
A Static Aspect Language for Checking Design Rules

Clint Morgan Kris De Volder Eric Wohlstadter
University of British Columbia

[clint, kdvolder, wohlstad]@cs.ubc.ca

Abstract
Design rules express constraints on the behavior and structure of a
program. These rules can help ensure that a program follows aset
of established practices, and avoids certain classes of errors.

Design rules often crosscut program structure and enforcing
them is emerging as an important application domain for Aspect
Oriented Programming. For many interesting design rules, current
general purpose AOP languages lack the expressiveness to charac-
terize them statically and enforce them at compile time.

We have developed a domain specific language called Program
Description Logic (PDL). PDL allows succinct declarative defini-
tions of programmatic structures which correspond to design rule
violations. PDL is based on a fully static and expressive pointcut
language. PDL pointcuts allow characterizing a wide range of de-
sign rules without sacrificing static verification.

We evaluate PDL by comparing it to FxCop, an industrial
strength tool for checking design rules.

Categories and Subject DescriptorsD.2.14 [Software Engineer-
ing]: Software/Program Verification; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Aspect-Oriented Programming, Design Rule

1. Introduction
Design rules constrain the structure or behavior of a program and
express desirable programming practices. Examples include stylis-
tic guidelines, library usage rules, and correctness properties.

Design rule checkers take a design rule specification, and stat-
ically check a program for violations. This allows defects to be
caught early in the development process (i.e., compilation), and
may catch errors that are not evident in testing. To encourage this
practice, programmers must be allowed toeasily encode design
rules in a form that can be consumed by a checker.

A commonly used approach to building a design rule checker
is as a framework with an API which provides a means of inspect-
ing the program. Examples of this approach include FxCop [1]and
FindBugs [18]. These rule checking frameworks come with a large
number of generic, predefined rules. However, because of thecom-
plexity of the APIs and the imperative nature of the rule definitions,
adding new rules is difficult.

Aspect Oriented Programming (AOP) is emerging as a more
declarative alternative to imperative rule checking frameworks. Re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD ’07 March 12–16, Vancouver Canada.
Copyright c© 2007 ACM 1-59593-615-7/07/03. . . $5.00

cent AOP literature has explored using AspectJ [20], a general pur-
pose AOP language with a dynamic joinpoint model, to encode de-
sign rules but have found that it lacks the ability to expresssome
static properties. For example, in [22], the Law of Demeter was
encoded using AspectJ. Variants of this design rule are expressed
in terms of static program elements and thus could in theory be
checked statically. However, limitations in the pointcut and advice
model in AspectJ prevented static checking. This led the authors
of [22] argue for extensions to AspectJ–namely, static pointcuts
and advice–which allow static aspects. Also, in [26] it is shown
how aspects can be used to enforce certain design rules in a pro-
gram. Several examples of how this can be done in AspectJ are
given. The authors also describe some rules which cannot be ex-
pressed in AspectJ. These examples motivate the need for addi-
tional pointcuts on static program elements. The authors conclude
that an AOP approach to encode and enforce designs is desirable,
but AspectJ’s joinpoint and pointcut mechanism does not allow for
sufficient static expressibility.

In this paper we present a domain specific aspect language
called Program Description Logic (PDL). PDL is designed forthe
specific purpose of statically checking design rules. A PDL pro-
gram consists of a list of pointcut advice-pairs. Each pointcut-
advice pair represents a design rule. The pointcut matches viola-
tions of a design rule, and the advice specifices a corresponding
error message. Below is an example of a simple PDL design rule
definition:

field(sourceType) && public

: ”Do not declare visible instance fields”

The syntax of PDL pointcuts is similar to AspectJ. However, the
PDL joinpoint model, unlike AspectJ’s, is static. In other words,
joinpoints in PDL are static program entities such as classes, fields,
methods, and instructions in the byte-code. Consequently,PDL
pointcuts can be fully evaluated statically. Given the purpose of
PDL, the only kind of advice is emission of compile-time error
messages. Thus a PDL advice body is just an error message. PDLis
implemented as a bytecode tool which analyzes .NET assemblies,
finds matches to the pointcuts, and prints the correspondingerror
messages.

To evaluate PDL, we compare it to FxCop [1], an industrial de-
sign rule checker which analyzes programs for conformance to the
.NET Framework Design Guidelines [2]. FxCop is typical of the
framework approach to building a design rule checker. It comes
with an extensive set of prepackaged rules, but the complexity of
its APIs and imperative nature make it hard to write custom rules.
PDL, on the other hand, allows concise declarative rule defini-
tions. As expected, the declarative specification limits expressibil-
ity. However, we show that we can still express a substantialand
useful portion of the FxCop rules in PDL.

We also consider the performance of PDL which is an impor-
tant concern for a rule checking tool. The checking process must
be efficient enough that it can be placed inside of the edit-compile-

63

debug loop that forms a programmers primary work cycle. More-
over, PDL must be able to scale up to check a large collection of
rules on a large program.

Our implementation of PDL is a source to source compiler
which results in minimal overhead when running the rules. Addi-
tionally, the declarative nature of PDL rules allow optimizations
not otherwise possible. In particular, our implementationdetects
intermediate results which are shared among rules and merges the
rules together to avoid repeated computations. We carried out per-
formance measurements which shows that our implmentation of
PDL performs comparably to FxCop.

The main contribution of this paper is the design and implemen-
tation of PDL, a domain specific aspect language for the specific
purpose of encoding design rules. We believe this is a usefulcon-
tribution by itself and also comprises a number of more specific,
smaller contributions which we discuss below.

First PDL has a useful static type checker that assigns typesto
pointcuts based on the types of joinpoints which they can match.
We believe the type checker can detect many nonsensical pointcuts
without being overly restrictive. We have formalized the type-
system and proven its soundness. The formalization gave rise to
some interesting insights into the semantics of ! pointcuts. We
believe these static typing related contributions have independent
value and could be applied to other pointcut languages, for example
AspectJ, which has a similar syntactic and semantic structure to
untyped PDL.

Second the syntax of PDL also harbors a number of novel
ideas, such as quantifiers inspired by description logics. These
could be useful additions to other pointcut languages and will likely
mesh well with any pointcut syntax inspired by AspectJ (i.e., the
majority).

