
A Static Task Partitioning Approach for

Heterogeneous Systems Using OpenCL

Dominik Grewe and Michael F.P. O’Boyle

School of Informatics, The University of Edinburgh, UK
dominik.grewe@ed.ac.uk, mob@inf.ed.ac.uk

Abstract. Heterogeneous multi-core platforms are increasingly preva-
lent due to their perceived superior performance over homogeneous sys-
tems. The best performance, however, can only be achieved if tasks are
accurately mapped to the right processors. OpenCL programs can be
partitioned to take advantage of all the available processors in a system.
However, finding the best partitioning for any heterogeneous system is
difficult and depends on the hardware and software implementation.

We propose a portable partitioning scheme for OpenCL programs on
heterogeneous CPU-GPU systems. We develop a purely static approach
based on predictive modelling and program features. When evaluated
over a suite of 47 benchmarks, our model achieves a speedup of 1.57 over
a state-of-the-art dynamic run-time approach, a speedup of 3.02 over a
purely multi-core approach and 1.55 over the performance achieved by
using just the GPU.

Keywords: Heterogeneous programming, task partitioning, OpenCL,
parallel programming, static code analysis.

1 Introduction

Heterogeneous computing systems promise to deliver high performance at rela-
tively low energy costs [15,18]. By having processing units with different char-
acteristics, computation can be mapped to specialised devices that perform a
specific type of task more efficiently than other devices. In embedded systems
this has been the case for many years with specialised DSP units for instance
[15]. This trend has spread to the desktop, where the high-end relies on accelera-
tor devices for increased performance. With the rise of GPGPU (general-purpose
computing on GPUs), heterogeneous computing has become increasingly preva-
lent and attractive for more mainstream programming [20,24,27].

The most widely adapted framework for heterogeneous computing is OpenCL
[16], an open standard for parallel programming of heterogeneous systems sup-
ported by many hardware vendors such as AMD, NVIDIA, Intel and IBM.
OpenCL can be used for programming multiple different devices, e.g. CPUs and
GPUs, from within a single framework. It is, however, fairly low-level, requiring
the programmer to tune a program for specific platforms in order to get the op-
timal performance. This, in particular, includes the mapping of tasks to devices,

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 286–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Static Task Partitioning Approach 287

i.e. what part of the computation is performed on which device. As processors
in a heterogeneous system are often based on entirely different architectures,
the right mapping can be crucial in achieving good performance as shown in
section 3. Heterogeneous platforms continue to evolve with increased numbers of
cores and more powerful accelerators, the consequence being that the best par-
titioning will also change. Furthermore as OpenCL is a relatively new API, it is
likely that each new implementation release will change the relative performance
between different types of cores again affecting the best partitioning. Finally, it
is likely that OpenCL will increasingly be used as a target language for high-level
compilers (e.g. CAPS HMPP [11] or PGI [28]), making automatic mapping of
tasks desirable. Ideally, we would like an approach that can adapt to architec-
ture and implementation evolution without requiring repeated compiler-expert
intervention.

GPUs are specifically suited for data-parallelism, because they comprise of
groups of processing cores that work in a SIMD manner. Data-parallel tasks
can often be easily split into smaller sub-tasks and distributed across multi-
ple devices. Finding the best partitioning to achieve the best performance on
a particular systems is non-trivial, however. Several efforts have been made to
automate this process: Qilin [20] relies on extensive off-line profiling to create a
performance model for each task on each device. This information is used to cal-
culate a good partitioning across the devices. However, the initial profiling phase
can be prohibitive in many situations. Ravi et al. [24] develop a purely dynamic
approach that divides a task into chunks that are distributed across processors
in a task-farm manner. While this eliminates profiling, it incurs communication
and other overheads.

The approach to partitioning data-parallel OpenCL tasks described in this
paper is a purely static approach. There is no profiling of the target program
and the run-time overhead of dynamic schemes is avoided. In our method static
analysis is used to extract code features from OpenCL programs. Given this in-
formation, our system determines the best partitioning across the processors in
a system and divides the task into as many chunks as there are processors with
each processor receiving the appropriate chunk. Deriving the optimal partition-
ing from a program’s features is a difficult problem and depends heavily on the
characteristics of the system. We therefore rely on machine-learning techniques
to automatically build a model that maps code features to partitions. Because
the process is entirely automatic, it is easily portable across different systems
and implementations. When either change, we simply rerun the learning proce-
dure without human intervention in building the model. We focus on CPU-GPU
systems as this is arguably the most common form of heterogeneous systems in
the desktop and high-performance computing domain.

The contributions of this paper are as follows:

– We develop a machine-learning based compiler model that accurately pre-
dicts the best partitioning of a task given only static code features.

– We show that our approach works well across a number of applications and
outperforms existing approaches.



288 D. Grewe and M.F.P. O’Boyle

Fig. 1. OpenCL in a heterogeneous environment. The user schedules task to command
queues of which there is one for each device. The OpenCL run-time then breaks data-
parallel task into chunks and sends them to the processing elements in the device.

The rest of this paper is structured as follows. Section 2 gives a brief introduction
to OpenCL mapping and is followed in section 3 by a short example illustrating
the performance impact of mapping decisions. Section 4 describes how we auto-
matically build a partitioning model which is then evaluated in sections 5 and 6.
Section 7 describes related work and is followed by some concluding remarks.

