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Abstract. A static Partial Differential Equation (PDE) approach is presented for multi-
dimensional extrapolation under the assumption that a level set function exists which separates the
region of known values from the region to be extrapolated. Arbitrary orders of polynomial extrapola-
tion can be obtained through solutions of a series of static linear PDEs. Fast sweeping methods of first
and second orders are presented to solve the PDEs for constant, linear and quadratic extrapolation.
Numerical examples are presented to demonstrate the approach.
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1. Introduction. A great number of computational physics applications require
extrapolation methods. One particularly popular method utilized in level set methods
[2] can be used to extrapolate data from one region, where the function is known, to
another region where there is no data. A level set function demarcates the regions
where the function is known and where extrapolation is needed. The original ap-
plication of this type of extrapolation was the Ghost Fluid Method [7], where data
is known in the “real” region and needs to be extrapolated into the “ghost” region.
This was originally done with constant extrapolation in the normal direction to the
interface. Linear and quadratic extrapolation were introduced in [2] and extended to
cubic extrapolation in [9]. Fast marching and fast sweeping techniques were discussed
in [1, 4] for constant extrapolation.

In terms of physics applications, the PDE approach to extrapolation was utilized
in [9] for solving Laplace and heat conduction equations on arbitrary domains with
applications to Stefan problems. The technique has also been applied to vaporization
in two-phase fluid flow [23], bubble dynamics [5] and compressible reacting flow with
phase changes [12]. It has also been extended to work on quadtree and octree grids [16]
with applications to solving nonlinear Poisson-Boltzmann equations [17]. An excellent
summary of parabolic and elliptic problems utilizing PDE extrapolation was given in
[10].

The goal of this work is to develop a static PDE approach as general as the
time-dependent approach proposed in [2, 9]. The main advantage of using the static
PDE approach is computation efficiency. For the time-dependent approach, where
the time is artificial, extrapolation or information is advected from the known region
to the unknown region. Numerically one solves a series of linear advection equations.
The time step is restricted by the Courant-Friedrichs-Lewy (CFL) condition for stable
explicit time schemes, which can also be viewed as Jacobi iterations. In other words,
it takes O(d/∆t) time steps or iterations to advect extrapolation into the unknown
region within a distance d from the known region, where the time step ∆t has to
be of the same order of the grid size ∆x. Using the static PDE approach, efficient
iterative schemes can be applied to solve the static linear PDEs. For example, the
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fast sweeping method can be easily tailored for this task. The number of iterations
is finite, and is usually small and almost independent of the grid size. In principle,
one pass type of algorithms, such as fast marching method [21, 24] can also be used
for solving these linear static advection PDEs. Sorting is not even needed in this case
since the upwind direction is given a priori. However, depending on the geometry
of the boundary of the known region, using a fixed upwind stencils may not work
for the fast marching method. We will show numerical examples to demonstrate this
situation in Section 4. Techniques from ordered upwind scheme [22] may be needed
to adjust the local stencil at each grid. On the contrary, the fast sweeping method
always uses fixed stencils and discretization schemes at each grid and can deal with
high order discretization in the same easy and efficient fashion.

The outline of the paper is the following. In Section 2, the static PDE approach
to solving constant, linear and quadratic extrapolation is presented. In Section 3,
the fast sweeping methods of first and second orders are given. Section 4 provides
numerical tests for several extrapolation methods and demonstrates efficiency and
accuracy of the various schemes. Finally, we draw conclusions in the last section. In
the appendix, extension of the static PDE approach to triangular meshes is presented.

2. Static PDE Approach to Multi-Dimensional Extrapolation . Assume
a function u is given in a domain Ωin that is defined by ψ ≤ 0, and needs to be extrap-
olated to the remaining portion of the space Ω\Ωin that is defined by ψ > 0, where
ψ is a given level set function, e.g., the signed distance function from the interface
Γ = Ωin ∩Ω\Ωin. Motivated by the time-dependent PDE approach introduced in [2],
we consider a static PDE approach.

2.1. Constant Extrapolation. Constant extrapolation of the function u is
done as a constant along a normal ~n to the interface Γ. ~n is defined with the level set
function,

~n =
∇ψ
|∇ψ| . (2.1)

The PDE used to achieve constant extrapolation is

H(ψ)~n · ∇u = 0, (2.2)

where H(ψ) is the unit Heaviside function, i.e.,

H(ψ) =

{

1 if ψ > 0,

0 if ψ ≤ 0.
(2.3)

2.2. Linear Extrapolation. Linear extrapolation in the normal direction is
done in three steps. First, the directional derivative of u in the normal direction is
defined as

un = ~n · ∇u. (2.4)

Then un can be extrapolated in a constant manner into the unknown region by the
PDE

H(ψ)~n · ∇un = 0. (2.5)

With un in the whole space, we can extrapolate u into the unknown region by solving
the PDE

H(ψ)(~n · ∇u− un) = 0. (2.6)
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2.3. Quadratic Extrapolation. Quadratic extrapolation in the normal direc-
tion is done in four steps. First, the second directional derivative of u in the normal
direction is defined as

unn = ~n · ∇(~n · ∇u) (2.7)

Then unn is extrapolated into the unknown region in a constant manner with the
PDE

H(ψ)~n · ∇unn = 0. (2.8)

Next, with unn in the whole space, un can be extrapolated into the whole space in a
linear manner with the PDE

H(ψ)(~n · ∇un − unn) = 0. (2.9)

Finally, the function u can be extrapolated to the unknown region via the PDE

H(ψ)(~n · ∇u− un) = 0. (2.10)

2.4. Higher-order Extrapolation. It is clear that the pattern of the static
PDE formulations can be extended to higher-order polynomial extrapolation. For
instance in the n-th order extrapolation, the n-th order directional derivative of u is
first computed in the region ψ ≤ 0, then extrapolated in a constant fashion. After that,
each successive lower-order directional derivative is integrated until u is calculated.

Remark 1. Here the Heaviside function is equivalent to a label to indicate where
extrapolation is needed.