Third, we performed a detailed comparison between declarative
PDL and an imperative, industrial strength design-rule checker in
terms of performance and expressiveness. Other comparablework
on using declarative notations for design-rules have not performed
such a comparison. This is unfortunate since we believe thatsuch
industrial tools are their most important competitors in practice.

Fourth, PDL exemplifies the idea of applying database opti-
mization techniques in the context of pointcut language optimiza-
tion. While the similarity between pointcut languages and query-
languages is relatively apparent and has been pointed out before
(e.g., [13], [16]) real examples that exploit this idea for optimiza-
tion are currently few.

The remainder of this paper is organized as follows. Section2
provides a description of the PDL language and semantics. Sec-
tion 3 discusses rule evaluation and optimization techniques. Sec-
tion 4 provides a comparison between PDL and FxCop in terms of
expressibility, conciseness, and performance. Section 5 presents re-
lated work. Finally, Section 6 concludes and discusses future work.

2. PDL Pointcut Language
A PDL program consists of a series of pointcut-advice pairs.Point-
cuts are predicates which match joinpoints. PDL has a staticjoin-
point model. This means that PDL joinpoints are static program
elements and that PDL pointcuts identify (match) sets of static pro-
gram elements.

In this section we present the details of the PDL pointcut lan-
guage, including a formal semantics and typing rules. We present
the semantics in two stages. We first present a simplified, untyped
version of PDL and then discuss how static typing is added.

2.1 Untyped PDL

Pointcuts in PDL are declarative expressions with a syntax inspired
from AspectJ and Description Logics [4, 6]. Pointcut expressions
are built up from unary and binary primitives and can be combined

p : Pointcut

p ::= u UNARY

| b(p) BINARY

| p && p AND

| p || p OR

| ! p NOT

| existsb . p EXISTS

| forall b . p FORALL

| <n b LESS

u : Unary Pointcut

u ::= id UNARY-PRIMITIVE

| ’pat’ PATTERN

b : Binary Relation

b ::= id BINARY-PRIMITIVE

| b+ TRANSITIVE

| b∗b COMPOSE

id : Identifier

n : Natural number

pat : Signature Pattern

Figure 1. The syntax for a simplified version of the PDL pointcut
language in BNF.

using and, or, and not operators (&&,||, and !). There are forms for
several types of quantification including existential and universal.
A simplified syntax for the PDL pointcut language is shown in
Figure 1.

A pointcut expression matches a joinpoint, or equivalently, de-
fines a set of joinpoints for a given program. This section describes
pointcut semantics in terms of sets of joinpoints; we also say that
a pointcutmatchesa joinpoint if the joinpoint is a member of the
pointcut’s set. Figure 2 presents the denotational semantics of PDL
pointcuts. The remainder of this section will elaborate on the syntax
and semantics and provide examples.

Primitives PDL provides a number of predefined primitives.
Primitives are classified as either unary or binary depending on
the number of joinpoints considered for a match. Unary primitives
match a joinpoint based on various properties (e.g., the access per-
missions of a field). Binary primitives match a joinpoint pair and
express binary relations between joinpoints (e.g., the members of a
type).

Unary primitives specify a set of joinpoints. The unary primitive
sourceType denotes the set of all types declared in the program.
Similarly, thepublic primitive denotes all program elements that
are declared withpublic access—this includes types, fields, and
methods.

A unary primitive is used in a pointcut expression by simply
writing its name. The following is a simple design rule usingunary
pointcuts:

sourceType && public && nested

: ”Nested types should not be visible”

The logical && operator connects the three primitives so that the
compound pointcut will only match joinpoints that match allof the
primitives (i.e., the resulting joinpoint set is the intersection of the
three pointcuts).

64

J := The set of all joinpoints in a program

j, ji ∈ J

P : Pointcut → P(J)

P [[u]] = U [[u]] E-UNARY

P [[b(p)]] = {j1 | (j1, j2) ∈ B[[b]], j2 ∈ P [[p]]}
E-BINARY

P [[p1 && p2]] = P [[p1]] ∩ P [[p2]] E-AND

P [[p1 || p2]] = P [[p1]] ∪ P [[p2]] E-OR

P [[! p]] = {j | j /∈ P [[p]]} E-AND

P [[existsb . p]] = {j2 | ∃(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}
E-EXISTS

P [[forall b . p]] = {j2 | ∀(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}
E-FORALL

P [[< n b]] = {j2 |
˛

˛{j1 | (j1, j2) ∈ B[[b]]}
˛

˛ < n} E-LESS

U : Unary Pointcut → P(J)

U [[id]] = primitive E-UNARY-PRIMITIVE

U [[’pat’]] = {j | j matchespat} E-PATTERN

B : Binary Relation → P(J× J)

B[[id]] = primitive E-BINARY-PRIMITVE

B[[b+]] = {(j1, jn) | (j1, j2), . . . , (jn−1, jn) ∈ B[[b]]}
E-TRANSITIVE

B[[b1 ∗ b2]] = {(j1, j3) | (j1, j2) ∈ B[[b1]], (j2, j3) ∈ B[[b2]]}
E-COMPOSE

Figure 2. Denotational semantics for untyped PDL.

A binary relation expresses a relationship between two join-
points. PDL provides a number of primitive binary relationsas well
as methods for creating new binary relations from existing ones
(these will be presented in subsequent paragraphs).

To construct a pointcut from a binary relationb, we supply the
relation a pointuctp to serve as its parameter. This is written as
b(p). A joinpoint j matches the binary pointcutb(p) if there is
a joinpoint related toj via the binary relationb that matches the
parametric pointcutp.

As an example, consider the design ruleAbstract types should
not have public constructors. We encode this in PDL by writing
a pointcut which matches violations—a pointcut which specifies
the set of public constructors of abstract types. We use the binary
relation constructor to relate types to their constructors. The
PDL rule is shown below.

constructor(sourceType && abstract)
&& public

: ”Abstract type should not have ...”

