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Abstract

Design rules express constraints on the behavior and gteuof a
program. These rules can help ensure that a program folleses a
of established practices, and avoids certain classesaferr

Design rules often crosscut program structure and enfgrcin
them is emerging as an important application domain for Aspe
Oriented Programming. For many interesting design ruleseat
general purpose AOP languages lack the expressivenesartceh
terize them statically and enforce them at compile time.

We have developed a domain specific language called Program
Description Logic (PDL). PDL allows succinct declarativefidi-
tions of programmatic structures which correspond to desige
violations. PDL is based on a fully static and expressiven{ooit
language. PDL pointcuts allow characterizing a wide rarfggee
sign rules without sacrificing static verification.

We evaluate PDL by comparing it to FxCop, an industrial
strength tool for checking design rules.

Categories and Subject DescriptordD.2.14 [Software Engineer-
ing]: Software/Program Verification; D.3.3Pfogramming Lan-
guage¥ Language Constructs and Features

Keywords Aspect-Oriented Programming, Design Rule

1. Introduction

Design rules constrain the structure or behavior of a progaad
express desirable programming practices. Examples iadtydis-
tic guidelines, library usage rules, and correctness pti@se

Design rule checkers take a design rule specification, atd st
ically check a program for violations. This allows defeatsbie
caught early in the development process (i.e., compilgtiand
may catch errors that are not evident in testing. To enceutiaig
practice, programmers must be allowedeasily encode design
rules in a form that can be consumed by a checker.

A commonly used approach to building a design rule checker
is as a framework with an API which provides a means of inspect
ing the program. Examples of this approach include FxCopit]
FindBugs [18]. These rule checking frameworks come withrgea
number of generic, predefined rules. However, because afitine
plexity of the APIs and the imperative nature of the rule dgéins,
adding new rules is difficult.

Aspect Oriented Programming (AOP) is emerging as a more
declarative alternative to imperative rule checking fraumiks. Re-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD '07 March 12-16, Vancouver Canada.
Copyright(© 2007 ACM 1-59593-615-7/07/03. . . $5.00

63

cent AOP literature has explored using AspectJ [20], a geipeir-
pose AOP language with a dynamic joinpoint model, to encede d
sign rules but have found that it lacks the ability to expremsie
static properties. For example, in [22], the Law of Demetasw
encoded using AspectJ. Variants of this design rule areessped

in terms of static program elements and thus could in theery b
checked statically. However, limitations in the pointcotiadvice
model in AspectJ prevented static checking. This led thbaaat

of [22] argue for extensions to AspectJ-namely, static toois
and advice-which allow static aspects. Also, in [26] it i®w8h
how aspects can be used to enforce certain design rules io-a pr
gram. Several examples of how this can be done in Aspect] are
given. The authors also describe some rules which cannox-be e
pressed in Aspect]. These examples motivate the need for add
tional pointcuts on static program elements. The authonslode
that an AOP approach to encode and enforce designs is desirab
but AspectJ’s joinpoint and pointcut mechanism does nowefor
sufficient static expressibility.

In this paper we present a domain specific aspect language
called Program Description Logic (PDL). PDL is designedtfo
specific purpose of statically checking design rules. A PDa-p
gram consists of a list of pointcut advice-pairs. Each pmitt
advice pair represents a design rule. The pointcut matciods- v
tions of a design rule, and the advice specifices a correspgpnd
error message. Below is an example of a simple PDL design rule
definition:

field(sourceType) && public
:"Do not declare visible instance fields”

The syntax of PDL pointcuts is similar to AspectJ. Howevbe t
PDL joinpoint model, unlike AspectJ’s, is static. In otheonds,
joinpoints in PDL are static program entities such as ced#ds,
methods, and instructions in the byte-code. ConsequeRiy,
pointcuts can be fully evaluated statically. Given the pggp of
PDL, the only kind of advice is emission of compile-time erro
messages. Thus a PDL advice body is just an error messagasPDL
implemented as a bytecode tool which analyzes .NET assesnbli
finds matches to the pointcuts, and prints the corresponetirg
messages.

To evaluate PDL, we compare it to FxCop [1], an industrial de-
sign rule checker which analyzes programs for conformamdtieet
.NET Framework Design Guidelines [2]. FxCop is typical oé th
framework approach to building a design rule checker. It eam
with an extensive set of prepackaged rules, but the contpleki
its APIs and imperative nature make it hard to write custolasiu
PDL, on the other hand, allows concise declarative rule defin
tions. As expected, the declarative specification limitgresgsibil-
ity. However, we show that we can still express a substaatidl
useful portion of the FxCop rules in PDL.

We also consider the performance of PDL which is an impor-
tant concern for a rule checking tool. The checking processtm
be efficient enough that it can be placed inside of the editpite-



debug loop that forms a programmers primary work cycle. More
over, PDL must be able to scale up to check a large collection o
rules on a large program.

Our implementation of PDL is a source to source compiler
which results in minimal overhead when running the rulesdiAd
tionally, the declarative nature of PDL rules allow optiatibns
not otherwise possible. In particular, our implementatitatects
intermediate results which are shared among rules and mérge
rules together to avoid repeated computations. We cartieger-
formance measurements which shows that our implmentafion o
PDL performs comparably to FxCop.

The main contribution of this paper is the design and impleme
tation of PDL, a domain specific aspect language for the fipeci
purpose of encoding design rules. We believe this is a useful
tribution by itself and also comprises a number of more sjeci
smaller contributions which we discuss below.

First PDL has a useful static type checker that assigns types
pointcuts based on the types of joinpoints which they carcmat
We believe the type checker can detect many nonsensicatptsn
without being overly restrictive. We have formalized thepay
system and proven its soundness. The formalization gaeetais
some interesting insights into the semantics of ! pointcute
believe these static typing related contributions havepesdent
value and could be applied to other pointcut languages xmele
AspectJ, which has a similar syntactic and semantic stredtu
untyped PDL.