3. Fast Sweeping Methods. In this section, we present the fast sweeping
methods for solving the aforementioned PDEs in the general form,

a(x) · ∇u(x) = f(x), x ∈ Ω\Γ,
u(x) = uΓ(x), x ∈ Γ,

(3.1)

where a(x), f(x), and uΓ(x) are given functions. For this linear hyperbolic PDE,
boundary condition should be prescribed at the inflow boundary, i.e., the part of
boundary where a(x) · ν(x) < 0, x ∈ Γ, where ν(x) is outward normal at the bound-
ary. For the cases of extrapolation, a(x) = ~n(x), f(x) = 0, and the inflow boundary
is the boundary of the given domain Ωin or the zero level set of the level set func-
tion ψ. For simplicity, we present the fast sweeping methods on uniform meshes in
two-dimensional (2-D) cases. Implementation on triangular meshes is discussed in Ap-
pendix A. Extension to higher dimension is straightforward. Fast sweeping methods
are efficient iterative methods for solving hyperbolic type of PDEs, for example, the
Hamilton-Jacobi equations. For previous work on the development of fast sweeping
methods, please refer to [8, 13, 14, 19, 20, 27] and reference therein. For the linear
advection equation (3.1), the fast sweeping method is even simpler since the upwind
direction is give a priori by a(x). Hence the discretization scheme is linear, i.e., in-
dependent of the solution. The two key ingredients for the success of fast sweeping
methods are: (1) an upwind discretization, and (2) systematic and alternating order-
ings that can cover all directions of characteristics. We first present a few upwind
discretizations and then two choices of orderings.

Let us assume the domain is given by [xmin, xmax] × [ymin, ymax], and is dis-
cretized with a uniform mesh of size I × J . The mesh size is denoted as h. At each
grid point (i, j) (or (xi, yj)), for any function F , we denote Fi,j = F (xi, yj). Also,
assume that a(x) = (ax(x, y), ay(x, y)).
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3.1. First-order Approximation. We present a first-order version of the fast
sweeping method. At point (i, j), without loss of generality, let us assume axi,j >
0, ayi,j > 0. The fast sweeping method uses one-sided first-order finite difference to
approximate the gradient ∇u. That is,

(ux)i,j =
ui,j − ui−1,j

h
, (uy)i,j =

ui,j − ui,j−1

h
. (3.2)

By substituting (3.2) into (3.1), we obtain the discretized PDE

axi,j
ui,j − ui−1,j

h
+ ayi,j

ui,j − ui,j−1

h
= fi,j , (3.3)

which can be reformulated to get a local updating formula for ui,j , i.e.,

ui,j =
fi,j + axi,jui−1,j/h+ ayi,jui,j−1/h

axi,j/h+ ayi,j/h
. (3.4)

3.2. Second-order Approximation. Here we present two versions of second-
order schemes. One is a simple direction by direction upwind second-order scheme.
The other one is an upwind second-order scheme with compact stencils.

3.2.1. Direction by direction second-order upwind scheme. An easy di-
rection by direction version is as follows. At point (i, j) with axi,j > 0, ayi,j > 0, we
use one-sided second-order finite difference to approximate ux, uy. That is,

(ux)i,j =
−2/3ui,j + 2ui−1,j − 1/2ui−2,j

h
,

(uy)i,j =
−2/3ui,j + 2ui,j−1 − 1/2ui,j−2

h
.

(3.5)

By substituting (3.5) into (3.1), we obtain the discretized PDE

axi,j

−2
3 ui,j + 2ui−1,j − 1

2ui−2,j

h
+ ayi,j

−2
3 ui,j + 2ui,j−1 − 1

2ui,j−2

h
= fi,j , (3.6)

from which we can get a local updating formula for ui,j , i.e.,

ui,j =
fi,j + axi,j(2ui−1,j − 1

2ui−2,j)/h+ ayi,j(2ui,j−1 − 1
2ui,j−2)/h

−2axi,j/(3h)− 2ayi,j/(3h)
. (3.7)

Following the same procedure, the one-sided finite difference approximation, such
as (3.2) or (3.5), can be easily obtained for other cases of a(x), and hence the local
updating formula, such as (3.4) or (3.7).

3.2.2. Second-order upwind scheme with compact stencils. Here we give
a second-order scheme with compact stencils following the formulation developed in
[3]. The key idea is to use the original PDE (3.1) to provide more relations and hence
reduce the number of needed stencils to achieve certain accuracy. Differentiating (3.1)
we get

∇a(x) · ∇u(x) +D2u(x) · a(x) = ∇f(x), (3.8)

where ∇a denotes the Jacobian of a and D2u denotes the Hessian of u. The Taylor
expansion of u(x) to the second order is

u(x+ δx) = u(x) + δx · ∇u(x) + 1

2
〈δx, D2u(x) · δx〉+O(‖δx‖3). (3.9)
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By writing δx as

δx = (δx · â)â+ (δx · â⊥)â⊥, (3.10)

(3.9) can be written as

u(x+ δx) =u(x) + δx · ∇u(x) + 1

2
(δx · â)2〈â, D2u(x) · â〉

+ (δx · â)(δx · â⊥)〈â⊥, D2u(x) · â〉

+
1

2
(δx · â⊥)2〈â⊥, D2u(x) · â⊥〉+O(‖δx‖3),

(3.11)

where â = a

‖a‖ and ‖â⊥‖ = 1, â⊥ ⊥ â. From (3.8) we have

D2u(x) · â =
∇f(x)
‖a(x)‖ − ∇a(x) · ∇u(x)

‖a(x)‖ . (3.12)

By substituting (3.12) into (3.11), we have

u(x+ δx) =u(x) + δx · ∇u(x) + (δx · â)2
2‖a‖ (â · ∇f − â · (∇a · ∇u))

+
(δx · â)(δx · â⊥)

‖a‖ (â⊥ · ∇f − â
⊥ · (∇a · ∇u))