Notice that the parametric notation of binary pointcuts in PDL
is similar to thecflow pointcut in AspectJ. Thecflow pointcut
is parametric because it takes another pointcut as a parameter.
In contrast, thecall pointcut in AspectJ takes only a method
signature as a parameter. In PDL,call is a binary relation, so
its parameter is an arbitrary PDL pointcut. This allows for the
expression of more complex constraints on the callee method. For
example, in the expression

call(method(forall field . static))

Name Matches
sourceType types defined in the program
sourceNamespace namespaces defined in the program
public public types, or members
private private (internal) types, or members
sealed sealed types and members
interface interface types
generic generic types and methods
virtual virtual members
abstract abstract types or members
static static members
nested nested types

Table 1. Selected unary primitives

the pointcut

method(forall field . static)

acts as the parameter. The semantics of theforall expression will
be explained later. For now, we will say that the expression matches
methods of types whose fields are all static. Thus, thecall pointcut
will match methods that call a method declared in a type whose
fields are all static. Note that such a complex constraint is not
allowed in AspectJ.

PDL defines a variety of native pointcuts that we found useful
for expressing design rules. A selection of these pointcutsis de-
scribed in Tables 1 and 2. Pointcuts in PDL roughly correspond to
the types of operations provided in a typical API for programin-
spection. For example, an inspection API would have operations
to examine the declaration’s of a program element (e.g., check if
a type is public, abstract, or sealed). These methods correspond to
unary primitives in PDL. The inspection API would also provide
relationships between elements (e.g., get the members of a type).
These relationships correspond to binary primitives in PDL.

Many of the primitives in PDL are static versions of AspectJ
pointcuts. For example, the AspectJ version ofset matches run-
time field writes, while the PDL version ofset matches byte-
codes corresponding to field writes. Similarly, the AspectJversion
of cflow encodes a runtime relationship whereby one joinpoint is
in the dynamic extent of the other. In contrast, the PDL version
cflow uses a static approximation—reachability in the call graph.

Signature Patterns. In order for pointcuts to refer to specific
types, methods, constructors, or fields, PDL provides a notation for
signature pattern pointcuts. Signature patterns are written enclosed
in single quotes with a form similar to that used in AspectJ. In
PDL, signature patterns can be thought of as special unary pointcuts
which match joinpoints based on theirsignature. For example, the
expression

’void ∗.Set∗(∗)’

creates a pointcut which matches methods declared in any type,
which return void, whose name starts with “Set” and takes a single
argument.

Signatures are a useful mechanism to match specific elements
from a set of joinpoints. For example, we often want to focus
a design rule on a particular method. To encode the design rule
Finalizers should be protected, we use a method signature to select
only the finalization methods.

method(sourceType) && ’ void ∗.Finalize()’
&& ! protected

: ”Finalizers should be protected”

In AspectJ signature patterns are used as parameters to point-
cuts such ascall andset. However, in PDL, signature patterns

65

Name Matches
member(p) members declared in a type that matchesp
method(p) methods declared in a type that matchesp
constructor(p) constructors declared in a type that

matchesp
field(p) fields declared in a type that matchesp
call(p) methods or bytecodes which call a method

that matchesp
cflow(p) methods or bytecode whichcouldbe in the

dynamic extent of a method matched byp
within(p) bytecodes that implement a method which

matchesp
type(p) types of a field, property, or namespace that

matchesp
derivedType(p) types that are derivedfrom a type which

matchesp
baseType(p) types that are derivedby a type which

matchesp
argument(p) arguments of a method that matchesp
attribute(p) attributes of a type, method, field, property,

or event that matchesp
set(p) bytecodes which set a field that matchesp

Table 2. The semantics of selected binary primitives. Semantics
are described with respect to the parametric pointcutp.

are first-class citizens—they are pointcut expressions. This is pos-
sible because PDL’s joinpoint model includes the elements matched
by the signature pattern (i.e., types, methods, and fields).Thus sig-
nature patterns can be used as any part of a PDL pointcut expres-
sion, as opposed to in AspectJ where they are limited to serving
as parameters to a fixed number of expressions. Note that it isthis
generalization which allows PDL to make pointcuts likecall and
set parametric (as discussed previously) .

Quantification. In order to allow for more complex reasoning
about joinpoints and their relationships, PDL supports several
forms of pointcut quantification. The general form of these ex-
pressions was inspired from the Description Logics [4] formalism
which provides a concise syntax and clean semantics for represent-
ing knowledge. In Description Logic, expressions are constructed
from unary and binary predicates. This meshes nicely with PDL’s
concepts of unary pointcuts and binary relations.

Quantification in PDL involves checking some condition on
a range of values. In practice, this allows a pointcut to match a
joinpoint based on properties of related joinpoints. For example,
the pointcut

forall field . static

matches types whose fields areall static.
Quantification expressions take a binary relation, called the

range, which generates the range of the quantification. For ajoin-
point j, using rangeR (a binary relation), the range of a quantifica-
tion is defined as all valuesx such that(x, j) ∈ R.

An existentially or universally quantified expression takes a bi-
nary pointcut (the range), and a pointcut expression (the condition).
An exists(similarly, forall) expression matches joinpointj if one
(similarly, all) of the range valuesx matches the condition pointcut
C (i.e.,x ∈ C).

Consider the design ruleOverride GetHashCode() upon over-
riding Equals(). A violation of the rule is a type which declares a
method (i.e., thereexistsa method) forEquals, but does not de-
clare aGetHashCode method. We can express this in PDL as

sourceType

&& existsmethod . ’bool ∗.Equals(object)’
&& ! existsmethod . ’int ∗.GetHashCode()’
: ”Override GetHashCode and Equals”

Another type of quantification expression is the cardinality
limit. It takes a range and a natural number, and checks that the
number of values in the range is below, above, or equal-to the
bound. Cardinality limit expressions have the form

[<,>,=] n range

wheren is the integer bound.
A design rule that makes use of the cardinality limit isNames-

paces should contain 5 or more types. We can encode this with the
following rule:

sourceNamespace && < 5 type

: ”Avoid namespaces with few types”

The pointcutsourceNamespace matches all namespaces declared
in the assembly. The range–type–is used to generate all of the
types declared in a namespace, and the pointcut will match ifthere
are less than 5 such types.

Composition. The composition of two binary relations is denoted
by placing the∗ operator between the two binary relations expres-
sions. Thus, the expressionf∗g(x) is equivalent tof(g(x)). This no-
tation can be used as syntactic sugar to remove nested parenthesis.
However, a composition is required when a single binary relation
is called for (e.g., as the range in anexistsexpression).

