
Revised Simplex 18.8 12.5 6.2 0.0 6.2 43.7
Livermore Fortran Kernel 10.9 3.3 4.3 0.0 4.3 23.8
Gas Dvnamics 0.0 0.0 0.0 0.0 16.0 16.0
Kepler 0.0 0.0 0.0 0.0 0.0 0.0
IFp 0.0 0.0 0.0 0.0 0.0 0.0

rithms. As stated in [25], the target architectures
were multiple instructon multiple data (MIMD)
shared memory, and blocking increases perfor-
mance in this case by reducing memory traffic.
The No-Block version of the L [ dccomp()smon
(the routine SGETF2) is fullv parametric, but with
a much lower communication count: 2N paramet-
ric MATMUL and N parametric translatdons. How-
ever, the applications are inherently dvnamic, be-
cause they are sequential in either the rows or the
columns of the basic matrix. A rvpical communi-
cation is

MATMUL (A(J:N, 1:J-1), A(1:J-1, J}},

where J is a sequential index. As J ranges over the
matrix linear size, no loop unrolling may be con-
sidered. On the other hand. althouvh the 2D FFT
seems fully parametric, this is mmd) an imple-
mentation artefact: The communication patterns
of a FFT are the folding onto the processor set of
the well-known butterflies, and are known at com-
pile-time. at least if the array argument of the FF'T
is static.

5 PERFORMANCE EVALUATIONS

The previous results indicate that the static com-
munications are frequent enough o deserve spe-
cific optimizations. such as the static execution
model. However, Amdahl’s law requires a com-

parison with the speedup expected from these op-
timizations, and the penalty when executing dy-
namic communications. This evaluation needs 10
take into account details of the hardware and soft-
ware underlving the static execution model. The
basic assumptions are the following:

1. The overall architecture is distributed mem-
ory MIMD, with P processors.

2. The network is strictly svnchronous and
controlled in a lockstep fashion. In some
sense, this is the single-program muhiple
data (SPMD) execution model. but as an as-
sumption at the hardware level.

3. For each communicatien. the data incom-
ing from each processor has fixed size.

4, The routing is off-line, which means that
the routing switches do not process at all.
They only orientate the messages according
to a conﬁﬂurdtmn given by 1he Processors
before sendmcT the “hoie data set. The con-
figuration of 1he switches for one datd set is

ﬂléd a communiecation pattern. All the
useful patterns {that the network can use in
a run) are compiled.

5. The network can realize any permutation in
constant time. This time is the basic unit of
the network operations, and is called an ele-
mentary step in the following.

Among general-purpose commercial parallel ma-
chines, none has an interconnection network with
these properties. However, such a newwork has



been successfully built for the GF11, a research
prototype of IBM. The iWarp network may be
used in this manner, although the fact that it is
primarily intended for message passing raises the
cost in time of its static use; many research stud-
ies, especially in the field of optical interconnec-
tion networks, consider off-line routed networks
[27]. For an in-depth presentation of such net-
works, see [5, 9, 17].

We must stress that. as the network cannot do
any on-line routing, dynamic patterns have o be
emulated by a sequence of static (i.e., compile-
time computed) patterns. The size of such a se-
quence is the emulation cost of dvnamic com-
munications.

In the following. we assume that the shape of
the processor set matches exactly the shape of the
arravs, and that each processor owns only one da-
tum, which has the prescribed size. The issues of
generating code for cyclically or block-cyelically
distributed arrays have been success{ully treated
in the PTAH compiler and are not described here.
The impact of virtualization on performance will
be outlined in a later section.

5.1 Permutations

We first consider the simplest parameter permuta-
tions {shifts, cveclic shifts. transpositions) and
study the case of gather/scatter operations later.

Parametric Shifts

A one-dimensional parametric shift may be de-
fined by three parameters: the domain bounds
and the value of the shift. The [ollowing example
shows a parametric shift where the domain is lim-
ited by s and f and the shift value is 4.