+
(δx · â⊥)2

2
〈â⊥, D2U · â⊥〉+O(‖δx‖3)

=u(x) +

(

δx− (δx · â)2
2‖a‖ (â · ∇a)− (δx · â)(δx · â⊥)

‖a‖ (â⊥ · ∇a)

)

· ∇u(x)

+
(δx · â⊥)2

2
〈â⊥, D2U · â⊥〉+ (δx · â)2

2‖a‖ â · ∇f +
(δx · â)(δx · â⊥)

‖a‖ â
⊥ · ∇f

+O(‖δx‖3).
(3.13)

Notice that the only unknowns in the Taylor expansion (3.13) are∇u(x) and 〈â⊥, D2u(x)·
â
⊥〉. Therefore, in 2-D, at each grid point (i, j), without loss of generality, assuming

the upwind direction axi,j > 0, ayi,j > 0, by applying the Taylor expansion (3.13) to
ui−1,j , ui,j−1, ui−1,j−1, we get three linear equations of the three unknowns, ∇u(x)
and 〈â⊥, D2u(x) · â⊥〉. By solving the three linear equations, the three unknowns are
computed in terms of ui,j , ui−1,j , ui,j−1, ui−1,j−1. The solutions give an approxima-
tion of ∇u(x) at (i, j), which is further substituted into the linear PDE (3.1) to get
the discretized PDE that can be solved to obtain a local updating formula of ui,j . For

example, let us denote ∇u = (α, β), 〈â⊥, D2u(x) · â⊥〉 = γ and assume a is constant
locally. Then using (3.13), we have the following three equations

ui−1,j = ui,j − αh+
h2ayi,j

2

2
γ + F x,

ui,j−1 = ui,j − βh+
h2axi,j

2

2
γ + F y,

ui−1.j−1 = ui,j − αh− βh+
h2(axi,j − ayi,j)

2

2
γ + F xy,

(3.14)
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with

F x =
h2axi,j

2

2‖ai,j‖
âi,j · ∇fi,j −

h2axi,ja
y
i,j

‖ai,j‖
â
⊥
i,j · ∇fi,j ,

F y =
h2ayi,j

2

2‖ai,j‖
âi,j · ∇fi,j +

h2axi,ja
y
i,j

‖ai,j‖
â
⊥
i,j · ∇fi,j ,

F xy =
h2(axi,j + ayi,j)

2

2‖ai,j‖
âi,j · ∇fi,j +

h2(axi,j
2 − ayi,j

2
)

‖ai,j‖
â
⊥
i,j · ∇fi,j .

We can solve (3.14) to obtain α, β, γ,

α = (1−
ayi,j
2axi,j

)
ui,j − ui−1,j

h
+

ayi,j
2axi,j

ui,j−1 − ui−1,j−1

h

+
−2axi,jF

x − ayi,jF
xy + ayi,jF

x + ayi,jF
y

−2haxi,j
,

β = (1−
axi,j
2ayi,j

)
ui,j − ui,j−1

h
+

axi,j
2ayi,j

ui−1,j − ui−1.j−1

h

+
−2ayi,jF

y − axi,jF
xy + axi,jF

x + axi,jF
y

−2hayi,j
,

γ =
ui−1,j + ui,j−1 − ui−1,j−1 − ui,j + F xy − F x − F y

h2axi,ja
y
i,j

.

(3.15)

By rewriting α, β as α = g1ui,j + g2, β = g3ui,j + g4 and substituting them into the
PDE (3.1), we have the discretized PDE

axi,j(g1ui,j + g2) + ayi,j(g3ui,j + g4) = fi,j , (3.16)

where,

g1 = (1−
ayi,j
2axi,j

)
1

h
,

g2 = (1−
ayi,j
2axi,j

)
−ui−1,j

h
+

ayi,j
2axi,j

ui,j−1 − ui−1,j−1

h
+

−2axi,jF
x − ayi,jF

xy + ayi,jF
x + ayi,jF

y

−2haxi,j
,

g3 = (1−
axi,j
2ayi,j

)
1

h
,

g4 = (1−
axi,j
2ayi,j

)
−ui,j−1

h
+

axi,j
2ayi,j

ui−1,j − ui−1.j−1

h
+

−2ayi,jF
y − axi,jF

xy + axi,jF
x + axi,jF

y

−2hayi,j
.

Hence we have the local updating formula for ui,j by solving (3.16) as

ui,j =
fi,j − axi,jg2 − ayi,jg4

g1axi,j + g3a
y
i,j

. (3.17)

From the first two equations in (3.15), we can see that the scheme is not monotone
and when ai,j is close to the grid lines, i.e., either axi,j → 0 or ayi,j → 0, the coefficients
may go unbounded. As discussed in [3], at each point (i, j), the stencils must be
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chosen more carefully according to the upwind direction ai,j . At each point (i, j), the
local mesh is divided into eight regions with equal inner angles (see Figure 3.1 (a)).
If the upwind direction ai,j is in region 1 (see Figure 3.1 (b)), then we choose stencil
{(i, j), (i− 1, j), (i, j− 1), (i− 1, j− 1)}; if the upwind direction ai,j is in region 2 (see
Figure 3.1 (c)), then we choose stencil {(i, j), (i − 1, j − 1), (i, j − 1), (i + 1, j − 1)};
and if the upwind direction ai,j is in region 3 (see Figure 3.1 (d)), then we choose
stencil {(i, j), (i− 1, j), (i− 1, j− 1), (i− 1, j+1)}. For other regions, the stencils can
be chosen in a similar way.

a)

(i, j) (i-1, j) 

(i-1, j+1) 

(i-1, j-1) (i, j-1) (i+1, j-1) 

(i+1, j) 

(i+1, j+1) (i, j+1) 

b)

1 

(i, j) (i-1, j) 

(i-1, j+1) 

(i-1, j-1) (i, j-1) (i+1, j-1) 

(i+1, j) 

(i+1, j+1) (i, j+1) 

c)

2 

(i, j) (i-1, j) 

(i-1, j+1) 

(i-1, j-1) (i, j-1) (i+1, j-1) 

(i+1, j) 

(i+1, j+1) (i, j+1) 

d)

3 (i, j) (i-1, j) 

(i-1, j+1) 

(i-1, j-1) (i, j-1) (i+1, j-1) 

(i+1, j) 

(i+1, j+1) (i, j+1) 

Fig. 3.1. Local mesh and stencils for compact second-order scheme: (a) partition of the local
mesh into 8 regions with equal inner angles; (b), (c) and (d) stencils (denoted as dark squares) used
corresponding to the locations and directions of the characteristics (denoted as dashed arrow).