Second the syntax of PDL also harbors a number of novel
ideas, such as quantifiers inspired by description logidese
could be useful additions to other pointcut languages atidikeily
mesh well with any pointcut syntax inspired by AspectJ (ilee
majority).

Third, we performed a detailed comparison between dedlarat
PDL and an imperative, industrial strength design-ruleckbein
terms of performance and expressiveness. Other comparabie
on using declarative notations for design-rules have ndopaed
such a comparison. This is unfortunate since we believestinzt
industrial tools are their most important competitors iaqtice.

Fourth, PDL exemplifies the idea of applying database opti-
mization techniques in the context of pointcut languagénup-
tion. While the similarity between pointcut languages anerg-
languages is relatively apparent and has been pointed dortebe
(e.g., [13], [16]) real examples that exploit this idea fptimiza-
tion are currently few.

The remainder of this paper is organized as follows. Se@ion
provides a description of the PDL language and semantias. Se
tion 3 discusses rule evaluation and optimization tectesg$ec-
tion 4 provides a comparison between PDL and FxCop in terms of
expressibility, conciseness, and performance. Sectioagepts re-
lated work. Finally, Section 6 concludes and discussesduwtiork.

2. PDL Pointcut Language

A PDL program consists of a series of pointcut-advice p&icsnt-
cuts are predicates which match joinpoints. PDL has a gtatie
point model. This means that PDL joinpoints are static paogr
elements and that PDL pointcuts identify (match) sets dfcspao-
gram elements.

In this section we present the details of the PDL pointcut lan
guage, including a formal semantics and typing rules. Weepre
the semantics in two stages. We first present a simplifiegpeat
version of PDL and then discuss how static typing is added.

2.1 Untyped PDL

Pointcuts in PDL are declarative expressions with a symtsgifed
from Aspect]J and Description Logics [4, 6]. Pointcut expiess
are built up from unary and binary primitives and can be caradi
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p : Pointcut
pu=u UNARY
| b(p) BINARY
| p&&p AND
| plip OR
| !'p NOT
| existsb.p EXISTS
| forallb.p FORALL
| <nb LESS
u : Unary Pointcut
=1id UNARY-PRIMITIVE
| pat’ PATTERN
b : Binary Relation
b:=1id BINARY-PRIMITIVE
| b+ TRANSITIVE
| bxb COMPOSE
id : Identifier
n : Natural number
pat : Signature Pattern

Figure 1. The syntax for a simplified version of the PDL pointcut
language in BNF.

using and, or, and not operators (&%, and !). There are forms for
several types of quantification including existential amiversal.

A simplified syntax for the PDL pointcut language is shown in
Figure 1.

A pointcut expression matches a joinpoint, or equivalermtér
fines a set of joinpoints for a given program. This sectiorcdbes
pointcut semantics in terms of sets of joinpoints; we algothat
a pointcutmatchesa joinpoint if the joinpoint is a member of the
pointcut’s set. Figure 2 presents the denotational segsotiPDL
pointcuts. The remainder of this section will elaboratelengyntax
and semantics and provide examples.

Primitives PDL provides a number of predefined primitives.
Primitives are classified as either unary or binary dependin
the number of joinpoints considered for a match. Unary gives
match a joinpoint based on various properties (e.g., thesacper-
missions of a field). Binary primitives match a joinpoint pand
express binary relations between joinpoints (e.g., the bezsof a
type).

Unary primitives specify a set of joinpoints. The unary ptine
sourceType denotes the set of all types declared in the program.
Similarly, thepublic primitive denotes all program elements that
are declared witlpublic access—this includes types, fields, and
methods.

A unary primitive is used in a pointcut expression by simply
writing its name. The following is a simple design rule usinary
pointcuts:

sourceType && public && nested
:"Nested types should not be visible”

The logical && operator connects the three primitives sa the
compound pointcut will only match joinpoints that matchaflthe
primitives (i.e., the resulting joinpoint set is the inecton of the
three pointcuts).



J := The set of all joinpoints in a program

j7 ]L S J
P : Pointcut — P(J)
Plu] = Ulu] E-UNARY
P[b(p)] = {41 | (1, 72) € B[bl, j2 € Plp]}

E-BINARY
P[[pl &&pQ]] = P[[p1]] ﬂP[[pz]] E-AND
Plp: || p2] = Plp:] U P[p2] E-OR
Pllpl ={jlJj ¢ Plpl} E-AND

Plexistsb . p] = {j2 | 3(j1, j2) € B[b] : j1 € P[p]}
E-EXISTS

Plforall .. p] = {j2 | V(j1,j2) € B[b] : j1 € P[p]}
E-FORALL

Pl<nb] ={j2| [{j1|(1,42) € B[b]}| <n} E-LESS

U : Unary Pointcut — P(J)
Ulid] = primitive E-UNARY-PRIMITIVE
Ul'pat’'] = {j | j matchepat} E-PATTERN

B : Binary Relation — P(J x J)
Blid] = primitive E-BINARY-PRIMITVE

Blb+] = {(J1,4n) | (1, 52), - -+ (Jn—1,7n) € B[b]}
E-TRANSITIVE

{(1,33) | (41, 52) € B[b1], (42, j3) € Blb2]}
E-COMPOSE

B[b1 #ba]

Figure 2. Denotational semantics for untyped PDL.

A binary relation expresses a relationship between two- join
points. PDL provides a number of primitive binary relatiasswell
as methods for creating new binary relations from existingso
(these will be presented in subsequent paragraphs).