2 The OpenCL Programming Framework

Recent advances in the programmability of graphics cards have sparked a huge
interest in what is now called general-purpose computing on graphics process-
ing units or GPGPU. Several proprietary solutions like Brook [7] or NVIDIA
CUDA [22] have been proposed, out of which the latter has arguably the great-
est following. OpenCL is an attempt to develop an open alternative to these
frameworks and is now being supported by most major hardware manufacturers.
Furthermore, OpenCL not only targets GPUs, but entire heterogeneous systems
including GPUs, CPUs and the Cell architecture.

Due to its success, OpenCL’s programming model is similar to CUDA, fo-
cusing on data-parallelism. Data-parallel tasks are suitable for GPUs, in which
groups of processing cores work in a SIMD fashion. In OpenCL, a data-parallel
task is expressed as a kernel that describes the computation of a single work-
item1. During program execution, a user-specified number of work-items is
launched to execute in parallel. These work-items are organized in a multi-
dimensional grid and subsets of work-items are grouped together to form work-
groups, which allow work-items to interact. Each work-item can query its position
in the grid by calling certain built-in functions from within the kernel code.
1 A work-item is equivalent to a thread in CUDA.



A Static Task Partitioning Approach 289

Despite OpenCL’s focus on data-parallelism, task-parallelism is also sup-
ported in the framework to allow execution on multiple devices, e.g. multiple
GPUs or CPUs and GPUs.2 For each device, the user can create a command
queue to which (data-parallel) tasks can be submitted (see figure 1). This not
only allows the user to execute different tasks in parallel, but also enables decom-
position of data-parallel tasks into sub-tasks that are distributed across multiple
devices. Because OpenCL supports a variety of processing devices, all this can be
achieved with just a single implementation of each task. Using CUDA a separate
implementation for other devices, such as CPUs, would be needed.

OpenCL’s memory model reflects the memory hierarchy on graphics cards.
There is a global memory that is accessible by all work-items. There is also a
small local memory for each work-group that can only be accessed by work-items
from that particular work-group. Additionally, there is a constant memory which
is read-only and can be used to store look-up tables, etc. This memory model
is general enough to be mapped to many devices. Some processing devices, for
example GPUs, have a global memory that is separate from the computer’s main
memory. In this case, any data needs to be copied to the device and back to main
memory before and after task execution, and can be a considerable overhead.

3 Motivation

Determining the right mapping for a task is crucial to achieve good performance
on heterogeneous architectures. This section illustrates this point by examining
the performance of three OpenCL programs, each of which needs a different
partitioning to achieve its best performance.

Figure 2 shows the speedup of three OpenCL programs with different mapping
over single-core execution on a CPU. The specification of our system is provided
in section 5.1. The x-axis shows how much of the program’s workload is executed
on each device, i.e. the leftmost bar shows the speedup of GPU-only execution,
one bar to the right shows the execution with 90% of work on the GPU and 10%
on the CPUs and so on.

For the coulombic potential program (figure 2a), a GPU-only execution
achieves by far the best performance. Scheduling an amount of work as small
as 10% to the CPUs leads to a slow-down of more than 5 times and this value
increases if more work is mapped to the CPUs. For these types of programs it
is absolutely vital to know ahead of time what the optimal mapping is, because
a small mistake is going to be very costly.

The matrix-vector multiplication program exhibits an entirely different
behaviour (see figure 2b). The highest speedup is observed when 90% of the work
is scheduled to the CPUs and only 10% to the GPU. The amount of computa-
tion per data item is fairly small and therefore the overhead of transferring data
between main memory and the GPU’s memory is not worthwhile for large parts
of the computation. The convolution program in figure 2c shows yet another

2 In OpenCL all CPU cores (even across multiple chips) are viewed as a single device.



290 D. Grewe and M.F.P. O’Boyle

0

100

200

300

400

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(a) coulombic potential

0

2

4

6

8

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(b) matrix-vector mult.

0
4
8

12
16

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(c) convolution

Fig. 2. The speedup over single-core performance of three OpenCL programs with dif-
ferent partitions. The significant variations demonstrate the need for program-specific
mappings.

different behaviour: A roughly even partitioning of work between CPUs and
GPU leads to the best speedup. Unlike the other cases, neither a GPU-only nor
a CPU-only execution would achieve good performance.

As these programs have shown, a partitioning scheme that takes program
characteristics into account is necessary to achieve good performance on hetero-
geneous systems. Different programs need different mappings and for some of
them making a small mistake means that large potential speedups are missed.
As OpenCL is a fairly new framework, compilers are likely to improve in the
near future. The CPU implementation, in particular, seems to have much room
for improvement.

The next section describes our static partitioning approach based on static
program code structure and machine-learning. By using machine-learning meth-
ods, our approach is portable across systems as well as implementations; a highly
desirable property as program performance is likely to change across heteroge-
neous architectures and as OpenCL tools mature.

4 Partitioning Data-Parallel Tasks

Our approach uses machine-learning to predict the optimal partitioning for an
OpenCL program solely based on compiler analysis of the program structure.
The static analysis characterises a program as a fixed vector of real values,
commonly known as features. We wish to learn a function f that maps a vector of
program code features c to the optimal partitioning of this program, i.e. f(c) = p
where p is as near as possible to the optimal partitioning.

In order to map a task to the hardware without executing it, we need to anal-
yse the code and extract code features. This section describes the static analysis
framework used to extract code features at compile time. It also describes how
a machine-learning based model is built and then used to predict the optimal
partitioning for any OpenCL program. Instead of relying on a single prediction
model, we use hierarchical classification [5] where a hierarchy of models is eval-
uated to find the answer. As the models used are instances of support vector
machines (SVMs) [8], we will also provide a brief introduction to SVMs.