For example, to get a binary relation which matches pairs of
types and the types of the fields they contain, we would write
type∗field. We use this composed pointcut to check the design
ruleTypes with disposable fields should also be disposable. Check-
ing the rule will involve looking at the type of a field (hence the
composition) and is written as follows

sourceType

&& existstype∗field
. implements(’System.IDisposable’)

&& ! implements(’System.IDisposable’)
: ”Types with disposable fields should \
be disposable”

This pointcut is explained as follows. The first line will match all
types declared in the program. Theexistsexpression in the second
and third lines will match only those types with a field which is of a
type that implements theIDisposable interface. Finally, the last
line of the pointcut matches those types which do not implement
IDisposable and so violate the rule.

Transitive closures. The (anti-symmetric) transitive closure of a
binary relation may be obtained by appending + to the expression.
Transitive closures allow PDL to express a limited means of re-
cursion. For example, the subtype relation may be obtained as the
transitive closure of thederivedType relation:

derivedType+

This provides a convenient way to define new binary relationsover
the graph of certain program structures.

2.2 Typed PDL

So far we have considered all joinpoints to be of the same type. We
now present a static type system for PDL that distinguishes between
different types of joinpoints and assigns static types to pointcut
expressions based on the types of joinpoints they can match.

66

Joinpoint Type Description
namespace Namespace
type Type
method Method (including constructors)
argument Method argument
field Field
property Property
event Event
attribute Attribute of a program element
genericArgument Type argument (to a generic type)
bytecode Instruction in the program

Table 3. PDL joinpoint types

T = {type,method,field, . . .}

t, ti ∈ T

σ, σ1, σ2 ∈ P(T)

β, β1, β2 ∈ P(T× T)

b : β p : σ

b(p) : {t1 | (t1, t2) ∈ β, t2 ∈ σ}
T-BINARY

p1 : σ1 p2 : σ2

p1 && p2 : σ1 ∩ σ2

T-AND

p1 : σ1 p2 : σ2

p1 || p2 :



∅ if σ1 = ∅ or σ2 = ∅
σ1 ∪ σ2 otherwise

T-OR

p : σ

! p : σ
T-NOT

b : β p : σ

forall b.p : {t2 | (t1, t2) ∈ β, t1 ∈ σ}
T-FORALL

b : β p : σ

existsb.p : {t2 | (t1, t2) ∈ β, t1 ∈ σ}
T-EXISTS

b : β

< nb : {t2 | (t1, t2) ∈ β}
T-LESS

b : β

b+ : {(t1, tn) | (t1, t2), . . . , (tn−1, tn) ∈ β}
T-TRANSITIVE

b1 : β1 b2 : β2

b1 ∗ b2 : {(t1, t3) | (t1, t2) ∈ β1, (t2, t3) ∈ β2}
T-COMPOSE

Figure 3. Typing rules for pointcuts and binary relations.

2.2.1 Typing Derivations

PDL’s type system distinguishes between different types ofjoin-
points such astype, method, field, and bytecode. All joinpoint
types supported by the current implementation of PDL are shown
in Table 3. Each of these joinpoint types corresponds to a disjoint
subset of joinpoints in the program. In general, a single pointcut
may match joinpoints of several different types. Therefore, the type
system assigns a set of joinpoint types as the type of a pointcut.
Similarly, because the semantics of binary relations is in terms of
pairs of joinpoints, the type of a binary relation is the pairs of join-
point types it could match.

PDL primitives come annotated with their type. For example,
the pointcutpublic has type{type, method, field, property} sig-
nifying that it matches joinpoints of typetype, method, field, or
property . Similarly, the binary relationmember relates method,
fields, or properties to their declaring type, and thus has type
{(method, type), (field, type), (property , type)}.

In typed-PDL, a pointcut expression’s type is derived by build-
ing up from the known types of the primitives. The typing rules are
shown in Figure 3.

Any pointcut expression or binary relation that gets assigned∅
as a type is considered a type error. This confirms to the intuition
that pointcut expressions which could never yield results are not
meaningful. A subtlety in the T-OR rule is that we have to treat
∅ as a special case to ensure that an expression which containsan
erroneous subexpression is itself considered erroneous.

As an example, the type system determines the type of

sourceType && interface

by taking the intersection of the two primitive types. Thus,the
pointcut has type{type}. While, for the pointcut

sourceType && virtual

the intersection of the two primitive types is∅, and so PDL would
generate an error message when the pointcut is compiled.

2.2.2 Soundness

It is interesting to note that the static typing rules given here are
unsound with respect to the untyped semantics given in Figure 2.
For example, the typing rule T-NOT is unsound. To see this, con-
sider the pointcut !interface. Our type system assigns the point-
cut type{type} (the same type asinterface). However, the un-
typed semantics does not explicitly or implicitly limit therange of
matched joinpoints to be of typetype. The pointcut thus matches all
kinds of joinpoints that aren’t even types, for example, it matches
any joinpoint which is of typemethod (since no method is an in-
terface).

One possible way to address this issue would be to use an
alternative, sound typing rule:

p : σ

! p :



∅ if σ = ∅ or
T otherwise

T-NOT sound

We didn’t adopt the above typing rule because it seems overly
permissive. For example, an expression like

field(sourceType) && ! call(’void ∗.foo()’)

would pass type-checking. We felt that such expressions rather
shouldn’t pass type-checking since fieldsnever call anything so
a pointcut intent on matching fields that do not call a particular
method seems ill-conceived.

Thus, instead of making the type system sound by adopting
some overly relaxed typing rules we decided to keep the more re-
strictive typing rules and restore soundness by adopting a differ-

67

T [[σ]] :=
[

t∈σ

{j | j : t} all of the joinpoints of a given type

PT [[(! p) : σ]] = {j | j ∈ T [[σ]], j /∈ PT [[p : σ]]}
ET-NOT

PT [[(forall b . p) : σ)]] = {j2 | j2 ∈ T [[σ]],

∀(j1, j2) ∈ B[[b]] : j1 ∈ PT [[p]]}
ET-FORALL

PT [[(< n b) : σ]] = {j2 | j2 ∈ T [[σ]],
˛

˛{j1 | (j1, j2) ∈ B[[b]]}
˛

˛ < n}
ET-LESS

Figure 4. Typed semantics for PDL (only the clauses which differ
from the untyped semantics are shown

ent typed semantics which is shown in Figure 4. The typed se-
mantics restricts matched joinpoints to those that are in the static
type derived for the pointcut. Not all evaluation clauses need to be
changed. Intuitively, the problem arises only where the untyped se-
mantics allow a joinpoint to match because it isnot an element of a
pointcut. In such cases we cannot assign a sound type that is more
restrictive thanT (the set of all types).