To construct a pointcut from a binary relatibnwe supply the
relation a pointucip to serve as its parameter. This is written as
b(p). A joinpoint j matches the binary pointcdtp) if there is
a joinpoint related tg via the binary relatiorb that matches the
parametric pointcup.

As an example, consider the design ralestract types should
not have public constructordVe encode this in PDL by writing
a pointcut which matches violations—a pointcut which spesi
the set of public constructors of abstract types. We use ithep
relation constructor to relate types to their constructors. The
PDL rule is shown below.

constructor(sourceType && abstract)
&& public
:"Abstract type should not have ..."

Notice that the parametric notation of binary pointcuts DLP
is similar to thecflow pointcut in Aspect]. Theflow pointcut
is parametric because it takes another pointcut as a paamet
In contrast, thecall pointcut in AspectJ takes only a method
signature as a parameter. In PDdall is a binary relation, so
its parameter is an arbitrary PDL pointcut. This allows fbe t
expression of more complex constraints on the callee meffad
example, in the expression

call(method(forall field . static))
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Name Matches

sourceType types defined in the program
sourceNamespace | namespaces defined in the program
public public types, or members

private private (internal) types, or members
sealed sealed types and members
interface interface types

generic generic types and methods
virtual virtual members

abstract abstract types or members

static static members

nested nested types

Table 1. Selected unary primitives

the pointcut
method(forall field . static)

acts as the parameter. The semantics offtihal expression will

be explained later. For now, we will say that the expressiatchres
methods of types whose fields are all static. Thusctid pointcut

will match methods that call a method declared in a type whose
fields are all static. Note that such a complex constraintois n
allowed in AspectJ.

PDL defines a variety of native pointcuts that we found useful
for expressing design rules. A selection of these pointutie-
scribed in Tables 1 and 2. Pointcuts in PDL roughly corredpon
the types of operations provided in a typical API for program
spection. For example, an inspection APl would have opmrati
to examine the declaration’s of a program element (e.gglkcife
a type is public, abstract, or sealed). These methods pamesto
unary primitives in PDL. The inspection API would also praei
relationships between elements (e.g., get the membersyqied. t
These relationships correspond to binary primitives in PDL

Many of the primitives in PDL are static versions of AspectJ
pointcuts. For example, the AspectJ versiorsef matches run-
time field writes, while the PDL version afet matches byte-
codes corresponding to field writes. Similarly, the Aspeet®ion
of cflow encodes a runtime relationship whereby one joinpoint is
in the dynamic extent of the other. In contrast, the PDL w#rsi
cflow Uses a static approximation—reachability in the call graph

Signature Patterns. In order for pointcuts to refer to specific
types, methods, constructors, or fields, PDL provides aiootéor
signature pattern pointcuts. Signature patterns areenréhclosed
in single quotes with a form similar to that used in Aspectd. |
PDL, signature patterns can be thought of as special unémycpés
which match joinpoints based on theignature For example, the
expression

'void x.Setx(x)’

creates a pointcut which matches methods declared in amy typ
which return void, whose name starts with “Set” and takesiglsi
argument.

Signatures are a useful mechanism to match specific elements
from a set of joinpoints. For example, we often want to focus
a design rule on a particular method. To encode the design rul
Finalizers should be protectedie use a method signature to select
only the finalization methods.

method(sourceType) && ' void *.Finalize()’
&& ! protected
:"Finalizers should be protected”

In AspectJ signature patterns are used as parameters ts poin
cuts such agall andset. However, in PDL, signature patterns



Name Matches

member(p) members declared in a type that matches

method(p) methods declared in a type that matcheg

constructor(p) | constructors declared in a type that
matche

field(p) fields declared in a type that matches

call(p) methods or bytecodes which call a methpd
that matcheg

cflow(p) methods or bytecode whictouldbe in the
dynamic extent of a method matchedby

within(p) bytecodes that implement a method which
matche

type(p) types of a field, property, or namespace that
matches

derivedType(p) | types that are derivefftom a type which
matches

baseType(p) types that are derivedy a type which
matche

argument(p) arguments of a method that matches

attribute(p) attributes of a type, method, field, property,
or event that matchegs

set(p) bytecodes which set a field that matches

Table 2. The semantics of selected binary primitives. Semantics
are described with respect to the parametric pointcut

are first-class citizens—they are pointcut expressions iEhpos-
sible because PDL’s joinpoint model includes the elemestshed

by the signature pattern (i.e., types, methods, and fieltmjs sig-
nature patterns can be used as any part of a PDL pointcutsexpre
sion, as opposed to in Aspect] where they are limited to rsgrvi
as parameters to a fixed number of expressions. Note thahisis
generalization which allows PDL to make pointcuts likell and
set parametric (as discussed previously) .

Quantification. In order to allow for more complex reasoning
about joinpoints and their relationships, PDL supportsessv
forms of pointcut quantification. The general form of thege e
pressions was inspired from the Description Logics [4] falism
which provides a concise syntax and clean semantics foesept-
ing knowledge. In Description Logic, expressions are aoicsed
from unary and binary predicates. This meshes nicely with'$D
concepts of unary pointcuts and binary relations.

Quantification in PDL involves checking some condition on
a range of values. In practice, this allows a pointcut to matc
joinpoint based on properties of related joinpoints. Faaregle,
the pointcut

forall field . static

matches types whose fields aléstatic.

Quantification expressions take a binary relation, callesl t
range, which generates the range of the quantification. fana
point j, using ranger (a binary relation), the range of a quantifica-
tion is defined as all valuessuch that(z, j) € R.

An existentially or universally quantified expression tskebi-
nary pointcut (the range), and a pointcut expression (thdition).
An exists(similarly, forall) expression matches joinpoijtif one
(similarly, all) of the range values matches the condition pointcut
C(.e,z ).