Forall (i = s:f) A(i) = B(i+k)

To cope with the domain parameters. the com-
munication pattern is extended 1o all processors
(using a temporary array) and the final store is
conditioned by the membership to the domain.
Without virtualization, the previous code be-
comes:

Forall (i 0:P—-1) Temp(i)=B(itk)

Forall (1 0: P-1)
Where(s <= i and i <= f)
A(1)=Temp (1)
endwhere
endforall
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Now, parametric shifts depend only on one pa-
rameter, the value of the shift. It is possible to
define all the communication patterns corre-
sponding to all the shifts inside the processor set.
and to use k (or £ mod P in the case of virtualiza-
tion) to select at run-time the appropriate com-
munication pattern. However. each pattern has a
significant storage cost; for instance O{P log P)
bits for a Bene$ network, leading to O(P? log P) for
the P possible shifts (log means logy). A reason-
able solution is to use only power of two shifts, and
to emulate the A-shift by the following procedure:

PARAMETRIC_SHIFT(V,a,s, )
do i=1:P
if {((a.AND. 1) = 1)
SHIFT(V, i,s, )
1= 1%*2
endo

where Vis the array to be shifted, P the number of
processors, s and f the limits of the domain of F. «
is the value of the shift, and AND is bitwise. In this
case, the actual value of a will be &, or £ mod P if
virtualization occurs. Thus. the emulation cost,
which is the number of patterns o be scheduled,
is log P.

For multidimensional shifts like A(i. /3 = B{i +
k1, j + ko) where A and B are matrices. the same
method holds. except that we have to define the
input parameter a as a vector. Assuming that the
n-dimensional processor geomewry [two-dimen-
sional in this example} is linearly mapped to a
numbering of the processor set, in row {or column}
major order, the (ay, a») vector shift ulumately
produces a shift with value pa; + a», where p is
the extent of the processor geometry in the first
dimension.

Parameuric cvelie shifts are splitinto two shifts.
the modulo part and the nonmodulo part. A
priori. 2 log P steps are needed but as we can
interleave the two patterns. the number is only log

P steps.

Parametric Transpositions

The general form is

Forall (i=sl:f1, j=s2:f2)
A(i,j)=B(Jj, 1)
endforall

The only parameter required is the domain of
the transposition. One solution is first to do a
parametric shift of B so that B(s1, s2) goes w0
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{0, 0). This can be done in log P steps. The result
of this first shift is stored in a temporary array.
Then the transposition of the temporary array
takes only one step. Finally, the resultis stored in
A with a parametric shift. The whole operation
takes 2{fogP + 1 steps.

Gather and Scatter Operations

These are the most difficult communieations for
the static paradigm. The data referenced are in an
array dynamicallv computed. The scatter opera-
tion sorts an array B according 1o indices L:

Forall 1i...
A{L(1))y=B(1)

And the gather operation is:

Forall 1i...
A(1)=B(L(i))

A parallel gather operation makes sense only if
the mapping of the index set onto itself is a one-
to-one operation. Let array K be defined by
K(L{}) = i the gather operation may be written as
the scatter operation: A(K{i}) = B(i). Building K at
run-tme requires one gather operation. From
this, a gather operation is amenable 1o two scatter
operations.

Usually the gather operation is used to pack an
array into a smaller one, whereas the scatter oper-
ation expands an array. We assume first that the
arravs have the same size and that there is no
conflict while reading or storing elements. We
study later array size differences and conflicts.

To emulate dvnamic routing, the kev idea [18]
18 to sort the destnation addresses of the data to
be routed. The sorting algorithm uses the princi-
ple of the odd—even merge sorting network. Figure
1 shows this principle where the list L is to be
sorted: if the message follows the number of the
receiver, the network realizes the scatter operation
communication A{L(i)) = B(i). At each stage of the
sorting network, crossing links symbolize compar-
ison of two values and perhaps their exchange.

As the switches do not have any logic. the net-
work cannot perform the comparisons. We simu-
late each stage of the odd—even network bv a
crossing of our network and a comparison inside
the processors. As the links between the stages are
static, it is possible 1o compile each corresponding
permutation. The number of patterns to schedule
is log Pllog P + 1)/2, i.e., O(log® P).

/>
¥

B L Sorting Network A

FIGURE 1 Using an odd—even merge sorting network
to realize a scatter operation communication.

Consider the case where A is larger than B. In
the example. let L be equalt0 3, 5.1, 0.4, 7,6
and assume that the network sorts the values into
the sorted list 0, 1, 3, 4. 5. 6. 7. but the values are
not all located at their destinations. However.
sending them to their destination is a monotone
routing problem. Monotone means that the
source-to-destination map is a monotone func-
tion. We can realize monotone routing using the
greedy routing algorithm on the butertly network.
Monotone routing of a sorted list on hypercubic
networks is contlict free [18]. Figure 2 presents
the example of monotone routing in the butterfly
network. On stage k of the burtterfly. the network
transmits the data according to bit & of the desti-
nation address.

msb .—p Isb

001

011

100

101

110

m

FIGURE 2 Monotone routing on a Butterfly network.



Each stage of the butterfly is emulated by one
permutation in our network and by the test of bit &

{for stage k) by the processors. The number of

permutations scheduled is Oflog P). As monotone
routing is conflict free, the routing process re-
mains very simple for the processing elements {(no
buffering or priority managing).