At first sight, our typed semantics may seem like “an ugly patch
job”. However we believe that it is actually a more intuitiveseman-
tics, in the sense that where the typed and untyped semanticsdiffer,
the typed semantics usually reflects the meaning we would expect
whereas the untyped semantics does not. For example, consider the
pointcut

abstract && ! implements(’ISerializable’)

Under the typed semantics it matches abstract types that do not im-
plement anISerializable interface. However, under the untyped
semantics it also matches all abstract methods.

With the typed semantics we can formulate the following sound-
ness theorem.

THEOREM 1 (Soundness).

p :σ, σ 6= ∅ ⇒ PT [[p :σ]] ⊂ T [[σ]]

The proof is straightforward by structural induction on typing
derivations.

3. Implementation
This section provides an overview of the implementation of the
PDL rule checker. The checker takes a set of PDL design rules and
looks for violations (matches to the pointcuts) in a .NET assembly.
Our implementation is a source-to-source compiler. The compiler
performs type checking and optimization. The output of the com-
piler is C# code which performs the analysis encoded in the PDL
rules. The resulting C# code is then compiled to bytecode andthe
analysis is run on a program to find violations of the design rules.

We see the following advantages to our implementation. First,
by generating (relatively straightforward) imperative code we
achieve good performance when the code is compiled to bytecode.
The code we generate also provides a convenient way to inspect the
output of the pointcut-compiler to verify its correctness.Second,
our primitives are defined in terms of imperative methods which
makes it relatively easy to extend the language with new prim-
itives. Finally, because we often have multiple options on how to
generate code, the compiler has flexibility to chose an efficient plan
to perform the analysis.

3.1 Code Generation

The C# code produced by the compiler makes calls to an abstract
interface for program introspection. The introspection interface
represents various types of program elements (e.g., types,meth-
ods, fields) and provides methods for examining their properties
and relationships. The introspection interface was definedto allow
multiple back-ends to implement it. We currently have a complete
implementation using Microsoft CCI1, and partial implementations
using Microsoft Phoenix2, and Mono Cecil3. A back-end is speci-
fied by the user at execution time.

To implement PDL pointcuts with imperative code, we repre-
sent joinpoints as objects in the introspection API, and usemethods
of these objects to implement the primitive pointcuts. PDL allows
primitives to be implemented by a number of different strategies.
For example, the unary primitivesourceType can be implemented
with a method that generates all of the types declared in the pro-
gram, or with a method that takes a type as a parameter and returns
a boolean representing if it was declared in the program. This al-
lows the compiler to chose an appropriate method to call depending
on the context. For example, in a context where types are being enu-
merated for another reason, code that does something with source
types could be

foreach (Type t in ...)
if (IsSourceType(t))

// Do something with source type

Whereas, in another context source types could be enumerated from
scratch

foreach (Type t in SourceTypes())
// Do something with source type

The PDL implementation makes it easy to define new primi-
tives. PDL has an extension API with which to register a binding
between a name of a primitive and a method in the introspection
API that provides an implementation of the primitive. No addi-
tional meta-data needs to be provided. All necessary information
(e.g., type information for the purpose of type checking) isderived
from the signature of the method.

To compile a pointcut, we must first decide on a plan for an-
alyzing the program to find the matching joinpoints. We call this
intermediate representation anexecution plan. Its structure and in-
terpretation is similar to the operator tree representation used in
databases [7]. In PDL, an execution plan is a graph-based model of
the analysis required to find matches to a joinpoint. Edges represent
streams of joinpoints, and nodes transform the streams.

A given pointcut may have many equivalent execution plans,
and optimization techniques may be used to determine the most ef-
ficient plan. The main optimization done by the current implemen-
tation of PDL is to merge shared subexpression. This is described
in the next section.

To compile an execution plan, we generate C# code which
performs the encoded analysis. For example, the PDL pointcut

method(sourceType && sealed) && virtual

is compiled to code similar to the following (simplified for presen-
tation):

foreach (Type t in SourceTypes())
if (t.IsSealed())

foreach(Method m in t.Methods())

1 Included as part of the FxCop framework
2http://research.microsoft.com/phoenix/ (verified September
2006)
3http://www.mono-project.com/Cecil (verified September 2006)

68

if (m.IsVirtual())
// Record m as violation

3.2 Optimization

There is a similarity between PDL rule checking and database
query evaluation–PDL pointcuts are program queries, and rule
checking amounts to accessing the program to find elements which
match the query. Because PDL rules are often run at the same time
in a large batch, we can use techniques from database multiple-
query optimization [25] to improve performance.

Multiple-query optimization involves examining the execution
plan to detect subtrees that produce the same result. Then, the two
pieces are merged together to avoid a redundant calculation.

As an example, consider the design rulesDo not declare virtual
methods on sealed types, andDo not declare protected methods on
sealed types. We encode these rules as

method(sourceType && sealed) && virtual

: ”rule1”
method(sourceType && sealed) && protected

: ”rule2”

The merging optimization detects the redundancy in computing
methods of sealed types. This computation is then merged to gen-
erate code like the following:

foreach (Type t in SourceTypes())
if (t.IsSealed())

foreach(Method m in t.Methods()) {
if (m.IsVirtual())

// Record m as a violation to rule1
if (m.IsProtected())

// Record m as a violation to rule2
}

Rule checking frameworks typically achieve a similar effect of
sharing by implementing rules as visitors to certain code elements.
The framework will iterate through each code element, and pass
the element to theVisit() method for each rule. Thus, the cost of
retrieving each element is amortized over all of the rules.

In a typical framework, the visit-able elements are fixed to a
small number of basic code elements (e.g., types, methods and
fields). However, there is often sharing between rules at a granu-
larity not supported by the framework. For example, imaginethere
are several rules which govern the way interfaceI should be im-
plemented. In such a case, there are two options to encode therules
using the visitor pattern:

1. Implement each rule as a separate type visitor. Each visitor
first checks if the type implementsI, the does the rest of its
checking.

2. Combine all of the rules into a single type visitor. When check-
ing a type, the visitor first checks whether the type implements
I. If so, the combined rule can check each of its constituent
rules.

The first option maintains modularity (the rules are all separately
encoded), while sacrificing performance (each rule separately cal-
culates the same condition). The second option makes the opposite
trade-off.