A Static Task Partitioning Approach 291

4.1 Static Code Feature Extraction

Our partitioning method is entirely based on static code features eliminating
the need for expensive off-line profiling [20] and also avoiding the pitfalls of
dynamic techniques [24]. However, the features need to carry enough information
to characterize the behaviour of OpenCL programs. In the following paragraphs
we explain the feature extraction framework and describe the program code
features used in the partitioning scheme.

The compiler analysis is implemented in Clang [1], a C-language front-end
for LLVM. The OpenCL program is read in by Clang which builds an abstract
syntax tree. The analysis is based on a traversal of this tree, extracting code fea-
tures such as the number of floating point instructions or the number of memory
accesses in the program. Because many programs contain loops, we perform a
value analysis to determine loop bounds (if possible). The value analysis is also
used to analyze memory access patterns, which have a significant impact on
performance on GPUs [26].

Memory accesses are called coalesced if adjacent work-items access adjacent
memory locations. In this case multiple memory transfers can be coalesced into
a single access increasing the overall memory bandwidth. This needs to be taken
into account when mapping programs as it has a considerable impact on perfor-
mance.

The full list of static code features is shown in table 1. As indicated in the
table, features describing absolute values are normalized. By multiplying the
value by the number of work-items we compute the total number of operations
for this program execution. Since a machine-learning model will not be able to
relate two similar programs that have been executed with different input sizes,
the total number of operations is divided by the data transfer size, to compute
the number of operations per data item. In other words the normalized features
are computed as

operations in program code × number of work-items
data transfer size

Before the features are passed to our model, we apply principal component anal-
ysis (PCA) [5] to reduce the dimensionality of the feature space and normalize
the data (see section 4.2 for details).

Our features describe both the computation and the memory operations of
the kernel. First, it is important to describe the type and amount of compu-
tations (features 1-5). Some math operations, such as sine and cosine, can be
mapped to special function units on some GPUs but may need to be emulated
on CPUs, for example. Barriers (feature 6) may also cause different costs on
different architectures.

Second, memory operations (features 7-10) are important to consider. De-
pending on the architecture and type of memory the cost of memory accesses
may vary. Accessing local memory on GPUs, for example, is cheap because it is
mapped to small on-chip memory. On CPUs, however, local and global memory
both get mapped to the same memory space.



292 D. Grewe and M.F.P. O’Boyle

Table 1. List of static code features used to characterize OpenCL programs and the
corresponding values of the three example programs

Static Code Feature cp mvm conv

1 int operations (norm.) 31.6 0.6 28.8

2 int4 operations (norm.) 0 0 0

3 float operations (norm.) 1593.5 0.5 4.25

4 float4 operations (norm.) 0 0 0

5 intrinsic math operations (norm.) 249.9 0 0

6 barriers (norm.) 0 0.012 0.031

7 memory accesses (norm.) 0.125 0.5 2.6

8 percentage of local memory accesses 0 0.04 0.88

9 percentage of coalesced memory accesses 1 0.996 0

10 compute-memory ratio 15004 2.1 105.9

11 data transfer size 134249726 67141632 134217796

12 computation per data transfer 1875 1.6 35.7

13 number of work-items 2097152 4096 4194304

GPUs have a physically separate memory space and any data used during
program execution needs to be copied to the GPU. The cost of data transfers
between the memories is thus important. Features 11 and 12 capture the amount
of memory to be transferred and how it compares to the amount of computation
performed on the data. Lastly, feature 13 captures the overall size of the problem.

Examples. Table 1 shows the feature vectors for the example benchmarks in-
troduced in section 3. The “computation to data transfer” ratio (feature 12),
for example, is 1875 for the coulombic potential program, which is signifi-
cantly higher than the value for convolution (35.7) and matrix-vector multi-
plication (1.6). The number of compute operations (features 1-5) and the
ratio between compute- and memory-operations (feature 10) is also higher for
coulombic potential compared to the others.

These differences in input features reflect the different behaviours shown
in figure 2. The optimal performance for the coulombic potential bench-
mark is achieved with GPU-only execution, because of the large number of
compute-operations and the relatively small data transfer overhead. For the
matrix-vector multiplication, on the other hand, very few operations are
performed for each data item and the data transfer costs undo any potential
speedups the GPU may offer. The feature values of the convolution bench-
mark are in-between the values of the other two programs. This explains why a
more balanced work distribution is beneficial.

4.2 Building the Predictor

Building a machine-learning based model involves the collection of training data
which is used to fit the model to the problem at hand. In our case, the training
data consists of static code features of other OpenCL programs and the optimal



A Static Task Partitioning Approach 293

partitioning of the corresponding program. This enables us to create a model
that maps program code features to the program’s optimal partitioning. Rather
than relying on an individual predictor, we combine several models to form a
hierarchical classification model [5].

Collecting Training Data. The training data for our model is divided into
static code features (as described in section 4.1) and the optimal partitioning
for the corresponding OpenCL program. The former will be the input for our
model, whereas the latter is the output (or target) of our model.

Each program is run with varying partitionings, namely all work on the CPU,
90% of work on the CPU and the remaining 10% on the GPU, 80% on the CPU
and 20% on the GPU and so on. The partitioning with the shortest run-time is
selected as an estimate of the optimal work partitioning for the program.