Storing contilicts are prohibited for a scatter op-
eration. but reading conflicts are possible for a
gather operation. In this case. the communica-
tions must be partally sequenualized. First, the
odd—even sorting network sorts the destinations
that can be realized without conflict. The sorted
list shows repetitions at contiguous stages. These
repetitions lead to conilicts while executing the
monotone routing. If two identical references are
located on the same processor. it stores one of
them in a temporary buffer and carries on with the
routing, then a second stage is started for the bul-
fered messages. After that. a second scatter oper-
ation takes pldne, This procedure is expensive:
however, the most complex case is where a mult-
cast is hidden in the gather operation. and thus
will also be expensive with any routing mecha-
nism.

5.2 Broadcasts

Broadcasts and multbroadcasts have two possi-
ble origins: one-to-many gather operations and
the SPREAD intrinsic. Assume the network is a
Benes network [18’. Bened networks are rear-
rangeable: Anv permutation may be routed with-
out contlict. Hence. an elementarv step is one net-
work crossing in this particular case. However, the
results may be extended, up 10 a constant factor,
to any network emulating the well-known butterdly
network in a finite number of steps. because a
Benes network may be considered as two back-to-
back butterfly networks [18]. In particular,
Omega and Inverse Omega networks are topologi-
cally equivalent to the buuex flv network.

Consider simple broadcasts; any static broad-
cast can be completed in one step and any para-
metric broadeast in log P + 1 steps. I the broad-
cast source is a program scalar. the broadcast
costs nothing, because all processors own the data
(by parallel execution of the scalar code or any
other way). Thus, we need only consider the case
of broadcasting an element of a parallel arrav.
Any input of the Benes network is the root of a P-
leaf complete binary tree. Thus, the static broad-
cast costs one step.

A parametric broadcast cannot use the same
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technique. Even though the broadcasting tree
does exist, the exact setting of the switches is not
known at complie-ume because the position of the
root is a program variable. The simplest means to
perform a parametric broadcast is to shift the
source to a fixed position {(e.g.. processor 0) and to
use a static broadcast. Shifting data is a paramet-
ric point-to-point communication, and has the
same cost as a parametric translation.

Significant results have been obtained about
the implementation of the most general muli-
broadcast patterns on butterfly and other hyper-
cubic networks [18!. However. their implementa-
tion in the static execution model incurs extremely
high costs because they involve irregular seg-
mented prefix operations. Thus. the problem of
compiling multibroadecast patterns must be care-
fullv stated.

Consider the following legal HPF code:

Forall I
A(I) = B({L(I}))

With L non one-to-one, there are only two wavs
to compile such patterns: serializing the FORALL
loop, as shown previouslv, or using Leighton’s
general algorithm [187. However, these gather-
based multibroadcasts are extremely rare in our
benchmarks. The reason is perhaps that a clever
user will avoid that programming sivle: Recogniz-
ing the hidden broadcast may be quite d;ifmuh for
a compiler, whatever the execution model. Many
architectures do offer special spreading or scan-
ning hardware, and optimal exploitation of these
features requires the broadcast to be expressed as
a SPREAD, if possible. Thus. we consider the im-
plementation of a SPREAD intrinsic.

Using the SPREAD intrinsic. a  static
multspread can be completed in one step.
whereas if parametric, it requires 2 log P + 1
steps.

We only ocutline the proof. To avoid a lot of
subscripts, we consider the generic example
B = SPREAD {Alk, a: b), DIM = 1. NCOPIES =
n). The result is a two-dimensional array B. with

( Jy= (k/)fora]ltdnd/1<l<ndnda<
= b.

Consider the following data distribution: Each
processor set has a virtual bidimensional p X ¢
geometry, with p and ¢ integer powers of 2, p.g =
P and log p = r. Each processor has two coordi-
nates (s, s2)withO0=s;=p - land0=s, =g -
1 and each reference A(i, ) is located on processor
number (i — 1,7 — 1). When a processor is consid-
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FIGURE 3 SPREAD (A(3, 1:2), 1, 4). Fach dark
node forwards its input to its two outputs: dark lines
show the paths.

ered as a network input. its identificadon nunber

is p.sy + s2. When k£ 1s a constant. the paradig-
matie spread is static. The prineiple of the muldi-
broadeast is 10 use the butterfly network where
stages 0 10 r — 1 are broadeasting and stages r to
log P realize a direct transmission of their values.
Figure 3 gives an example. with p = 4 and ¢ = 2.