By using a declarative language like PDL, combined with the
merging optimization, we can achievebothmodularity and perfor-
mance. We can encode the rules separately and rely on the compiler
to weave them together.

Category # rules # in PDL ratio
Design 59 39 .66
Globalization 7 2 .29
Interoperability 16 2 .13
Mobility 2 0 0
Naming 26 2 .08
Performance 22 4 .18
Portability 3 0 0
Security 26 5 .19
Usage 40 20 .50
Total 201 74 .37

Table 4. Overview of the FxCop rules encoded in PDL.

4. Comparison with FxCop
We evaluate PDL by comparing it to FxCop4, an industrial strength
checker for the .NET Framework. FxCop comes with 201 prede-
fined rules most dealing with the .NET Framework Design Guide-
lines [2]. Rules in FxCop are implemented in C# using a visitor
pattern.

We use FxCop to provide several points of comparison with
PDL. First, we investigate expressibility. Using a declarative lan-
guage like PDL, we expect a loss of expressibility over a general-
purpose approach. Comparing with FxCop allows us to quantify
this loss, in terms of the fraction of FxCop rules that we can ex-
press in PDL. Next, we investigate the conciseness; we expect the
declarative approach of PDL to result in more compact rule defi-
nitions. Then, we compare precision, how well the PDL version of
a rule corresponds to the FxCop version. Finally, we comparethe
performance of the two tools.

4.1 Expressiveness

To evaluate the expressiveness of PDL, we went through all of
the FxCop rules and attempted to encode them in PDL. Some
rules were straightforward to encode in PDL, while others were
obviously not suitable.

The results of this process are shown in Table 4. In total there are
201 rules defined in FxCop divided into 9 sections. We encoded74
of the FxCop rules in PDL. PDL is best able to capture the design
and usage rule categories; in both of these categories we areable to
encode at least half of the FxCop rules.

While we are able to express 74 of the FxCop rules, we must
emphasize that the analysis encoded in PDL sometimes differs
from that encoded by FxCop. This is not unexpected because de-
sign rule checkers like FxCop and those defined with PDL are es-
sentially opportunistic in nature. Rather than actually encoding the
truly interesting property, which is often dynamic and intractably
hard to verify statically, design rule checkers are opportunistic in
that they encode an analysis which checks some approximation of
the interesting property that is easily checkable with the available
machinery. In some cases, the PDL version is closer to the “spirit”
of the design rule, and in other cases, FxCop does a better job. For
an example of a rule where FxCop performs a more accurate anal-
ysis consider the ruleDispose methods should call base class dis-
pose. The analysis encoded in PDL simply check that there exists
a call to the base class method within the dispose method. How-
ever, FxCop uses a more precise data and control flow analysisto
determine if the base class method is called onall paths through
the method. Examples where PDL is more accurate are those us-
ing acflow pointcut. FxCop uses a fairly crude approximation by

4 Version 1.35

69

Category Total J P C O
Design 20 6 7 7 0
Globalization 5 1 0 4 0
Interoperability 14 0 13 1 0
Mobility 2 0 0 2 0
Naming 24 2 4 14 4
Performance 18 3 8 4 3
Portability 3 0 1 0 2
Security 21 2 13 6 0
Usage 20 3 9 8 0
Total 127 17 55 46 9

Table 5. Overview of the reasons PDL was unable to express
FxCop rules. ColumnJ is due to the joinpoint model,P is due to a
lack of primitives,C is due to a complex analysis, andO is other.

considering call-chains of at most length 2 whereas PDL considers
call-chains of any length.

Of the rules that PDL cannot express, there are three general
reasons—either the rule deals with elements missing from PDL
joinpoint model, PDL lacks the primitives to express an analysis, or
there is an intrinsic complexity in the rule that was not expressible
in PDL. Table 5 provides a breakdown of the FxCop rules that PDL
could not express.

Missing joinpoint type. Some FxCop rules deal with program
elements for which there is no corresponding joinpoint in PDL.
This includes rules dealing with assemblies, local variables, and
literals. Naturally, PDL is unable to express these rules.

Lack of primitives. Some of the FxCop rules deal with pro-
gram elements which PDL has joinpoints for, however PDL cur-
rently lacks the primitives to check the relevant properties of
the joinpoints. An example of this sort of rule isDo not catch
general exception typeswhich requires checking the type of a
catch expression to determine if it is of typeException or
ApplicationException. PDL lacks primitives which can pick
out catch exceptions and examine their type, and so it is impossible
to express this rule.

This could be remedied by adding the appropriate primitives.
One option would be to add a binary primitivecatches where
catches(p) matches a bytecode catch instruction if the type it
catches matches pointcutp. Then the rule could be expressed as

within(sourceType)
&& catches(’Exception’

|| ’ApplicationException’)
: ”Do not catch general exceptions”

Excessive complexity. Some of the FxCop rules fall into the
broad category of excessive complexity. Examples of such rules
range from spell checking and parsing, to more complex relation-
ships between multiple program elements. The majority of FxCop’s
naming rules require spell and case checking on identifiers,and so
were not expressible in PDL.

As an example of a complex relationship not expressible in
PDL, consider the ruleMembers should differ by more than return
types. Checking this rule involves checking pairs of methods to
determine if they have the same argument types in the same order.
Because PDL reasons about joinpoints in terms of sets, thereis no
way to capture this ordering relationship.

4.2 Conciseness

We evaluate conciseness by comparing the length of the rules
encoded in PDL and FxCop. Of the 74 rules in PDL, the average

length is 4 lines (including the line for the error message).Because
we do not have the source of FxCop available, we cannot measure
the length of the FxCop encodings. However, we can, with the
help of a disassembler, examine the rule assembly and get an
approximate idea of the length. We conclude that the smallest
FxCop rules are on the order of 10 lines, and the largest on theorder
of several hundred. Thus, as expected, it is clear that the declarative
PDL encodings are much more concise than those of imperative
FxCop.

4.3 Precision

As was mentioned previously, there are often semantic differences
between the encoding of the same rule in FxCop and PDL. To
investigate the consequences of these differences, we checked the
74 rules on the Spring.Net Framework [3] using each tool and
compared the results. FxCop reported 110 violations, whilePDL
reported 147. The two tools agreed on 109 violations, PDL reported
38 that FxCop did not, and FxCop reported 1 that PDL did not.