3.3. Ordering. Systematic and alternating orderings that can cover all direc-
tions of characteristics effectively is another crucial factor for the efficiency of the
fast sweeping method. For the first-order upwind scheme and direction by direction
second-order upwind scheme on rectangular grids, alternating the following four or-
derings in 2-D during Gauss-Seidel iterations is effective since information arrives at
a grid point through one of the four quadrants.

(1) i = 1 : I, j = 1 : J ; (2) i = 1 : I, j = J : 1;

(3) i = I : 1, j = 1 : J ; (4) i = I : 1, j = J : 1.
(3.18)

On the other hand, for the second-order upwind scheme with compact stencils, using
the ordering introduced in [19] for triangular meshes is more effective since information
arrives at a grid point through one of the eight sectors illustrated in Figure 3.1.
The idea is to choose a few reference points, e.g., the four corners points of the
computational domain. All grid points are ordered by the distance to each reference
point in both increasing and decreasing order. Guass-Seidel iterations will be carried
out according to these orderings alternately.
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3.4. Schematic sketch of the fast sweeping method. With both upwind
schemes and systematic orderings available, We summarize the fast sweeping methods
below.

1. Initialization: impose the exact value of u at grid points on or near Γ, which
are fixed during iterations; assign arbitrary values at all other points.

2. Gauss-Seidal iterations: sweep the whole mesh following alternating order-
ings: At each point (i, j), update ui,j with (3.4) or (3.7) or (3.17), One
iteration corresponds to sweeping all the grid points once.

3. Termination: stop the iterations if two successive iterations have small changes,
i.e., |uk − uk−1|∞ ≤ δ for some stopping criterion δ > 0.

Narrow band implementation. In applications, the extrapolation is often
needed only in a narrow band adjacent to the known region. The narrow band is
typically defined by the level set function, e.g., a signed distance function. An easy
modification of the fast sweeping method described above can serve the purpose. First
we collect all grid points in the narrow band and create a list by a simple one pass
region growing algorithm: starting with any point in the narrow band, we add its
neighbors that are in the narrow band to the list, then we further add the neighbors
of the newly added points that are in the narrow band but not in the current list
yet to the updated list. We continue this process until no more points are added to
the list. Since there is no regular data structure for points in the list, distance to
a few references points is used to provide alternating orderings. The fast sweeping
methods will be applied to the grid points on the list only, i.e., the PDEs will be
solved numerically on the narrow band only.

3.5. Convergence Analysis. Here we provide a convergence study for the first-
order scheme defined in Section 3.1. In Section 2, the extrapolation problem is formu-
lated as a series of static linear hyperbolic PDEs in the form of (3.1), where the inflow

boundary is the zero level set of the level set function ψ(x) and a(x) = ~n(x) = ∇ψ(x)
|∇ψ(x)| .

Assume ∇ψ(x) is continuous and 0 < c < |∇ψ| < C <∞ for ψ ≥ 0 with c and C some
constants. The computation domain Ωh is discretized by a Cartesian grid with grid
size h. For simplicity we present the analysis for 2D. Extension to higher dimensions
is straightforward.

Define Ω+
h = {(xi, yj) ∈ Ωh|ψi,j > 0}, Ω−

h = {(xi, yj) ∈ Ωh|ψi,j ≤ 0}, and Γ±
h to

be the set of boundary grid points, i.e., Γ−
h = {(xi, yj) ∈ Ω−

h and at least one of its
four neighbors (xi±1, yj), (xi, yj±1) belongs to Ω+

h } and Γ+
h = {(xi, yj) ∈ Ω+

h and at
least one of its four neighbors (xi±1, yj), (xi, yj±1) belongs to Ω−

h }. The value of ui,j is
prescribed at Γ−

h . LetA denote the matrix of the linear system for {ui,j , (xi, yj) ∈ Ω+
h }

corresponding to the first-order upwind scheme defined by (3.3) with given inflow
boundary condition for ui,j , (xi, yj) ∈ Γ−

h . We prove the following statements about
the linear system.

Theorem 3.1. The discretized linear system has the following properties:

(1) Maximum principle holds, i.e., if fi,j = 0, the maximum or minimum value
of ui,j is attained at the boundary Γ−

h .
(2) A is a non-singular M-matrix.
(3) The fast sweeping method for the linear system converges.

Proof. (1) We first show max(xi,yj)∈Ω+

h
∪Γ−

h
ui,j = max(xi,yj)∈Γ−

h
ui,j . Suppose

the maximum value of ui,j is attained at (xm, yn) ∈ Ω+
h . Without loss of generality
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assume axm,n ≥ 0, aym,n ≥ 0. From the upwind scheme we have

um,n =
axm,num−1,n/h+ aym,num,n−1/h

axm,n/h+ aym,n/h
.

So um−1,n = um,n−1 = um,n. If either (xm−1, yn) ∈ Γ−
h or (xm, yn−1) ∈ Γ−

h , the result
is proved. Otherwise, the argument can be continued all the way to reach a point on
the boundary Γ−

h . Similarly, one can show min(xi,yj)∈Ω+

h
∪Γ−

h
ui,j = min(xi,yj)∈Γ−

h
ui,j .