Two-Level Predictor. As was shown in section 3 OpenCL programs can be
loosely divided into three categories, namely programs that achieve the best
performance when

(1) executed on GPU only
(2) executed on CPUs only
(3) partitioned and distributed over GPU and CPUs

Getting the partitioning right is especially vital for programs in category 1. Not
mapping all the work on the GPU leads to significant slowdowns (see Fig. 2a).
Similarly (even though less drastic) for programs in category 2: If it is not worth
copying the data back and forth to the GPU, one needs to make sure that the
work is mapped to the CPU and any data transfer overhead is avoided.

We therefore develop a prediction mechanism utilizing a hierarchy of predic-
tors. This approach is known as hierarchical classification [5]. In the first level,
programs from categories 1 and 2 are filtered out and mapped to the GPU or
the CPUs, respectively. The remaining programs are mapped according to a
third predictor in level 2 (see Fig. 3). The kernel features are reduced to two and
eleven principal components using PCA for the first- and second-level predictors,
respectively.

Formally, we are mapping input features to one out of 11 classes, where class
0 represents GPU-only execution and class 10 CPU-only execution. Let gpu
and cpu be the first-level predictors and mix the second-level predictor. The
hierarchical model can be described as

prediction(x) =

⎧
⎨

⎩

0 if gpu(x) and ¬cpu(x)
10 if cpu(x) and ¬gpu(x)

mix(x) otherwise

Level 1 predictors. Focusing only on the extremes of the partitioning spectrum,
the models in the first stage of the prediction are simple, but highly accurate



294 D. Grewe and M.F.P. O’Boyle

Fig. 3. Overview of our prediction approach. Programs that should be entirely mapped
to the GPU or to the CPUs are filtered out in the first level, while the second level
handles programs that cannot be classified in level 1.

(see section 6.2). One model predicts whether or not a program should be ex-
ecuted on the GPU only (category 1), while the other determines if a task is
entirely mapped to CPUs (category 2). These “one-vs-all” classifiers [25] are im-
plemented as binary classifiers based on a support vector machine (SVM) with
a linear kernel (see section 4.4).

Level 2 predictor. If the first level of predictors does not lead to a conclusion, the
program is passed on to another predictor. This one is more complex, because it
needs to map a program to one out of the 11 classes determined during training.
Again, we use an SVM-based model, but this time a radial basis function [5]
kernel is deployed to account for the increased complexity of this problem.

Whereas for the stage-1 models we use all of the available training data, we
only use data from category 3 programs to train our model in the second level.
This allows for the predictor to focus on programs whose optimal partitioning
is likely to be neither CPU- nor GPU-only.

4.3 Deployment

At compile time, the program code is analyzed and code features are extracted.
Because our model’s input features incorporate the task’s input size, the predic-
tion cannot be made just yet. However, at run-time the input size is known and
together with the previously extracted code features is passed to the model. The
model’s output is the optimal partitioning for this program and input size which
is used to partition the program between multiple devices. In OpenCL this can



A Static Task Partitioning Approach 295

be easily done by setting a few variables. Although the prediction is done at
run-time, the overhead is negligible as it only takes in the order of microseconds
to evaluate our models; the cost of which is included in our later results.

Examples. Passing the features for the coulombic potential program as shown
in figure 2a into our first-level predictors, we get a positive classification from
the “GPU-only” predictor and a negative one from the “CPU-only” model. We
therefore immediately map all of the computation to the GPU without evalu-
ating the second level predictor. This leads to the optimal performance for this
program.

For the matrix-vector multiplicationprogram, it is the other way around,
i.e. we map the computation to the CPU only. Looking at figure 2b shows that
while this is not the optimal partitioning we still achieve 98% of the optimum.

With the convolution program, both first-level predictors say “no” and we
move on to the second level predictor. Given the input features this model pre-
dicts that we should map 60% of the work to the GPU and the remaining 40%
to the CPUs. According to figure 2c this leads to the optimal performance.

4.4 Support Vector Machines

Support Vector Machines (SVMs) [5] belong to the class of supervised learning
methods and can be used for both classification and regression. The idea behind
SVMs is to map the input feature space into a higher-dimensional space and
then find hyperplanes that separate the training points from different classes.
In the original feature space a linear separation may not be possible, but in a
higher-dimensional space it is often easier to find such a separation. A new input
feature vector is projected to the higher-dimensional space and a prediction is
made depending on which side of the hyperplanes the projection is located.
The projection into a higher-dimensional space is done using kernel functions.
These include linear kernels or radial basis function kernels. Depending on the
nature of the problem, some kernels perform better than others. A more detailed
description of SVMs can be found in [5].

5 Methodology

5.1 Experimental Setup

All experiments were carried out on a heterogeneous computer comprising two
quad-core CPUs with Intel HyperThreading and an ATI Radeon HD 5970 GPU.
Table 2 shows more detailed information on our system as well as the software
used. When the GPU was used, one CPU core was dedicated to managing the
GPU. This has shown to be beneficial and is in line with observations made by
Luk et al. [20]. Each experiment was repeated 20 times and the average execution
time was recorded.