Consider the design rul®verride GetHashCode() upon over-
riding Equals() A violation of the rule is a type which declares a
method (i.e., therexistsa method) forEquals, but does not de-
clare aGetHashCode method. We can express this in PDL as

sourceType
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&& existsmethod . 'bool *.Equals(object)’
&& ! existsmethod . 'int *.GetHashCode()’
:"Override GetHashCode and Equals”

Another type of quantification expression is the cardigalit
limit. It takes a range and a natural number, and checks Higat t
number of values in the range is below, above, or equal-to the
bound. Cardinality limit expressions have the form

[<,>,=] n range

wheren is the integer bound.

A design rule that makes use of the cardinality limiNames-
paces should contain 5 or more typ&¥e can encode this with the
following rule:

sourceNamespace && < 5type
:"Avoid namespaces with few types”

The pointcutsourceNamespace matches all namespaces declared
in the assembly. The rangeype—is used to generate all of the
types declared in a namespace, and the pointcut will mattieié
are less than 5 such types.

Composition. The composition of two binary relations is denoted
by placing thex operator between the two binary relations expres-
sions. Thus, the expressi6rg(x) is equivalent tcf(g(x)). This no-
tation can be used as syntactic sugar to remove nested pesent
However, a composition is required when a single binarytieia

is called for (e.g., as the range in existsexpression).

For example, to get a binary relation which matches pairs of
types and the types of the fields they contain, we would write
typexfield. We use this composed pointcut to check the design
rule Types with disposable fields should also be dispos#&titeck-
ing the rule will involve looking at the type of a field (hendeet
composition) and is written as follows

sourceType
&& existstypexfield
. implements('System.IDisposable’)
&& ! implements(’'System.IDisposable’)
: "Types with disposable fields should \
be disposable”

This pointcut is explained as follows. The first line will mhtall
types declared in the program. Taeistsexpression in the second
and third lines will match only those types with a field whistof a
type that implements theDisposable interface. Finally, the last
line of the pointcut matches those types which do not impleme
IDisposable and so violate the rule.

Transitive closures. The (anti-symmetric) transitive closure of a
binary relation may be obtained by appending + to the exjmess
Transitive closures allow PDL to express a limited meanseef r
cursion. For example, the subtype relation may be obtaisdatiea
transitive closure of theerivedType relation:

derivedType+

This provides a convenient way to define new binary relatmmes
the graph of certain program structures.

2.2 Typed PDL

So far we have considered all joinpoints to be of the same Wyfge
now present a static type system for PDL that distinguiskéséden
different types of joinpoints and assigns static types tmtpat
expressions based on the types of joinpoints they can match.



Joinpoint Type Description

namespace Namespace

type Type

method Method (including constructors)
argument Method argument

field Field

property Property

event Event

attribute Attribute of a program element
genericArgument | Type argument (to a generic type)
bytecode Instruction in the program

Table 3. PDL joinpoint types

T = {type, method, field, ...}
tt; €T
o,01,02 € P(T)
B, B, B2 € P(T x T)

b: g p:o
T-BINARY
b(p) : {tl | (t17t2) S ﬁ, to € O’}
pP1:01 P2 02
T-AND
p1 && p2 i o1 Noa
P1:01 P2 02
T-OR
I ) 1] ifor=00rce =10
PrilP2:Y 5 U, otherwise
P9 T-NOT
Ip:o
b:p p:o
T-FORALL
forall b.p : {t2 | (t1,t2) € B,t1 € 0}
b:p p:o
- T-EXISTS
existsb.p : {t2 | (t1,t2) € B,t1 €0}
b: 3
T-LESS
<mnb:{ta | (t1,t2) € B}
b:8 T-TRANSITIVE
b+ : {(thtn) | (t17t2)7 B (tn*ht”) € B}
biifr ba:f T-COMPOSE

by x by : {(t1,ts) | (t1,t2) € Bi, (t2,t3) € B2}

Figure 3. Typing rules for pointcuts and binary relations.
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2.2.1 Typing Derivations

PDL’s type system distinguishes between different typepiof
points such asype, method, field, and bytecode All joinpoint
types supported by the current implementation of PDL areveho
in Table 3. Each of these joinpoint types corresponds tojaidts
subset of joinpoints in the program. In general, a singlentooi
may match joinpoints of several different types. Thereftire type
system assigns a set of joinpoint types as the type of a paintc
Similarly, because the semantics of binary relations igifms of
pairs of joinpoints, the type of a binary relation is the paif join-
point types it could match.

PDL primitives come annotated with their type. For example,
the pointcutpublic has type{type, method, field, property } sig-
nifying that it matches joinpoints of typype, method, field, or
property. Similarly, the binary relatiomember relates method,
fields, or properties to their declaring type, and thus hae ty
{(method, type), (field, type), (property, type)}.

In typed-PDL, a pointcut expression’s type is derived bydui
ing up from the known types of the primitives. The typing siee
shown in Figure 3.

Any pointcut expression or binary relation that gets assigh
as a type is considered a type error. This confirms to thetiotui
that pointcut expressions which could never yield resuiésret
meaningful. A subtlety in the T-OR rule is that we have to trea
() as a special case to ensure that an expression which coatains
erroneous subexpression is itself considered erroneous.

As an example, the type system determines the type of

sourceType && interface

by taking the intersection of the two primitive types. Thtise
pointcut has typdtype}. While, for the pointcut

sourceType && virtual

the intersection of the two primitive typesfsand so PDL would
generate an error message when the pointcut is compiled.