Of the 38 violations that PDL alone reports, 17 were due to
the fact that FxCop was able to determine that the program uses
a runtime version without support for generics, and thus turn off
rules which suggest generic versions of types and methods. These
“false positives” could be filtered out in PDL if such information
about the assembly was exposed.

The remaining 21 violations were genuine false positives. Fx-
Cop was able to use additional logic to avoid reporting the viola-
tions, while PDL was not able to express the additional logicdue
to the limitations on expressiveness presented in Section 4.1.

The violation reported by FxCop and not by PDL was a valid
violation that PDL was not able to detect because it dealt with a
special case of a rule that examined the string value of an argument.

4.4 Performance

We compare performance of PDL and FxCop. The Microsoft CCI
back-end is used for PDL, which is the same back-end used by
FxCop. We measure the time it takes to evaluate a set of rules
ignoring the time to initialize the checking infrastructure and load
the assembly. This measurement does not reflect the time needed
to compile the PDL rules which could be done once and amortized
over subsequent checks.

Our first set of experiments measures the time to run the 74 rules
on programs of various sizes. The results are shown in Table 6.
Compared to FxCop, PDL apparently executes considerably faster.
However it should be acknowledged that it is hard to attribute this
speed-up completely to the superiority of PDL’s implementation.
As pointed out earlier there are semantic differences for some rules
expressed in PDL versus FxCop. These semantic differences likely
account for some of the performance difference. Also, FxCopdoes
some additional work, such as storing data to later generatea report.
We believe these functionalities only marginally contribute to the
difference in running time, but because FxCop is closed-source we
had no way of disabling or otherwise objectively measuring the
effects of these features on FxCop’s running time.

We also note that the merging optimization increases the perfor-
mance of PDL by around 10 percent.

In order to measure scalability of PDL with respect to the rule
set size and the effect of the merging optimization, we vary the
number of rules being evaluated from 1 to 74. For each sizen, we
randomly select 50 samples of sizen from the complete rule set.
We then check these rules on mscorlib using PDL with and without
optimizations. The times reported for each size is the average of the
50 samples.

The results are shown in Figure 5. As expected, the merging
optimization becomes more effective as more rules are addedto
the system. This is because, as the number of rules increases, there

70

Assembly Size PDL PDL-opt FxCop
Spring.Core 296K 2.4 2.1 10.7
SharpDevelop.Core 1.3M 7.7 7.0 32.7
.NET mscorlib 4.2M 9.4 8.4 72.6

Table 6. Performance comparison of PDL and FxCop on several
different programs. The numbers shown are time in seconds (aver-
ages of 10 runs).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80

tim
e

(s
ec

)

number of rules

PDL
PDL-opt

Figure 5. Performance comparison between PDL with and with-
out optimizations as a function of the number of rules.

is a greater number of intermediate results, and hence a greater
opportunity for merging.

There is an performance anomaly between sizes 45 and 65
where the speedup in the optimized version is almost lost. We
attribute this effect to differing memory usage patterns5 which
staggers the effect of the .NET garbage collector’s adaptations
(which we are unable to control).

5. Related Work
There is a large body of work that deals with tools to check andver-
ify programs to find errors. Approaches can be distinguishedbased
on whether they perform static or dynamic checking. Exampleof an
approach that uses dynamic checking arejmlc andjmlunit [21].
We are mostly interested in static techniques. In the discussion be-
low we distinguish static approaches based on whether theirem-
phasis is on (static verification of) dynamic properties or structural
properties. The former tend to allow developers to capture inter-
esting behavioral properties more precisely but scale lesswell to
larger code-bases. Our work falls in the latter category.

In the first category we find approaches which use model
checking and automated theorem proving techniques. For exam-
ple SLAM [5], ESC/ESCJava [11, 15], Vault [10], Alloy [19], and
PQL [23]. Compared to our work, these approaches are more ambi-
tious with respect to the kinds of properties they intend to verify and
how these properties are specified by the developer. Each approach
provides different notations for specifying constraints that should
hold over the execution of a program and provides an analyzer
that attempts to statically verify whether these execution-time con-
straints hold. While such an approach allows developers to more
directly and precisely express dynamic properties they areinter-
ested in, the static analyzers tend to be complex and scale less well

5 The optimized version creates fewer objects, with longer lifetimes.

to larger code-bases. Our approach is radically opposed to these
approaches. PDL has a purely static joinpoint model and takes the
premise that PDL rules are assertions about static code elements
rather than runtime behavior. Thus, a developer using our language
cannot directly express runtime properties. Instead they may be
able to code-up a PDL rule that is a static approximation of itthat
is guaranteed to be relatively easy to check. In this way PDL trades
off expressive power and precision for scalability.

Examples of approaches which are similar to PDL and share
its emphasis on static/structural properties are SABER [24], Find-
Bugs [18], FxCop [1], Metal [17], ASTLog [9], SOUL [27], and
JTL [8].

SABER [24], FindBugs [18], and FxCop [1] are rule-checking
frameworks which allow developers to implement checkers inan
imperative language. The study presented in this paper compares
PDL to FxCop. It shows how PDL trades off flexibility to express
a wider variety of structural properties for concise definitions and
more efficient checking. We believe FxCop is representativefor this
type of approach.

Other approaches that, like PDL, have taken a declarative ap-
proach to reasoning about a program’s structure are ASTLog [9],
SOUL [27] and JTL [8]. SOUL and ASTLog use a declarative lan-
guage that is similar in syntax and expressiveness to Prolog(i.e.,
Turing complete). Similarly, GENOA [12] uses a domain specific
language to generate customized program analyses for C++ code.
A subset of GENOA has be proven to generate analyses which ex-
ecute in polynomial time.

JTL [8] is a logic language for querying Java programs. It
is probably the approach that is most similar in nature to PDL.
There is strong similarity between the underlying semantics of
both JTL and PDL. However the syntax of JTL and PDL are quite
different and follow a different philosophy. JTL’s syntax is designed
to mimic the code elements which they match. PDL syntax is
designed to be similar to AspectJ syntax. We believe that because
of the differences, some rules would be easier to express with PDL
whereas other would be easier to express in JTL but we have not
performed a detailed comparison to try to quantify the practical
impact of this.