296 D. Grewe and M.F.P. O’Boyle

Table 2. Experimental Setup

CPU GPU

Architecture 2x Intel Xeon E5530 ATI Radeon HD 5970

Core Clock 2.4 GHz 725 MHz

Core Count 8 (16 w/ HyperThreading) 1600

Memory Size 24 GB 1 GB

Compiler GCC 4.4.1 w/ ”-O3”

OS Ubuntu 9.10 64-bit

OpenCL ATI Stream SDK v2.01

In total we used 47 different OpenCL programs, collected from various bench-
mark suites: SHOC [9], Parboil3 [23], NVIDIA CUDA SDK [22] and ATI Stream
SDK [2]. By varying the programs’ input sizes, we conducted a total of 220 exper-
iments. We used the standard approach of cross-validation which has the critical
property that when evaluating the model on a certain program, no training data
from this program was used to build the model.

5.2 Evaluation Methodology

We compare our approach to an “oracle”, which provides an estimate of the
upper bound performance. To find the oracle we tried all 11 partitions on the
target program and selected the one with the lowest execution time. It may
be possible that a partition that is not a multiple of 10% gives an even better
speedup and thus our oracle is only an approximation.

We further evaluate two default strategies: “CPU-only” and “GPU-only” sim-
ply map the entire work to the CPUs or to the GPU, respectively. These are
two very primitive methods that serve as a lower bound in the sense that any
partitioning scheme should (on average) beat them to prove itself useful.

The fourth method we compare our approach against is a dynamic mapping
scheme similar to what is presented by Ravi et al. [24], where the work of a
kernel is broken into a certain number of chunks. Initially, one chunk is sent to
the GPU and one to the CPUs. When either of them finishes, a new chunk is
requested until the work is complete. We searched for the best number of chunks
to divide the work into and found that using 8 chunks leads to the best overall
performance on the set of kernels used in this paper, providing the right balance
between scheduling overhead and flexibility.

The performance of each mapping technique is evaluated by computing the
speedup over single-core execution. To collect the single-core run-times we used
the same OpenCL code, but instructed the OpenCL run-time to only use one
CPU core. This may underestimate the performance of a sequential version as it

3 The Parboil benchmark suite only contains CUDA programs. We therefore translated
the benchmarks from CUDA to OpenCL. The OpenCL source code can be found at
http://homepages.inf.ed.ac.uk/s0898672/opencl/benchmarks.html

http://homepages.inf.ed.ac.uk/s0898672/opencl/benchmarks.html


A Static Task Partitioning Approach 297

is likely to be faster than the parallel OpenCL code on a single core. However,
as this value is used solely as a baseline to compare speedups of the competing
techniques, it is appropriate for our purposes.

6 Results

In this section we show the performance of various mapping techniques. We
compare our new approach with two static default strategies, namely “CPU-
only” and “GPU-only”, as well as with the dynamic scheduling method described
in section 5.2. The performance achievable with an optimal partitioning is also
presented to compare the approaches to the maximal available speedups. This is
followed by an evaluation of the accuracy of the various predictors in our model.

6.1 Speedup Over Single-Core Performance

We compare the run-times achieved with different partitioning schemes to the
run-time on a single CPU core. Because of the large number of experiments we
divided our programs according to the three categories described in section 4.2:
Figure 4 shows programs where a “GPU-only” mapping achieves more than 90%
of the optimal performance, whereas figure 5 shows programs where “CPU-only”
achieves more than 80% of the optimum. The remaining programs are shown
in figure 6. This not only helps understanding the results but also improves
readability, as programs from different categories often have huge differences in
speedup.

GPU-friendly benchmarks. Figure 4 shows the performance of the various tech-
niques on OpenCL programs of category 1, i.e. programs that achieve the best
speedups when executed on the GPU only. Unsurprisingly, the static “GPU-
only” policy achieves near-optimal performance (compare to the right-most “or-
acle” bars). On these benchmarks this leads to an average speedup of 112
over single-core performance. Similarly obvious is that the “CPU-only” method
clearly loses on these benchmarks, only achieving an average speedup of 8. The
results for the dynamic approach are slightly better: Because the GPU is much
faster than the CPUs on these programs, the majority of work will be scheduled
to the GPU. However, some of the work is always scheduled to the CPUs which
leads to significant slow-downs for most of the benchmarks when compared to
the maximum performance. Overall, the dynamic scheduler achieves a speedup
of 49. Our prediction approach, on the other hand, classifies almost all programs
correctly and therefore achieves almost the same performance as the “oracle”
scheduler with 113 times of the single-core performance.

In our model, the majority of programs is filtered out by the first-level “GPU-
only” predictor. Only very few are passed through to the next level. For those
cases, the second-level predictor makes the right decision to schedule the work to
the GPU. More detailed information on the accuracy of our model’s predictors
will be shown in section 6.2.



298 D. Grewe and M.F.P. O’Boyle

 0

 100

 200

 300

 400

 500

 600

st_AES_enc

st_AES_dec

st_boxFil_hLocal

st_m
onCar_vega

st_nbody

sh_fft_ifft1D

sh_m
d_accel

sh_scan_scan

sh_sgem
m

_NT

nv_sdk_m
atM

ul

pb_cp_cuenergy

pb_m
ri-fhd_FH

pb_m
ri-q_Q

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

Fig. 4. Performance of those applications where the best speedup is achieved using
only the GPU. Our predictive model leads to near-optimal performance compared to
the oracle and a speedup of 2.3 over the dynamic scheme.