2.2.2 Soundness

It is interesting to note that the static typing rules givemehare
unsound with respect to the untyped semantics given in Eigur
For example, the typing rule T-NOT is unsound. To see this; co
sider the pointcutinterface. Our type system assigns the point-
cut type{type} (the same type asnterface). However, the un-
typed semantics does not explicitly or implicitly limit thenge of
matched joinpoints to be of tyggpe. The pointcut thus matches all
kinds of joinpoints that aren’t even types, for example, étahes
any joinpoint which is of typemethod (since no method is an in-
terface).

One possible way to address this issue would be to use an
alternative, sound typing rule:

p:o
v f 0 ifo=0or
PPy T otherwise
We didn’t adopt the above typing rule because it seems overly
permissive. For example, an expression like

T-NOT sound

field(sourceType) && ! call(’void *.foo()’)

would pass type-checking. We felt that such expressiortgerat
shouldn’t pass type-checking since fieldaver call anything so
a pointcut intent on matching fields that do not call a paléicu
method seems ill-conceived.

Thus, instead of making the type system sound by adopting
some overly relaxed typing rules we decided to keep the nere r
strictive typing rules and restore soundness by adoptinifer-d



T[o] := U {j |j:t} allofthe joinpoints of a given type

Pr[('p):o]l=A{jlj€Tlol,j ¢ Prlp: o]}
ET-NOT
Pr[(forallb . p) : 0)] = {jz2 | j2 € T[],

V(i1 j2) € B[b] : 51 € Prlpl}
ET-FORALL

Prl(<nb): o] ={j2]j2 € To],

|{71 | (j1,72) € B[b]}| < n}
ET-LESS

Figure 4. Typed semantics for PDL (only the clauses which differ
from the untyped semantics are shown

ent typed semantics which is shown in Figure 4. The typed se-
mantics restricts matched joinpoints to those that are ensthtic
type derived for the pointcut. Not all evaluation clausesctht® be
changed. Intuitively, the problem arises only where thgped se-
mantics allow a joinpoint to match because inat an element of a
pointcut. In such cases we cannot assign a sound type thatres m
restrictive tharl' (the set of all types).

At first sight, our typed semantics may seem like “an ugly patc
job”. However we believe that it is actually a more intuitseman-
tics, in the sense that where the typed and untyped semdiffes
the typed semantics usually reflects the meaning we wouldatxp
whereas the untyped semantics does not. For example, eotiséd
pointcut

abstract && ! implements('ISerializable’)

Under the typed semantics it matches abstract types thaitdmn
plement ariSerializable interface. However, under the untyped
semantics it also matches all abstract methods.

With the typed semantics we can formulate the following sbun
ness theorem.

THEOREM1 (Soundness).
pio,c £ 0 Prlp:o] C T[o]

The proof is straightforward by structural induction on ibg
derivations.

=

3. Implementation

This section provides an overview of the implementationhef t
PDL rule checker. The checker takes a set of PDL design rulés a
looks for violations (matches to the pointcuts) in a .NETeassly.
Our implementation is a source-to-source compiler. Thegslan
performs type checking and optimization. The output of thec
piler is C# code which performs the analysis encoded in the PD
rules. The resulting C# code is then compiled to bytecodetlaad
analysis is run on a program to find violations of the desidesiu
We see the following advantages to our implementationt,Firs
by generating (relatively straightforward) imperativedeowe
achieve good performance when the code is compiled to bygeco
The code we generate also provides a convenient way to irgec
output of the pointcut-compiler to verify its correctneSgcond,
our primitives are defined in terms of imperative methodscivhi
makes it relatively easy to extend the language with new {prim
itives. Finally, because we often have multiple options ow o
generate code, the compiler has flexibility to chose an efftglan
to perform the analysis.
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3.1 Code Generation

The C# code produced by the compiler makes calls to an abstrac
interface for program introspection. The introspectioteiiface
represents various types of program elements (e.g., typet)-
ods, fields) and provides methods for examining their ptigeer
and relationships. The introspection interface was defiaedlow
multiple back-ends to implement it. We currently have a cletep
implementation using Microsoft C&land partial implementations
using Microsoft Phoen and Mono CecHl. A back-end is speci-
fied by the user at execution time.

To implement PDL pointcuts with imperative code, we repre-
sent joinpoints as objects in the introspection API, andosthods
of these objects to implement the primitive pointcuts. Plaves
primitives to be implemented by a number of different sgas.
For example, the unary primitive@urceType can be implemented
with a method that generates all of the types declared inthe p
gram, or with a method that takes a type as a parameter andsetu
a boolean representing if it was declared in the programs &hi
lows the compiler to chose an appropriate method to callmitipg
on the context. For example, in a context where types arglesin-
merated for another reason, code that does something witheso
types could be

foreach (Type t in ...)
if (IsSourceType(t))
/I Do something with source type

Whereas, in another context source types could be enurddrate
scratch

foreach (Type t in SourceTypes())
// Do something with source type

The PDL implementation makes it easy to define new primi-
tives. PDL has an extension APl with which to register a bigdi
between a name of a primitive and a method in the introspectio
API that provides an implementation of the primitive. No add
tional meta-data needs to be provided. All necessary irdtion
(e.g., type information for the purpose of type checkingjaésved
from the signature of the method.

To compile a pointcut, we must first decide on a plan for an-
alyzing the program to find the matching joinpoints. We chiét
intermediate representation arecution planlts structure and in-
terpretation is similar to the operator tree representatised in
databases [7]. In PDL, an execution plan is a graph-base@lmbd
the analysis required to find matches to a joinpoint. Edga®sent
streams of joinpoints, and nodes transform the streams.

A given pointcut may have many equivalent execution plans,
and optimization techniques may be used to determine theefios
ficient plan. The main optimization done by the current impa-
tation of PDL is to merge shared subexpression. This is destr
in the next section.