(2) There are several equivalent definitions of an M-matrix [11, 18]. Denote
A = (ai,j), due to the upwind scheme, ai,j ≤ 0, i 6= j. We show that A is non-
singular and A−1 ≥ 0 [11]: (a) denote ~u to be the vector of values ui,j at (xi, yj) ∈ Ω+

h

corresponding to fi,j = 0, (xi, yj) ∈ Ω+
h and ui,j = 0, (xi, yj) ∈ Γ−

h , i.e., A~u = ~0.
Without loss of generality, assume um,n = maxi,j ui,j > 0, from the the maximum

principle proved above, it contradicts to the fact that ui,j = 0, (xi, yj) ∈ Γ−
h . So ~u = ~0.

Hence A is non-singular; and (b) we show that every element in any column of A−1 is
non-negative. The j-th column of A−1 corresponds to a solution ~u = {ui,j |(xi, yj) ∈
Ω+
h } with ui,j = 0, (xi, yj) ∈ Γ−

h and A~u = ~ej , where ~ej is a column vector with j-th
element equal to 1 and all other elements equal to 0. In another word, u corresponds
to a discrete Green’s function with zero Dirichlet boundary condition and a source
at some grid point (xm, yn) ∈ Ω+

h , i.e., fi,j = 0 if (i, j) 6= (m,n) and fm,n = 1,
where (m,n) is indexed as j. Suppose up,q = mini,j ui,j < 0, then it is easy to see
(p, q) 6= (m,n). Then apply the argument for maximum principle one can easily show
min(xi,yj)∈Γ−

h
ui,j = up,q < 0, which is a contradiction.

(3) Since the fast sweeping method is a Gauss-Seidel iteration with alternating
orderings in each iteration, it converges for an M-matrix [11, 25].

Remark 2. Although the fast sweeping algorithm is a type of Gauss-Seidel it-
eration, the use of different orderings during the iterations can greatly accelerate the
convergence for linear or nonlinear systems arising from upwind discretization for
hyperbolic problems. Once correct causality is enforced in the discretization and dur-
ing the update at each grid point, alternating orderings allow efficient propagation of
information along characteristics in all directions.

Remark 3. For the linear hyperbolic PDEs for the extrapolation problem, the
main complication comes from the geometry of the inflow boundary Γ. Near the con-
cave part of the boundary, the characteristics following ∇ψ

|∇ψ| converge. Near the con-

vex part, the characteristics diverge. These scenarios are analogous to shocks and
rarefactions for the hyperbolic conservation law. For the first-order upwind mono-
tone scheme, there is an explicit numerical viscosity with coefficient of grid size h
(by Taylor expansion of the finite difference scheme). So it can handle both cases.
However, the divergence of characteristics near the convex part of the boundary can
make one-pass algorithm fail as shown in numerical example 4 and Figure 4.4 in the
next Section. This phenomenon can be explained from linear algebra point of view,
the discretized system can not be transformed to a triangular system no matter what
ordering is used for the grid points, which is also equivalent to the fact that the dis-
cretized problem becomes locally elliptic near the convex part of the boundary due to
the numerical viscosity. Since the fast sweeping method is an iterative method, it
works efficiently in all scenarios.

The following theorem shows error estimate for the first-order upwind scheme. For
simplicity, we state the result in 2D and extension to higher dimension is straightfor-
ward.
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Theorem 3.2. Assume ψ is the signed distance function to a smooth interface
Γ. Let u(x) be the solution to (3.1) with a(x) = ∇ψ(x)/|∇ψ(x)|, f(x) = 0 and smooth
boundary condition, and uhi,j be the corresponding numerical solution to (3.3). For
any point (xi, yj) in the region where a(x) is smooth,

|uhi,j − u(xi, yj)| ≤ Ch as h→ 0, (3.19)

where 0 < C <∞ is some constant which depends on Γ and ψ.
Proof. Denote

ei,j = uhi,j − u(xi, yj).

We order all grid points in Ω+
h by layers such that the k-th layer contains all

the points with (k − 1)h < ψ(xi, yj) ≤ kh. We prove the error estimate (3.19) by
induction. Assume

Ek = max
(k−1)h<ψ(xm,yn)≤kh

|em,n|

is attained at point (xi, yj), i.e., Ek = |ei,j |. And let us assume axi,j ≥ 0, ayi,j ≥ 0
without loss of generality. We have

axi,j(ei,j − ei−1,j) + ayi,j(ei,j − ei,j−1) = Ti,j , (3.20)

where Ti,j = O(h2) is the local truncation error and the constant in O(·) depends
on the second derivatives of u(x) which are bounded by the smoothness assumption.
Then

ei,j =
axi,j

axi,j + ayi,j
ei−1,j +

ayi,j
axi,j + ayi,j

ei,j−1 +
Ti,j

axi,j + ayi,j
,

which implies

|ei,j | ≤
axi,j

axi,j + ayi,j
|ei−1,j |+

ayi,j
axi,j + ayi,j

|ei,j−1|+
|Ti,j |

axi,j + ayi,j
.

Since axi,j
2 + ayi,j

2
= 1, axi,j + ayi,j ≥ 1. We have the following cases:

(a) If both (xi−1, yj) and (xi, yj−1) are in the (k−1)-th layer, then Ek ≤ Ek−1+
O(h2).