In Metal [17], rules are expressed as state machines which are
applied to the execution paths of each function in a program.This
allows for a natural definition of, for example, rules of the form
call X after calling Y which makes behavioral rules more natural.
This is contrasted with PDL where rules are essentially queries over
structural properties of the program.

As we noted in Section 1, researchers are beginning to explore
AOP as a mechanism to express and enforce design rules. In ad-
dition to the work on AspectJ discussed earlier, [14] presents a
checker built as a framework on top of a library for AOP. In this
system, rules are encoded imperatively as type visitors which make
calls to the AOP interface to inspect the class. In contrast,PDL
provides a declarative approach.

Other research has focused on the performance of program
queries. In [16], a DataLog language for program queries andan
accompanying database system is presented. The system, Code-
Quest, aims to efficiently execute DataLog queries over a program
by storing the relevant relations in a database and leveraging ex-
isting database technology. We see this work as complimentary to
PDL, as it would be possible to target CodeQuest as another PDL
back-end. Currently, the back-ends for PDL are all introspection
engines.

6. Conclusion and Future Work
We have presented PDL, an aspect language to declaratively encode
design rules. PDL was inspired from the pointcut language in
AspectJ, with syntactic additions reminiscent of description logics.

71

PDL introduces a type system to detect meaningless pointcuts and
modify the semantics to provide a more appropriate behavior.

We demonstrated that PDL can concisely express a non-trivial
subset of the rules checked by FxCop. Performance experiments
show that our approach is comparable to FxCop, and can scale to
large codebases.

There are several opportunities for future work on PDL. The
results of our evaluation suggest that the expressibility of PDL
would benefit by adding new types to the joinpoint model, and
expanding the set of primitives. Additionally, we plan to explore
using PDL to encode application-specific rules. We believe that
using a concise, declarative language like PDL could allow the
developer to encode design rules as they are encountered in the
code. Finally, there is much room for optimizations in the PDL
compiler. For example, we plan on expanding our search through
the space of equivalent plans to discover plans which are more
efficient execution or allow additional opportunities for merging.

Acknowledgments
This work was supported by a Microsoft Phoenix – Excellence in
Programming Award and by the University of British Columbia.

References
[1] FxCop Team Page. http://gotdotnet.com/team/fxcop,

verified September 2006.

[2] .NET Framework Design Guidelines.http://msdn2.microsoft.
com/en-us/library/ms229042.aspx, verified September 2006.

[3] Spring .NET Application Framework.http://www.springframework.
net, verified September 2006.

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors.The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[5] Thomas Ball and Sriram K. Rajamani. The SLAM project:
debugging system software via static analysis.Proceedings of the
29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 02), 37(1):1–3, January 2002.

[6] Alexander Borgida. Description logics in data management. IEEE
Transactions on Knowledge and Data Engineering, 7(5):671–682,
1995.

[7] Surajit Chaudhuri. An overview of query optimization inrelational
systems. InPODS ’98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems,
pages 34–43, New York, NY, USA, 1998. ACM Press.

[8] Tal Cohen, Joseph Gil, and Itay Maman. Jtl: the java toolslanguage.
In Peri L. Tarr and William R. Cook, editors,OOPSLA, pages 89–108.
ACM, 2006.

[9] Roger F. Crew. ASTLOG: A language for examining abstractsyntax
trees. InIn Proceedings of the USENIX Conference on Domain-
Specific Languages, pages 229–242, 1997.

[10] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols
in low-level software. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 59–69, 2001.

[11] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Technical Report Technical Report
TR SRC-159, COMPAQ SRC, Palo Alto, USA, 1998.

[12] Premkumar T. Devanbu. GENOA — a customizable, front-end-
retargetable source code analysis framework.ACM Transactions on
Software Engineering and Methodology, 8(2):177–212, 1999.

[13] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts
as functional queries. In Wei-Ngan Chin, editor,Programming
Languages and Systems: Second Asian Symposium, APLAS 2004,

Lecture Notes in Computer Science, pages 366–382, Taipei, Taiwan,
November 2004. Springer-Verlag Heidelberg.

[14] Michael Eichberg, Mira Mezini, Thorsten Schafer, Claus Beringer,
and Karl Matthias Hamel. Enforcing system-wide properties.
In ASWEC ’04: Proceedings of the 2004 Australian Software
Engineering Conference (ASWEC’04), page 158, Washington, DC,
USA, 2004. IEEE Computer Society.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static checking
for Java. InProceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI’2002),
volume 37:5, pages 234–245, June 2002.

[16] Elnar Hajiyev, Mathieu Verbaere, Oege de Moor, and KrisDe Volder.
Codequest: querying source code with datalog. InOOPSLA ’05:
Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
102–103, New York, NY, USA, 2005. ACM Press.

[17] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific static analyses. InACM Conference on
Programming Language Design and Implementation, pages 69–82,
June 2002.

[18] David Hovemeyer and William Pugh. Finding bugs is easy.SIGPLAN
Not., 39(12):92–106, 2004.

[19] Daniel Jackson. Alloy: a lightweight object modellingnotation.
Software Engineering and Methodology, 11(2):256–290, 2002.

[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ.Lecture
Notes in Computer Science, 2072:327–355, 2001.

[21] G. Leavens and Y. Cheon. Design by contract with JML, 2003.

[22] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. A case for
statically executable advice: checking the law of demeter with aspectj.
In AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 40–49, New York, NY,
USA, 2003. ACM Press.

[23] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding
application errors and security flaws using pql: a program query
language. InOOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming systems
languages and applications, pages 365–383, New York, NY, USA,
2005. ACM Press.

[24] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,
Bowen Alpern, Robert D. Johnson, Aaron Kershenbaum, and Larry
Koved. Saber: smart analysis based error reduction. InISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, pages 243–251, New York, NY, USA,
2004. ACM Press.

[25] Timos K. Sellis. Multiple-query optimization.ACM Trans. Database
Syst., 13(1):23–52, 1988.

[26] Mati Shomrat and Amiram Yehudai. Obvious or not?: regulating
architectural decisions using aspect-oriented programming. InAOSD
’02: Proceedings of the 1st international conference on Aspect-
oriented software development, pages 3–9, New York, NY, USA,
2002. ACM Press.

[27] Roel Wuyts. Declarative reasoning about the structureobject-oriented
systems. InProceedings of the TOOLS USA ’98 Conference, pages
112–124. IEEE Computer Society Press, 1998.

72