To compile an execution plan, we generate C# code which
performs the encoded analysis. For example, the PDL pdintcu

method(sourceType && sealed) && virtual

is compiled to code similar to the following (simplified forgsen-
tation):

foreach (Type t in SourceTypes())
if (t.IsSealed())
foreach(Method m in t.Methods())

Lincluded as part of the FxCop framework

2http://research.microsoft.com/phoenix/ (verified September
2006)

Shttp://www.mono-project.com/Cecil (verified September 2006)



if (m.IsVirtual())
/I Record m as violation

3.2 Optimization

There is a similarity between PDL rule checking and database
query evaluation—PDL pointcuts are program queries, amel ru
checking amounts to accessing the program to find elemern¢hwh
match the query. Because PDL rules are often run at the same ti
in a large batch, we can use techniques from database msultipl
query optimization [25] to improve performance.

Multiple-query optimization involves examining the exéon
plan to detect subtrees that produce the same result. Thetwyo
pieces are merged together to avoid a redundant calculation

As an example, consider the design rubasnot declare virtual
methods on sealed typemndDo not declare protected methods on
sealed typesiVe encode these rules as

method(sourceType && sealed) && virtual
:"rulel”

method(sourceType && sealed) && protected
1"rule2”

The merging optimization detects the redundancy in computi
methods of sealed types. This computation is then mergedrto g
erate code like the following:

foreach (Type t in SourceTypes())
if (t.IsSealed())
foreach(Method m in t.Methods()) {
if (m.IsVirtual())
/I Record m as a violation to rulel
if (m.IsProtected())
/I Record m as a violation to rule2
}

Rule checking frameworks typically achieve a similar effefc
sharing by implementing rules as visitors to certain coeenents.
The framework will iterate through each code element, args pa
the element to th&isit() method for each rule. Thus, the cost of
retrieving each element is amortized over all of the rules.

In a typical framework, the visit-able elements are fixed to a
small number of basic code elements (e.g., types, methodls an
fields). However, there is often sharing between rules atalgr
larity not supported by the framework. For example, imagheze
are several rules which govern the way interfacghould be im-
plemented. In such a case, there are two options to encodel¢ise
using the visitor pattern:

1. Implement each rule as a separate type visitor. Eachowisit
first checks if the type implements the does the rest of its
checking.

2. Combine all of the rules into a single type visitor. Whepa:
ing a type, the visitor first checks whether the type impletmen
I. If so, the combined rule can check each of its constituent
rules.

The first option maintains modularity (the rules are all safy
encoded), while sacrificing performance (each rule sepigratl-
culates the same condition). The second option makes ttasitep
trade-off.

By using a declarative language like PDL, combined with the
merging optimization, we can achielsethmodularity and perfor-
mance. We can encode the rules separately and rely on théleomp
to weave them together.
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Category #rules | #in PDL | ratio
Design 59 39 .66
Globalization 7 2 .29
Interoperability 16 2 13
Mobility 2 0 0
Naming 26 2 .08
Performance 22 4 .18
Portability 3 0 0
Security 26 5 .19
Usage 40 20 .50
Total 201 74 .37

Table 4. Overview of the FxCop rules encoded in PDL.

4. Comparison with FxCop

We evaluate PDL by comparing it to FxChan industrial strength
checker for the .NET Framework. FxCop comes with 201 prede-
fined rules most dealing with the .NET Framework Design Guide
lines [2]. Rules in FxCop are implemented in C# using a visito
pattern.

We use FxCop to provide several points of comparison with
PDL. First, we investigate expressibility. Using a dedi@mlan-
guage like PDL, we expect a loss of expressibility over a gane
purpose approach. Comparing with FxCop allows us to quantif
this loss, in terms of the fraction of FxCop rules that we cgn e
press in PDL. Next, we investigate the conciseness; we éxipec
declarative approach of PDL to result in more compact rufe de
nitions. Then, we compare precision, how well the PDL versib
a rule corresponds to the FxCop version. Finally, we comgare
performance of the two tools.

4.1 Expressiveness

To evaluate the expressiveness of PDL, we went through all of
the FxCop rules and attempted to encode them in PDL. Some
rules were straightforward to encode in PDL, while othersewe
obviously not suitable.

The results of this process are shown in Table 4. In totabthes
201 rules defined in FxCop divided into 9 sections. We encdded
of the FxCop rules in PDL. PDL is best able to capture the aesig
and usage rule categories; in both of these categories vebbreo
encode at least half of the FxCop rules.

While we are able to express 74 of the FxCop rules, we must
emphasize that the analysis encoded in PDL sometimes differ
from that encoded by FxCop. This is not unexpected because de
sign rule checkers like FxCop and those defined with PDL are es
sentially opportunistic in nature. Rather than actuallgogting the
truly interesting property, which is often dynamic and attiably
hard to verify statically, design rule checkers are oppustic in
that they encode an analysis which checks some approximatio
the interesting property that is easily checkable with tvedlable
machinery. In some cases, the PDL version is closer to thet"sp
of the design rule, and in other cases, FxCop does a bettefgob
an example of a rule where FxCop performs a more accurate anal
ysis consider the rulBispose methods should call base class dis-
pose The analysis encoded in PDL simply check that there exists
a call to the base class method within the dispose method- How
ever, FxCop uses a more precise data and control flow anadysis
determine if the base class method is calledaimpaths through
the method. Examples where PDL is more accurate are those us-
ing acflow pointcut. FxCop uses a fairly crude approximation by

4Version 1.35



Category Total J P] C|]O
Design 200 6| 7| 7] O
Globalization 5/ 1| 0| 4|0
Interoperability 14| 0|13 1| O
Mobility 2] 0| 0] 2|0
Naming 24| 2| 4|14 4
Performance 18| 3| 8| 4| 3
Portability 3] 0| 1] 0] 2
Security 21| 2113 6| 0
Usage 20| 3 9 8| 0
Total 1271 17| 55] 46| 9
Table 5. Overview of the reasons PDL was unable to express

FxCop rules. Columd is due to the joinpoint modeR is due to a
lack of primitives,C is due to a complex analysis, afdis other.

considering call-chains of at most length 2 whereas PDLidens
call-chains of any length.

length is 4 lines (including the line for the error messagerause

we do not have the source of FxCop available, we cannot measur
the length of the FxCop encodings. However, we can, with the
help of a disassembler, examine the rule assembly and get an
approximate idea of the length. We conclude that the sntalles
FxCop rules are on the order of 10 lines, and the largest oorther

of several hundred. Thus, as expected, itis clear that ttladdive

PDL encodings are much more concise than those of imperative
FxCop.