With DIM equal to 2. we would have o consider

the reverse butterfly. More general dimensions
come under the same analysis, as it depends only
on the division of a processor address into log p
bits for the fixed dimensions plus log ¢ bits for the
parallel dimensions.

H the dimension of an array is not a power of 2.
we embed the arrav in an array of power of 2 size,
execute the mulispread on the temporary array.
and conditionally store the result according to the
real size.

As the Benes newtwork includes two back-to-
back butterfly networks. it can emulate this action
in one step so that the mulibroadcast using the
SPREAD mtrinsic takes one step.

In the parametric case. the log P factor comes
from a parametric translation. with vector —k {re-
call that we compile SPREAD (Afk. a: by DIM=1.
NCOPIES+n}l. Thus. row & of 4 will be copied
onto the first row of B and a static spread can take
place in one step. Finally, we have o move the
result to the correct position with another para-
metrie translaton requiring log P steps. As a re-
mark. if DIM is a variable. we can compile the
static spread for each dimension because the
number of dimensions is generally low. Moreover,

if the domain of the multispread is variable. again
a global multuspread can be performed on a tem-
porary array and conditionally store the data ac-
cording to the real domain.

These {igures may seem quite high: however.
all the available parallelism is exploited. More-
over. for static multbroadcasts. the solution is op-
timal in the sense that there is only one step. This
contrasts for instance with the CM-5 broadeasiing
capabilities. which are limited to one processor at
a time.

5.3 Multireduction

The {multi- reduction differs from the {mulu-)dif-
fusion in the sense that the network has 10 com-
bine values. Combining values means that the
network switches can forward a unique result
computed from its inputs by an associative opera-
tor {(sum, max). We can realize the static {muli-}-
reducton by combining butterfly with our net-
waork: Fach stage of the butterfly is executed by a
crossing of our network and the combining opera-
tion is realized on the processors. Thus. the num-
ber of routing steps is equal 1o the number of
stages in the butterfly. i.e.. log P.

In the case of parametric {muhi-jreduction.
again we process a parametric shift to move the
data o a fixed position {for instanee beginning at
processor 0): then we apply the static (muli-} re-
duction with a conditonal store and process a
parametric shift to move the result w the correct
position, Thus, it takes 3 log P steps.

5.4 Special Intrinsics and Functions

We have already shown that the FFT with a static
argument may be transformed into a fully stade
routine. Systolic algorithms provide fully static im-
plementatons of the linear algebra intrinsics. For
instance, the following algorithm realizes MAT-
MUL (MATRIX-A, MATRIX-B):

C matrix conditioning
Forall (i1 = 1:n)
CSHIFT(MATRIX-A, DIM=2, 1i-1)
Forall (1 = 1:m
CSHIFT ({MATRIX-B, DIM=1, i—-1)
R=0
C iterative computation
do k=1, n
R = R + MATRIX-A * MATRIX-B
CSHIFT(MATRIX-A, DIM=2, 1)
CSHIFT (MATRIX-B, DIM=1, 1)
end do
C the *product is a pointwise product



This algorithm was first designed for reasons
that are similar to our objective. i.e.. 10 get the best
performance from a grid network and o avoid
general communications. The grid network may.
in turn. be emulated under the general assump-
tions stated at the beginning of this section. with
one step for each of the grid NEWS (North East
West South) directions.

5.5 Comparison

Comparisons between theoretical studies and ac-
tual machines are both presumptuous and unre-
alistic. Thus. the following results are not in-
tended to compare what would be the execution of
any program on the CM-5 and on a possible static
machine. We consider the figures from the CM-5
network only as a testbed. i.e.. giving the orders of
magnitude for the performance of a recent dy-
namic routing network.

Two parameters characterize the performance
of a network: Let r, be the maximal network
bandwidth per node and s the time to (ransmit a
zero-sized message. To an approximation. r, de-
pends on the network bandwidith and on the
source and destination memory bandwidrh. With
pipelined communications, the latency of a data
transfer is

T =s+L/r,. 1

where L is the data transfer size. With careful op-
timization, in the infinite dara-size limit, the per-
formance will be limited only by the processor’s
performance if the communication-to-computa-
ton ratio is lower than 1. and by the asvmptotic
network performance {r,,} if this ratio is larger than
1. In fact. assuming equal bandwidth perfor-
mance. being better on “litde’” problems is the
only advantage that one model has over the other.