(b) If only one of (xi−1, yj), (xi, yj−1) is in the (k − 1)-th layer (assume it is
(xi−1, yj)), then

|ei,j | ≤
axi,j

axi,j + ayi,j
|ei−1,j |+

ayi,j
axi,j + ayi,j

|ei,j−1|+
|Ti,j |

axi,j + ayi,j

≤
axi,j

axi,j + ayi,j
|ei−1,j |+

ayi,j
axi,j + ayi,j

|ei,j |+
|Ti,j |

axi,j + ayi,j

⇒
axi,j

axi,j + ayi,j
|ei,j | ≤

axi,j
axi,j + ayi,j

|ei−1,j |+
|Ti,j |

axi,j + ayi,j
,

which implies

Ek ≤ |ei−1,j |+ |Ti,j |/axi,j ≤ Ek−1 + |Ti,j |/axi,j .
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Since ψi−1,j < ψi,j−1 and

ψi−1,j = ψi,j − axi,jh+O(h2), ψi,j−1 = ψi,j − ayi,jh+O(h2),

we have axi,j > ayi,j −O(h). So axi,j >
1√
2
−O(h) > 1

2 if h is small enough. So

Ek ≤ Ek−1 + 2|Ti,j |.
(c) If both (xi−1, yj) and (xi, yj−1) are not in the (k− 1)-th layer, let us assume

axi,j ≥ 1√
2
≥ ayi,j ≥ 0 without loss of generality. From (3.20), we have

axi,j |ei,j − ei−1,j |+ ayi,j |ei,j − ei,j−1| = O(h2),

which implies

ei−1,j = ei,j +O(h2). (3.21)

Also we have

ψi−1,j = ψi,j − axi,jh+O(h2) ≤ ψi,j −
h√
2
+O(h2) < ψi,j −

h

2
(3.22)

for h small enough. For ei−1,j at point (xi−1, yj), it satisfies a relation as
(3.20) with two neighbors coming from the upwind discretization determined
by (axi−1,j , a

y
i−1,j), for example,

axi−1,j(ei−1,j − ei−2,j) + ayi−1,j(ei−1,j − ei−1,j−1) = Ti−1,j ,

which implies from (3.21)

axi−1,j(ei,j − ei−2,j) + ayi−1,j(ei,j − ei−1,j−1) = O(h2). (3.23)

If either both (xi−2, yj) and (xi−1, yj−1) are or one of them is in (k − 1)-th
layer, then it is reduced to case (a) or (b) above and the proof is completed.
Otherwise we repeat the previous step: if axi−1,j ≥ ayi−1,j , we consider ei−2,j

at point (xi−2, yj) and have

ei−2,j = ei,j +O(h2) and ψi−2,j < ψi−1,j −
h

2
< ψi,j − h < (k − 1)h;

otherwise we consider ei−1,j−1 at point (xi−1, yj−1) and have

ei−1,j−1 = ei,j +O(h2) and ψi−1,j−1 < ψi,j − h < (k − 1)h

for h small enough. Hence we get Ek = |ei,j | ≤ Ek−1 +O(h2).
Therefore, for any layer k ≥ 1,

Ek = kO(h2).

Since ψ is the signed distance function, for a domain of O(1) size, there are at most
O(1/h) layers in total. Hence the global maximum error is O(h).

Remark 4. If Γ is convex, then a(x) = ∇ψ(x) is smooth everywhere. So the
above error bound is true everywhere. If Γ is concave, then a(x) is smooth up to the
shocks of the distance function where ∇ψ(x) is discontinuous. Also the above result
can be extended to a general level set function ψ(x) as long as |ψ(x)| > c > 0 for some
constant c. The only difference is the number of layers in a bounded domain and the
case (c) in the above proof may have to go through a few more but a finite number
(depending on c) of recursive relations.
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4. Numerical Tests . We present more numerical implementation details and
a few examples to demonstrate both efficiency and accuracy of our approach. In all
the examples, level set function, ψ, is the signed distance to the boundary between
known and unknown region. Level set function is negative inside the known region.

4.1. Numerical Implementations. For constant extrapolation in the normal
direction, we solve (2.2) with the first-order fast sweeping method. The normal com-
ponents ~n are computed with the third-order Weighted Essentially Non-Oscillatory
(WENO) finite difference approximations (e.g., see [26]).

For linear extrapolation in the normal direction, we solve (2.5) and (2.6) with
the first-order fast sweeping method. un = ~n · ∇u is first computed with the third-
order WENO approximations in the region ψ ≤ −band1. Then it is extrapolated in a
constant manner to the whole domain by solving the modified equation (2.5), i.e.,

H(ψ + band1)~n · ∇un = 0. (4.1)

After that, we solve (2.6) to extrapolate u into the whole domain. Here band1 = h.
For quadratic extrapolation in the normal direction, we solve (2.8), (2.9) and

(2.10) with the second-order fast sweeping methods. unn = ~n · ∇(~n · ∇u) is first
computed in the region ψ ≤ −band2. Then it is extrapolated in a constant manner
to the whole domain by solving the modified equation (2.8), i.e.,

H(ψ + band2)~n · ∇unn = 0. (4.2)

After that, un is computed by solving the modified equation (4.1). Finally u is
computed by solving (2.10). Here band2 = h.

Note that the Heaviside function serves as the indicator of unknown and known
regions in the PDEs. In the numerical implementation, the PDEs only need to be
solved in the unknown region where H ≡ 1.

Remark 5. For the computation of the derivatives in ~n, un, unn, besides the
third-order WENO approximations, we also implement the centered finite differences.
For constant and linear extrapolation, second-order centered finite difference is used
(band1 = h). For quadratic extrapolation, fourth-order centered finite difference is
used (band1 = 2h, band2 = 2

√
2h). And the results show desired accuracy of extrap-

olation as in the following examples.

4.2. Numerical Examples. We choose δ = 10−9 as the stopping criterion for
the fast sweeping methods. In computation of ~n, un, unn, we implement both the
third-order WENO approximations and the centered finite difference approximations.
Numerical results including the accuracy, the order of convergence and the number of
iterations are recorded. One iteration corresponds to sweeping the whole mesh once.

Example 1: The computational domain is [−π, π]×[−π, π], the level set function
is ψ =

√

x2 + y2 − 2. The function u is initially given as

u =

{

0, if ψ > 0,

cos(x) sin(y), if ψ ≤ 0.
(4.3)

Table 4.1 shows the accuracy of constant, linear and quadratic extrapolation. Figure
4.1 shows the contour plots of the numerical solutions. From Table 4.1, we observe
first, second and third order convergence for constant, linear and quadratic extrapo-
lation inside a narrow band of size 3h next to the interface Γ, respectively. And the
number of iterations is almost constant as the mesh is refined.
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Table 4.1

Numerical accuracy for extrapolation in a neighborhood of size 3h near the interface Γ. The
numbers of iterations correspond to solving the different PDEs: constant extrapolation: equation
(2.2); linear extrapolation: (4.1) and (2.6); and quadratic extrapolation: (4.2), (4.1) and (2.10).