4.3 Precision

As was mentioned previously, there are often semanticrdifiges
between the encoding of the same rule in FxCop and PDL. To
investigate the consequences of these differences, wéeathdice
74 rules on the Spring.Net Framework [3] using each tool and
compared the results. FxCop reported 110 violations, wWhibd
reported 147. The two tools agreed on 109 violations, PDbantep
38 that FxCop did not, and FxCop reported 1 that PDL did not.

Of the 38 violations that PDL alone reports, 17 were due to

Of the rules that PDL cannot express, there are three generalthe fact that FxCop was able to determine that the prograra use

reasons—either the rule deals with elements missing frorh PD
joinpoint model, PDL lacks the primitives to express an gsial or
there is an intrinsic complexity in the rule that was not eggible

in PDL. Table 5 provides a breakdown of the FxCop rules thdt PD
could not express.

Missing joinpoint type. Some FxCop rules deal with program
elements for which there is no corresponding joinpoint inLPD
This includes rules dealing with assemblies, local vadéapbhnd
literals. Naturally, PDL is unable to express these rules.

Lack of primitives. Some of the FxCop rules deal with pro-
gram elements which PDL has joinpoints for, however PDL cur-
rently lacks the primitives to check the relevant propertaf
the joinpoints. An example of this sort of rule 3o not catch
general exception typewhich requires checking the type of a
catch expression to determine if it is of tyfException or
ApplicationException. PDL lacks primitives which can pick
out catch exceptions and examine their type, and so it is$sipte

to express this rule.

This could be remedied by adding the appropriate primitives
One option would be to add a binary primitivatches where
catches(p) matches a bytecode catch instruction if the type it
catches matches pointcuit Then the rule could be expressed as

within(sourceType)
&& catches('Exception’

|| 'ApplicationException’)
:"Do not catch general exceptions”

Excessive complexity. Some of the FxCop rules fall into the
broad category of excessive complexity. Examples of sutdsru
range from spell checking and parsing, to more complexiogiat
ships between multiple program elements. The majority &d¢fXs
naming rules require spell and case checking on identif so
were not expressible in PDL.

As an example of a complex relationship not expressible in
PDL, consider the ruldembers should differ by more than return
types Checking this rule involves checking pairs of methods to
determine if they have the same argument types in the saree ord
Because PDL reasons about joinpoints in terms of sets, ih@@
way to capture this ordering relationship.

4.2 Conciseness

a runtime version without support for generics, and thue tff
rules which suggest generic versions of types and methdusser
“false positives” could be filtered out in PDL if such infortien
about the assembly was exposed.

The remaining 21 violations were genuine false positives. F
Cop was able to use additional logic to avoid reporting trodavi
tions, while PDL was not able to express the additional |afyie
to the limitations on expressiveness presented in Section 4

The violation reported by FxCop and not by PDL was a valid
violation that PDL was not able to detect because it dealt @it
special case of a rule that examined the string value of amagt.

4.4 Performance

We compare performance of PDL and FxCop. The Microsoft CCI
back-end is used for PDL, which is the same back-end used by
FxCop. We measure the time it takes to evaluate a set of rules
ignoring the time to initialize the checking infrastruauand load

the assembly. This measurement does not reflect the timedeed
to compile the PDL rules which could be done once and amattize
over subsequent checks.

Ouir first set of experiments measures the time to run the @4 rul
on programs of various sizes. The results are shown in Table 6
Compared to FxCop, PDL apparently executes consideraigrfa
However it should be acknowledged that it is hard to attelihts
speed-up completely to the superiority of PDL's impleméata
As pointed out earlier there are semantic differences foresaules
expressed in PDL versus FxCop. These semantic differeikedg |
account for some of the performance difference. Also, Fx@ugs
some additional work, such as storing data to later genanaport.

We believe these functionalities only marginally conttéto the
difference in running time, but because FxCop is closedesowe
had no way of disabling or otherwise objectively measuring t
effects of these features on FxCop's running time.

We also note that the merging optimization increases tHemper
mance of PDL by around 10 percent.

In order to measure scalability of PDL with respect to therul
set size and the effect of the merging optimization, we vaey t
number of rules being evaluated from 1 to 74. For eachsjzee
randomly select 50 samples of sizefrom the complete rule set.
We then check these rules on mscorlib using PDL with and witho
optimizations. The times reported for each size is the aecohthe
50 samples.

The results are shown in Figure 5. As expected, the merging

We evaluate conciseness by comparing the length of the rulesoptimization becomes more effective as more rules are atiled
encoded in PDL and FxCop. Of the 74 rules in PDL, the average the system. This is because, as the number of rules increhses
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Assembly Size | PDL | PDL-opt | FxCop
Spring.Core 296K 24 2.1 10.7
SharpDevelop.Core 1.3M 7.7 7.0 32.7
.NET mscorlib 4.2M 9.4 8.4 72.6

Table 6. Performance comparison of PDL and FxCop on several
different programs. The numbers shown are time in secones-(a
ages of 10 runs).