CPU-friendly benchmarks. The performance of the different partitioning schemes
on category 2 programs is shown in figure 5. This time around the static “CPU-
only” policy achieves near-optimal performance. The average speedup equates
to 6.12, only marginally below the upper bound of 6.36. Unsurprisingly the
“GPU-only” method is worst for all programs, most of the time because shipping
the data between main memory and GPU memory is not feasible. The average
speedup of “GPU-only” is 1.05, i.e. no significant improvement over single-core
execution can be observed. Again, the dynamic mapping method only comes
second to last. The overhead of having many chunks and sending data to the
GPU is simply too big to achieve good performance on these programs and leads
to a speedup of only 2.15. Our prediction method comes close to the optimal
performance. With an average speedup of 4.81 it is slower than the “CPU-
only” policy on the CPU-friendly benchmarks, but significantly better than the
dynamic scheme. This again shows our model’s high accuracy for partitioning
OpenCL programs. Just like for the GPU-friendly programs, most of the CPU-
friendly programs are filtered out in stage 1 of our prediction process. The few
other programs are accurately mapped by the second-level predictor. For more
detailed information on the predictors’ accuracies see section 6.2.

Remaining benchmarks. Performance results for all the remaining benchmarks
are shown in figure 6. To improve readability, we have grouped the programs
according to the maximum available speedup, i.e. programs in figure 6a achieve
a larger speedup than programs in figure 6b.

Both non-adaptive policies, “CPU-only” and “GPU-only”, do not do very
well on most of these benchmarks, because the optimal performance is achieved
when the work is distributed across both devices. On average, the “GPU-only”
mapping achieves higher speedups (6.26 compared to 4.59), because the “CPU-
only” policy misses out on potentially high speedups as shown in figure 6a. The



A Static Task Partitioning Approach 299

 0

 2

 4

 6

 8

 10

 12

st_hist_histogram
256

st_histAtom
_global

nv_blackscholes

nv_m
atVecM

ul_unc0

nv_m
atVecM

ul_unc1

nv_m
atVecM

ul_c0

nv_m
atVecM

ul_c1

nv_m
atVecM

ul_c2

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

Fig. 5. Performance of those applications where using only the CPU leads to almost
optimal speedup. Our predictive model achieves a speedup of 2.2 over the dynamic
scheme.

dynamic scheme does reasonably well and achieves near-optimal performance
for some benchmarks and an average speedup of 8.00. However, all schemes are
outperformed by our prediction approach which achieves a speedup of 9.31 on
average. Hence, even though the dynamic scheme shows its potential on these
kind of programs, it is still outperformed by our prediction approach due to
reduced scheduling overhead and more accurate work distribution.

Summary. As was shown in this section, a fixed partitioning that is agnostic
to program characteristics is unsuitable for heterogeneous environments. The
“CPU-only” and “GPU-only” methods only apply to a limited set of bench-
marks and cannot adapt to different programs. Different programs need different
mappings, highlighting the need for adaptive techniques.

For the majority of programs, a partitioning of the work between CPUs
and GPU is beneficial. While the dynamic partitioning method described in
section 5.2 is designed to handle these cases, it is often unable to achieve good
performance due to scheduling overhead and the inability to account for cases
where a mixed execution is harmful. Our approach, in contrast, explicitly handles
all cases and minimises overhead by making a static decision based on program
code features.

Figure 7 shows the geometric mean over all benchmarks for the techniques
presented in this paper. The “CPU-only” scheme is by far the worst technique
because it does not adapt to programs and misses out on large speedups with
GPU-friendly programs. Although the “GPU-only” mapping does not adapt
to programs either, it achieves a better overall speedup because it correctly
maps the programs that show high performance improvements over single-core
execution. With an average speedup of 9.21 it is even marginally better than
the dynamic method which achieves only 9.13 times the performance of single-
core execution. This again is because the potential of GPU-friendly programs



300 D. Grewe and M.F.P. O’Boyle

 0

 20

 40

 60

 80

 100

 120

 140

st_blackscholes

st_boxFilt_v

st_boxFilt_h

st_DCT

st_m
andelbrot

st_m
atM

ul

st_m
atM

ul_local

st_m
atM

ul_local2

sh_fft_fft1D

sh_scan_uniform

sh_sgem
m

_NN

nv_conv_col

nv_conv_row

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

st_binSearch

st_boxFil

st_boxFil_hSAT0

st_boxFilt_hSAT

st_boxFilt_vSAT

st_histAtom
_local

st_m
ersTwist_gauss

sh_m
d_bound

sh_m
d_velo

sh_m
d_coord

nv_dotProd

pa_m
ri-fhd_rhoPhi

pa_m
ri-q_phiM

ag

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e

CPU-only
GPU-only

dynamic
predictive model

oracle

(b)

Fig. 6. Performance of those applications where a mix of both CPU- and GPU-
execution leads to the best performance. Our predictive model achieves a speedup
of 1.2 over the dynamic scheme and clearly outperforms both the CPU-only and GPU-
only mapping.

is not realised. Our approach presented in this paper, on the other hand, leads
to significantly higher speedups. With an average speedup of 14.30, we achieve
more than 80% of the upper bound which equates to a speedup of 1.6 over the
dynamic scheduler.

6.2 Prediction Accuracy

Let us take a closer look at the individual predictors in our model. Table 3 shows
the number of applications that achieve the best performance with GPU-only



A Static Task Partitioning Approach 301

 0

 5

 10

 15

 20

CPU only GPU only dynamic predictive
model

oracle

S
pe

ed
up

4.73

9.21 9.13

14.30

17.74

speedup over single-core

Fig. 7. The average speedup (geometric mean) over all benchmarks. Our predictive
modelling approach clearly outperforms all other competing techniques.

and CPU-only execution respectively. The job of our two first-level predictors
is to filter out these applications and to pass on the rest. Therefore, the table
shows the numbers broken down according to the predictions in the first level of
our model.