Mesh 201× 201 401× 401 801× 801 1601× 1601
Third-Order WENO
constant extrapolation

L∞ error 1.591E-2 7.585E-3 4.241E-3 2.093E-3
Conv. Order — 1.069 0.839 1.019

# Iter 9 9 9 9
linear extrapolation

L∞ error 4.329E-3 1.079E-3 2.881E-4 7.387E-5
Conv. Order — 2.004 1.905 1.963

# Iter 9, 9 9, 9 9, 9 9, 9
quadratic extrapolation

L∞ error 3.126E-4 3.736E-5 4.832E-6 5.975E-7
Conv. Order — 3.065 2.951 3.016

# Iter 17, 17, 17 17, 17, 17 17, 17, 17 17, 17, 17
quadratic extrapolation (with compact upwind second-order scheme)
L∞ error 9.779E-4 1.450E-4 1.631E-5 2.042E-6

Conv. Order — 2.754 3.152 2.998
# Iter 8, 8, 8 8, 8, 8 8, 8, 8 8, 8, 8

Centered finite difference
constant extrapolation

L∞ error 1.591E-2 7.585E-3 4.241E-3 2.093E-3
Conv. Order — 1.069 0.839 1.019

# Iter 5 5 5 5
linear extrapolation

L∞ error 5.711E-3 1.413E-3 3.892E-4 9.666E-5
Conv. Order — 2.015 1.860 2.010

# Iter 5, 5 7, 5 5, 5 5, 5
quadratic extrapolation

L∞ error 1.070E-3 1.386E-4 1.809E-5 2.274E-6
Conv. Order — 2.949 2.938 2.992

# Iter 28, 28, 17 28, 28, 17 28, 28, 17 28, 28, 17
quadratic extrapolation (with compact upwind second-order scheme)
L∞ error 1.977E-3 2.541E-4 3.214E-5 4.040E-6

Conv. Order — 2.960 2.983 2.992
# Iter 8, 8, 8 8, 8, 8 8, 8, 8 8, 8, 8

Table 4.2 shows the comparison of CPUtime between the time-dependent ap-
proach [2] and the static approach for constant and linear extrapolation. For the
time-dependent approach, we use second-order upwind finite difference scheme and
second-order Runge-Kutta method as in [2]. The PDE must be solved to the steady
state. In the numerical implementation, the computation stops when the change
between two successive time steps is less than δ. For the static approach, we use
second-order upwind scheme (3.7) for the purpose of comparison. It is clear that
the time-dependent approach requires much more CPUtime than the static approach.
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Fig. 4.1. Contour plots of the numerical solutions: (a) initial u, (b) constant extrapolation,
(c) linear extrapolation, and (d) quadratic extrapolation. Black dots indicate the interface Γ. Mesh:
401× 401.

Table 4.2

CPUtime (seconds) comparison between the time-dependent approach (TD) in [2] and the static
approach. Same order of accuracy is obtained in the 3h band near the interface for both approaches.

Mesh 101× 101 201× 201 401× 401 801× 801
Centered finite difference, constant extrapolation

CPUtime(Static) 0.01 0.03 0.10 0.51
CPUtime(TD) 0.11 0.68 6.35 68.96

Centered finite difference, linear extrapolation

CPUtime(Static) 0.02 0.06 0.28 1.54
CPUtime(TD) 0.23 1.45 13.43 142.92

Both approaches are implemented with C codes on a Desktop.

Example 2: The setup is the same as in Example 1, except that the level set
function is given as ψ = min{

√

(x− 0.8)2 + y2 − 1,
√

(x+ 0.8)2 + y2 − 1}. Table 4.3
shows the performance of the fast sweeping methods for constant, linear and quadratic
extrapolation. Figure 4.2 shows the contour plots of the numerical solutions. From
Table 4.3, we observe again that the number of iterations changes very little as the
mesh is refined.

Example 3: This example demonstrates narrow band implementation described
in Section 3.4. Four corner points of the computational domain are chosen as the
reference points for alternating orderings. Figure 4.3 shows the results of extrapolation
into a narrow band of size 10h near the interface Γ.

Example 4: Here we use a simple example to demonstrate that one pass algo-
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Table 4.3

The numbers of iterations correspond to solving the different PDEs: constant extrapolation:
equation (2.2); linear extrapolation: (4.1) and (2.6); and quadratic extrapolation: (4.2), (4.1) and
(2.10).

Mesh 201× 201 401× 401 801× 801 1601× 1601

Third-order WENO
constant extrapolation

# Iter 21 17 19 21
linear extrapolation

# Iter 21, 21 17, 17 19, 19 21, 21
quadratic extrapolation

# Iter 25, 25, 25 23, 23, 23 25, 25, 25 25, 25, 25
quadratic extrapolation (with compact upwind second-order scheme)
# Iter 12, 12, 12 14, 14, 14 14, 14, 14 12, 12, 12