10 T T T T T T T
PDL ——
PDL-opt

time (sec)

! ! !

50 60 70

40
number of rules
Figure 5. Performance comparison between PDL with and with-
out optimizations as a function of the number of rules.
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is a greater number of intermediate results, and hence aegrea
opportunity for merging.

to larger code-bases. Our approach is radically opposebeset
approaches. PDL has a purely static joinpoint model andsttie
premise that PDL rules are assertions about static codeeatem
rather than runtime behavior. Thus, a developer using eguage
cannot directly express runtime properties. Instead thay e
able to code-up a PDL rule that is a static approximation tifat
is guaranteed to be relatively easy to check. In this way RBdes
off expressive power and precision for scalability.

Examples of approaches which are similar to PDL and share
its emphasis on static/structural properties are SABER 2#d-
Bugs [18], FxCop [1], Metal [17], ASTLog [9], SOUL [27], and
JTL[8].

SABER [24], FindBugs [18], and FxCop [1] are rule-checking
frameworks which allow developers to implement checkerarin
imperative language. The study presented in this paper amap
PDL to FxCop. It shows how PDL trades off flexibility to expses
a wider variety of structural properties for concise defimis and
more efficient checking. We believe FxCop is representétivthis
type of approach.

Other approaches that, like PDL, have taken a declarative ap
proach to reasoning about a program’s structure are ASThg [
SOUL [27] and JTL [8]. SOUL and ASTLog use a declarative lan-
guage that is similar in syntax and expressiveness to Pfalag
Turing complete). Similarly, GENOA [12] uses a domain sfieci
language to generate customized program analyses for Gde: co
A subset of GENOA has be proven to generate analyses which ex-
ecute in polynomial time.

JTL [8] is a logic language for querying Java programs. It
is probably the approach that is most similar in nature to PDL
There is strong similarity between the underlying semantt
both JTL and PDL. However the syntax of JTL and PDL are quite
different and follow a different philosophy. JTL's syntaxdesigned
to mimic the code elements which they match. PDL syntax is
designed to be similar to AspectJ syntax. We believe that e

There is an performance anomaly between sizes 45 and 65of the differences, some rules would be easier to expre$sRDL

where the speedup in the optimized version is almost lost. We
attribute this effect to differing memory usage pattérmgich
staggers the effect of the .NET garbage collector's adapitat
(which we are unable to control).

5. Related Work

There is a large body of work that deals with tools to checkvard
ify programs to find errors. Approaches can be distinguidieesbd
on whether they perform static or dynamic checking. Exarapém
approach that uses dynamic checking fizc andjmlunit [21].
We are mostly interested in static techniques. In the dsonshe-
low we distinguish static approaches based on whether émeir
phasis is on (static verification of) dynamic propertiestanctural
properties. The former tend to allow developers to captoter
esting behavioral properties more precisely but scaleveskto
larger code-bases. Our work falls in the latter category.

In the first category we find approaches which use model
checking and automated theorem proving techniques. Fan-exa
ple SLAM [5], ESC/ESCJava [11, 15], Vault [10], Alloy [19]nd
PQL [23]. Compared to our work, these approaches are more amb
tious with respect to the kinds of properties they intendedafy and
how these properties are specified by the developer. Eachaxgip
provides different notations for specifying constrairtattshould
hold over the execution of a program and provides an analyzer
that attempts to statically verify whether these executiore con-
straints hold. While such an approach allows developersdem
directly and precisely express dynamic properties theyirater-
ested in, the static analyzers tend to be complex and scaeviell

5The optimized version creates fewer objects, with londetithes.
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whereas other would be easier to express in JTL but we have not
performed a detailed comparison to try to quantify the peatt
impact of this.

In Metal [17], rules are expressed as state machines whech ar
applied to the execution paths of each function in a progi&ms
allows for a natural definition of, for example, rules of tlwrh
call X after calling Y which makes behavioral rules more maku
This is contrasted with PDL where rules are essentiallyiga@ver
structural properties of the program.

As we noted in Section 1, researchers are beginning to explor
AOP as a mechanism to express and enforce design rules. In ad-
dition to the work on AspectJ discussed earlier, [14] presen
checker built as a framework on top of a library for AOP. Insthi
system, rules are encoded imperatively as type visitorshumake
calls to the AOP interface to inspect the class. In contfaBi,.
provides a declarative approach.

Other research has focused on the performance of program
queries. In [16], a DataLog language for program queriesand
accompanying database system is presented. The systere; Cod
Quest, aims to efficiently execute DatalLog queries over graro
by storing the relevant relations in a database and levegagx-
isting database technology. We see this work as complimetaa
PDL, as it would be possible to target CodeQuest as another PD
back-end. Currently, the back-ends for PDL are all introipe
engines.

6. Conclusion and Future Work

We have presented PDL, an aspect language to declarativedye
design rules. PDL was inspired from the pointcut language in
AspectJ, with syntactic additions reminiscent of deswiptogics.



PDL introduces a type system to detect meaningless pofméud
modify the semantics to provide a more appropriate behavior

We demonstrated that PDL can concisely express a nonttrivia
subset of the rules checked by FxCop. Performance expeismen
show that our approach is comparable to FxCop, and can stale t
large codebases.

There are several opportunities for future work on PDL. The
results of our evaluation suggest that the expressibilitPBL
would benefit by adding new types to the joinpoint model, and
expanding the set of primitives. Additionally, we plan topkre
using PDL to encode application-specific rules. We belidnat t
using a concise, declarative language like PDL could allbes t
developer to encode design rules as they are encounteréx in t
code. Finally, there is much room for optimizations in thelLPD
compiler. For example, we plan on expanding our search gtrou
the space of equivalent plans to discover plans which aree mor
efficient execution or allow additional opportunities foerging.
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