Out of the 220 program-input pairs we examined, 61 should be entirely
mapped to the GPU. 52 of those programs are identified by our first-level pre-
dictor and thus mapped to the GPU straightaway. The remaining 9 inputs are
misclassified. However, they are passed on to the second-level predictor, which
correctly maps them entirely to the GPU. 10 inputs are incorrectly classified
as GPU-only and therefore mapped to the GPU although it is not optimal.
However, in half of the cases this still leads to more than 90% of the optimal
performance. Overall, the GPU-only classifier has an accuracy of 91%.

19 of the 23 program-input pairs that should be entirely mapped to CPUs are
correctly classified by our second predictor in the first level of our model. For
the 10 misclassified inputs we still achieve an average performance of 78% of the
optimum. Overall, the CPU-only classifier achieves an accuracy of 95%.

As expected, the second-level predictor has a lower accuracy than its coun-
terparts in level 1. This is because its solving a much harder problem: instead of
making a binary decision, one out of 11 classes needs to be predicted. However,

Table 3. The accuracy of the binary classifiers in the first level our predictor. The
“GPU-only” model achieves an accuracy of 91% while the “CPU-only” model even
achieves a 95% accuracy.

GPU ¬ GPU

GPU predicted 52 10

¬ GPU predicted 9 149

CPU ¬ CPU

CPU predicted 19 6

¬ CPU predicted 4 191



302 D. Grewe and M.F.P. O’Boyle

being off by just one or two classes often still leads to good performance, on
average a performance of 80% is still achieved. Our level 2 predictor is within
these bounds for 65% of all programs.

Looking at the model as a whole, we achieve an accuracy of 52%, i.e. in 52%
of all program-input pairs we exactly predict the optimal mapping. This leads
to an average 85% of the optimal performance, compared to only 58% of the
dynamic partitioning method.

7 Related Work

The mapping or scheduling of tasks to heterogeneous systems is an extensively
studied subject. In early publications, heterogeneous systems were often based
on single-core CPUs running at different speeds. In 1977, for example, Ibarra
et al. [13] described some of the first strategies for scheduling independent
tasks to heterogeneous architectures. Given a function for each architecture
that describes the run-time of a task on this processing unit they propose dif-
ferent heuristics to minimize the overall finishing time. In addition to those
and other static techniques [6], several dynamic methods have been proposed
[21,29,17].

On heterogeneous multi-core architecture consisting of multi-core CPUs and
GPUs task mapping becomes more complex, because the devices are based on
entirely different architectures. The tasks considered are also often data-parallel
which means they can be split to use multiple devices concurrently.

In the Harmony [10] framework programs are represented as a sequence of
kernels. Whenever a kernel is available for execution it is dynamically scheduled
to a device based on the suitability of the device for this kernel. The suitability
is computed with a multivariate regression model that is built at run-time based
on previous runs of the kernels. Harmony does not consider partitioning work
and thus only schedules entire tasks.

Qilin [20] also relies on a regression model to predict kernel run-times. In
contrast to Harmony [10] which builds the model on-line, Qilin uses off-line
profiling to create a regression model at compile time. Each kernel version is
executed with different inputs and a linear model is fit to the observed run-times.
Rather than scheduling individual kernels, a single data-parallel task is split into
sub-tasks which are each executed on one device. Qilin requires extensive off-
line profiling which may be prohibitive in some situations. Our approach, on the
other hand, does not require any profiling and is entirely based on static code
features.

Merge [19] is a framework for developing map-reduce applications, i.e. pro-
grams comprised of data-parallel maps and reductions, on heterogeneous plat-
forms. At run-time user-provided constraints are used to dynamically map
sub-tasks to devices, favoring a more specific implementation over a more gen-
eral implementation. In contrast to our scheme, they rely on the user to provide
information on the suitability of a kernel for the devices.



A Static Task Partitioning Approach 303

Ravi et al. [24] also propose a dynamic scheduling technique for map-reduce
programs. Tasks are split into chunks that are then distributed across the devices
similar to a master-slave model: When a device finishes processing a chunk of
work, it requests a new one from a list of remaining work items. While the
general idea of this model is straightforward, choosing the right chunk size has
a non-negligible effect on performance as Ravi et al. show. However, they leave
it for future work to predict the optimal chunk size. While purely dynamic
approaches neither require user intervention nor profiling, they do not take any
kernel characteristics into account which often leads to poor performance as
shown in this paper.

Jiménez et al. [14] consider scheduling in multi-programmed heterogeneous
environments. At run-time each program will be executed on all devices and
the performance is collected. This information is then used to decide which
processor a program will be executed on. A similar idea is proposed by Gregg
et al. [12]. Based on the contention of devices and historical performance data
they dynamically schedule programs to devices. Both methods do not consider
partitioning tasks.

StarPU [4] is a framework for programming on heterogeneous systems. The
user provides multiple versions of each task and the run-time schedules them
to the devices. Various scheduling techniques are presented, including greedy
scheduling and performance-based scheduling. The performance estimations are
either provided by the user or based on history information collected by the
run-time [3].