We consider two characteristic {igures for this
comparison: T and Lq.. the size for which the
network reaches half of its maximal bandwidth.
Ly, is the communication analog of the so-called
ny» for vector computations {12 . 7" measures the
performance for programs where significant data
transfer pipelining is not possible. The reason may
be a verv low virtualization ratio or the peculiar
characteristics of the algorithm. For instance. a
blocked algorithm with block data distribution will
provide few communications: if the communica-
tions are not overlapped with the computations.
71 will give the actual performance in most prac-
tical cases. On the other hand. Ly gives one esti-
mate of what would be an effective size for a prob-
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lem if the communications dominate the
computations, but can be arranged to exploit fully
the network bandwidth in the asvmptotic limit.

Many different values of the CM-5"s perfor-
mance have been reported. We consider the ex-
perimental values in [23] with the vendor mes-
sage-passing library CMMD 1.3.1. and the values
associated with the Active Message model 18]. It
should be noted that CMMD 1.3.1 is the lowest
level general-purpose communication library and
may be considered as assemblyv-level program-
ming. The results are based on permutation com-
munications.

For the static network. we wanted 1o assess (wo
speedups separately. The first comes from the
static execution model. assuming off-the-shell
technologv for the network design. The second
comes from the fact that a network intended for
this model can be designed with a more aggressive
technology than a message-passing network. be-
cause its functionalites are simpler. Hence. we
consider two cases: equal bandwidth performance
and the network we are currently designing (4
{(fast network in the following). For the equal
bandwidth network. we have 1o assess raw hard-
ware latency for a 512-processor machine. for
which the figures of the CM-5 cannot be used be-
‘ause they involve the routing delav. We consider
a 600 ns latency: this figure was reached by the
GF11 using 1985 technology [177. Table 6 shows
the estimates for the translations patterns using
formula 1. For the CM-5. the results do not de-
pend on the distinction static or parametric. For
the static network. we use the resulis of Secdon
3.1: thus. the parametric value for I is nine times
its value for the static case (using log 512 = 9}:
this comes from the fact that the consecutive
translations must proceed in a lockstep fashion.
Both implementations of the static model outper-
form the CM-5 network with the vendor message-
passing library by one o two orders of magni-
tudes. With active messages. both static networks
are better for the static translations. but only the
fast network remains better for the parametric
ones.

As no data concerning broadcasts and reduc-
tions were available to the authors. we had 1o limit
our numerical comparisons to the translation
case. Nevertheless, we must stress the following:
for the CM-5. broadcasts and reductions use the
control network: as it is a usual binary wee [20].
no multioperations are allowed. Thus. even if
multioperations incur high penalization in our
model. this may be lower than pure sequentaliza-
tion.
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Table 6. Performance for Static and Dynamic Routing

CM-5 Static
CMMD Active Messages Equal Bandwidth Fast Network

Network . (MBvte/s) 10 10 10 128

parameters s (us) 97 3.3 0.6 0.3
Statie T (s} 98 4.1 1.4 0.4

translation [.1/2 (Byte) 970 33 6 39
Parametrie T 98 4.1 12.6 3.6

translation  L1/2 970 33 6 39
6 CONCLUSION ACKNOWLEDGMENTS

The key idea of the static model is to adapt the
RISC principle to communications. i.e.. to be op-~
tumal on the most frequent cases and correct on
the others. Both the experimental results and the
gross performance evaluations developed in this
article show that the static model provides a sig-
nificant speedup over dvnamic routing. However,
these figures isolate the network behavior,
whereas the static model has consequences in
other parts of a parallel architecture. With syn-
chronous communications, all the processors
have to be synchronized at each network cvele.
This synchronization may be realized either by
synchronization barriers or by a dedicated proces-
sor architecture. Synchronization barriers are the
simplest solution, but may create overhead, be-
cause they preclude efficient network pipelining.
For the second solution. the superscalar design
and complex memory hierarchy of recent micro-
processor architectures create many pipeline haz-
ards. As adjusting the instruction threads by the
compiler may be impossible. a VLIW-stvle archi-
tecture is recommended.

More generally. the current situation in parallel
architectures is unbalanced. Many detailed stud-
ies are available about the performance of the
processor’s different parts (functional units,
caches, . .. However. experimental data about
communications are sparse. and, except in a very
few cases, mainly concern simple and svnthetic
situations. Our future research in this area will
gather other experimental data about applica-
tions; in particular, the development of HPF 10
provide richer semantics than previous parallel
Fortran and better communication statistics. In
addition, we want to investigate the possible soft-
ening of the static model, e.g., using svnchronous
on-line routing in multistage networks would allow
the direct execution of a set of dynamic communi-
cations.

The authors thank F. Cappello, F. Delaplace. and
D. Etiemble for many fruitful discussions. The de-
tailed comments of the anonvmous referces were
of great help in making this article more readable.
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