Centered finite difference
constant extrapolation

# Iter 21 17 19 21
linear extrapolation

# Iter 33, 21 29, 17 31, 19 33, 21
quadratic extrapolation

# Iter 42, 41, 25 39, 37, 23 41, 39, 25 45, 43, 25
quadratic extrapolation (with compact upwind second-order scheme)
# Iter 12, 12, 12 12, 12, 12 12, 12, 12 12, 12, 12

rithm with fixed upwind stencils does not work. For simplicity we use the first-order
upwind scheme (3.4) as an example. At any given point, at most two of its four imme-
diate neighbors in the upwind direction are used to determine its value. So the value
at this point can get the correct value only if its upwind neighbors have correct values
already. If a one pass algorithm with fixed stencil has to work, there has to be an
ordering of all grid points such that every grid point can only depend on grid points
that either have assigned value (from initialization) or have been updated correctly.
Figure 4.4(a) shows a scenario where two grid points, A and B, next to the interface
depend on each other. According to the upwind direction, shown by arrows in the
figure, value at point B and C are required to determine the value at A. Similarly
the value at point A and D are required to determine the value at B. In another
word, the values at A and B are coupled in the upwind scheme and can not be solved
one by one as in one pass algorithms. Figure 4.4(b) exactly verifies this scenario by
enforcing a one pass condition in the sweeping algorithm for constant extrapolation.
We update values only at those grid points where their upwind neighbors either have
assigned value (from initialization) or have been updated correctly. We see that ex-
trapolation get stuck immediately at the four points where the interface is tangent to
the grid lines which is exactly demonstrated in Figure 4.4(a). Therefore the stencils
must be modified on the fly, such as those used in the ordered upwind scheme [22]. On
the other hand, the fast sweeping method is an iterative method which handles this
situation naturally and effectively as investigated in [15]. The fast sweeping method
does not only allow the fast propagation of information along characteristics by us-
ing upwind scheme, causality and alternating orderings during the iterations but also
have an effective built in relaxation mechanism that can handle more complicated
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Fig. 4.2. Contour plots of the numerical solutions: (a) initial u, (b) constant extrapolation,
(c) linear extrapolation, and (d) quadratic extrapolation. Black dots indicate the interface Γ. Mesh:
401× 401.

situation when one pass algorithms fail.

Example 5: The setup is the same as in Example 1, except that the level set
function is the signed distance function to a triangle (see Figure 4.5). In this case,
the interface Γ is not smooth. The derivatives are computed with third-order WENO
approximations. Figure 4.5 shows the contour plots of the numerical solutions.

5. Conclusion. We developed the fast sweeping method for the static PDE
based extrapolation which can be applied to a variety of physics problems often solved
in conjunction with level set techniques. The proposed method is efficient, in that
they scale linearly with the size of the grid, and eliminate the need to integrate in
time to steady state as was done in the original approach [2]. Although parallelization
techniques were not discussed here, approaches in [28, 6] can easily be applied to gain
further efficiency.
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Appendix A. Implementations on Triangular Meshes. In this section, we
present numerical implementations of the constant and linear extrapolation with first-
order fast sweeping method on a triangular mesh. Assume that the computational
domain is discretized by a triangular mesh. Given any point C = (xC, yC) with its
two neighbors A = (xA, yA) and B = (xB, yB) on the same simplex ∆CAB (see
Figure A.1), and assume that the characteristic passing through C falls in ∆CAB.
By applying linear Taylor expansion within ∆CAB, we have
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Fig. 4.3. Contour plots of the numerical solutions with extrapolation to a narrow band of size
10h near Γ: from top to bottom: constant, linear and quadratic extrapolation, respectively. Left:
setup as in Example 1; Right: setup as in Example 2. Black dots indicate the interface Γ. Mesh
size: h = π/200.

∇u(C) ≈ P−1

(

u(C)−u(A)
lb

u(C)−u(B)
la

)

, with P =

(

(xC − xA)/lb, (yC − yA)/lb
(xC − xB)/la, (yC − yB)/la

)

,

(A.1)

where la = |C−B|, and lb = |C−A|. If denoting P−1 =

(

p11 p12
p21 p22

)

, we have

∇u(C) ≈
(

g1u(C) + g2
g3u(C) + g4

)

,

g1 = p11/lb + p12/la, g2 = −(u(A)p11/lb + u(B)p12/la),

g3 = (p21/lb + p22/la), g4 = −(u(A)p21/lb + u(B)p22/la).

(A.2)
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interface. Arrows indicate upwind directions. (b) numerical test for one pass algorithm for constant
extrapolation.
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Fig. 4.5. Contour plots of the numerical solutions: (a) initial u, (b) constant extrapolation,
(c) linear extrapolation, and (d) quadratic extrapolation. Black dots indicate the interface Γ. Mesh:
401× 401.

We substitute ∇u(C) into the PDE (3.1) to have the discretized PDE on ∆CAB,

ax(xC, yC)(g1u(C) + g2) + ay(xC, yC)(g3u(C) + g4) = f(C), (A.3)

which provides a local updating formula for u(C),

u(C) =
f(C)− ax(xC, yC)g2 − ay(xC, yC)g4
ax(xC, yC) + g1 + ay(xC, yC)g3

. (A.4)

With the local solver (A.4), we can simply use the fast sweeping algorithm summarized
in Section 3.4. By choosing a few reference points, triangular meshes are ordered
according to the distance to these reference points as in [19]. We apply the fast
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Fig. A.1. Illustrations of local triangular mesh: left: local mesh; right: a simplex where the
characteristic passes through c falls into.

Table A.1

Numerical accuracy for extrapolation in a neighborhood of size 3h near the interface Γ.

(Nodes, Elements) (362, 661) (1452, 2774) (5809, 11366) (23227, 45946)
constant extrapolation

L∞ error 1.910E-1 1.017E-1 5.100E-2 2.470E-2
Conv. Order — 0.909 0.996 1.046

# Iter 8 10 10 14
linear extrapolation

L∞ error 1.762E-1 3.808E-2 1.2201E-2 2.550E-3
Conv. Order — 2.210 1.642 2.258

# Iter 8, 8 10, 10 12, 10 14, 14

sweeping method for Examples 1 and 2 on triangular meshes. The computation
domain is now given as a disk centered at the origin with radius π. And the domain
is discretized with triangular mesh, e.g., see Figure A.2.

Fig. A.2. A Triangular mesh.

Table A.1 shows the accuracy for constant and linear extrapolation for Example
1. The order of convergence is expected as in Example 1. For linear extrapolation,
for simplicity, we compute un directly with u initially given as in Example 1.

Figure A.3 (Example 1) and Figure A.4 (Example 2) show plots of numerical
solutions by constant and linear extrapolation.
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