Apart from Gregg et al. [12], none of the above approaches use OpenCL.
While some use code generation from domain-specific high-level language rep-
resentations, most of them rely on the user to provide separate kernel version
for CPUs and GPUs. We circumvent this problem by using OpenCL which only
requires a single kernel code version for both CPUs and GPUs.

8 Conclusion

This paper has developed a new approach for partitioning and mapping OpenCL
programs on heterogeneous CPU-GPU systems. Given a data-parallel task, our
technique predicts the optimal partitioning based on the task’s code features.
Our model relies on machine-learning techniques, which makes it easily portable
across architectures and OpenCL implementations. This is a desirable property
as both hardware and software implementations are going to evolve.

When evaluated over 47 benchmark kernels, each with multiple input sizes,
we achieve an average speedup of 14.3 over single-core execution. Compared to
a state-of-the-art dynamic partitioning approach this equates to a performance
boost of 1.57 times. Our approach also clearly outperforms the default strategies
of using only the multi-core CPUs or only the GPU, which lead to a speedup of
4.73 and 9.21 over single-core execution, respectively.

Future work will investigate the use of our partitioning and mapping technique
for multi-kernel OpenCL programs. Furthermore, guided dynamic schemes will



304 D. Grewe and M.F.P. O’Boyle

be explored that use kernel-specific information to improve the scheduling. This
can be particularly useful in situations where a static, machine-learning based
model has a low confidence of making the optimal decision, e.g. due to lack of
training data.

References

1. Clang: a C language family frontend for LLVM (2010), http://clang.llvm.org/
2. AMD/ATI. ATI Stream SDK (2009), http://www.amd.com/stream/
3. Augonnet, C., Thibault, S., Namyst, R.: Automatic Calibration of Performance

Models on Heterogeneous Multicore Architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009.
LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: starPU: A unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

6. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D.A., Freund, R.F.: A compari-
son study of static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems. In: Heterogeneous Computing Workshop (1999)

7. Buck, I., Foley, T., Horn, D.R., Sugerman, J., Fatahalian, K., Houston, M., Han-
rahan, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23(3) (2004)

8. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

9. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: GPGPU (2010)

10. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: HPDC (2008)

11. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel program-
ming environment. In: Workshop on General Purpose Processing Using GPUs
(2007)

12. Gregg, C., Brantley, J., Hazelwood, K.: Contention-aware scheduling of parallel
code for heterogeneous systems. Technical report, Department of Computer Sci-
ence, University of Virginia (2010)

13. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2) (1977)

14. Jiménez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G., Navarro, N.: Predictive
runtime code scheduling for heterogeneous architectures. In: Seznec, A., Emer, J.,
O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409,
pp. 19–33. Springer, Heidelberg (2009)

15. Khokhar, A.A., Prasanna, V.K., Shaaban, M.E., Wang, C.-L.: Heterogeneous com-
puting: Challenges and opportunities. IEEE Computer 26(6) (1993)

16. Khronos. OpenCL: The open standard for parallel programming of heterogeneous
systems (October 2010), http://www.khronos.org/opencl/

http://clang.llvm.org/
http://www.amd.com/stream/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.khronos.org/opencl/


A Static Task Partitioning Approach 305

17. Kim, J.-K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider,
M., Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A.,
Sripada, S., Vangari, P., Yellampalli, S.S.: Dynamic mapping in a heterogeneous
environment with tasks having priorities and multiple deadlines. In: IPDPS (2003)

18. Kumar, R., Tullsen, D.M., Jouppi, N.P., Ranganathan, P.: Heterogeneous chip
multiprocessors. IEEE Computer 38(11) (2005)

19. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.Y.: Merge: a programming
model for heterogeneous multi-core systems. In: ASPLOS (2008)

20. Luk, C.-k., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO (2009)

21. Maheswaran, M., Siegel, H.J.: A dynamic matching and scheduling algorithm for
heterogeneous computing systems. In: Heterogeneous Computing Workshop (1998)

22. NVIDIA Corp. NVIDIA CUDA (2010), http://developer.nvidia.com/object/
cuda.html

23. University of Illinois at Urbana-Champaign. Parboil benchmark suite (2010),
http://impact.crhc.illinois.edu/parboil.php

24. Ravi, V.T., Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime support for
enabling generalized reduction computations on heterogeneous parallel configura-
tions. In: ICS (2010)

25. Rifkin, R.M., Klautau, A.: In defense of one-vs-all classification. Journal of Machine
Learning Research (2004)

26. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.-m.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: PPoPP (2008)

27. Venkatasubramanian, S., Vuduc, R.W.: Tuned and wildly asynchronous stencil
kernels for hybrid CPU/GPU systems. In: ICS (2009)

28. Wolfe, M.: Implementing the PGI accelerator model. In: GPGPU (2010)
29. Yarmolenko, V., Duato, J., Panda, D.K., Sadayappan, P.: Characterization and

enhancement of dynamic mapping heuristics for heterogeneous systems. In: ICPP
Workshops (2000)

http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://impact.crhc.illinois.edu/parboil.php

	A Static Task Partitioning Approach for Heterogeneous Systems Using OpenCL
	Introduction
	The OpenCL Programming Framework
	Motivation
	Partitioning Data-Parallel Tasks
	Static Code Feature Extraction
	Building the Predictor
	Deployment
	Support Vector Machines

	Methodology
	Experimental Setup
	Evaluation Methodology

	Results
	Speedup Over Single-Core Performance
	Prediction Accuracy

	Related Work
	Conclusion
	References


