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Abstract—Adenomatous polyps in the colon are believed to be
the precursor to colorectal carcinoma, the second leading cause of
cancer deaths in United States. In this paper, we propose a new
method for computer-aided detection of polyps in computed to-
mography (CT) colonography (virtual colonoscopy), a technique in
which polyps are imaged along the wall of the air-inflated, cleansed
colon with X-ray CT. Initial work with computer aided detection
has shown high sensitivity, but at a cost of too many false posi-
tives. We present a statistical approach that uses support vector
machines to distinguish the differentiating characteristics of polyps
and healthy tissue, and uses this information for the classification of
the new cases. One of the main contributions of the paper is the new
three-dimensional pattern processing approach, called random or-
thogonal shape sections method, which combines the information
from many random images to generate reliable signatures of shape.
The input to the proposed system is a collection of volume data
from candidate polyps obtained by a high-sensitivity, low-speci-
ficity system that we developed previously. The results of our ten-
fold cross-validation experiments show that, on the average, the
system increases the specificity from 0.19 (0.35) to 0.69 (0.74) at a
sensitivity level of 1.0 (0.95).

Index Terms—Computer aided diagnosis, CT colonography,
pattern recognition, random orthogonal shape section (ROSS)
method, support vector machines classification.

I. INTRODUCTION

COLON cancer is the second leading cause of cancer deaths
in the United States. American adults have 1/20 chance of

developing and 1/40 chance of dying from this disease. There
are approximately 150 000 new cases diagnosed each year re-
sulting in 56 000 deaths [1]. Previous research has shown that
adenomatous polyps, particularly those larger than 1 cm in di-
ameter, are the most likely precursor to subsequent colorectal
carcinoma [2]. The National Polyp Study clearly illustrated that
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Fig. 1. (a)–(c) Examples of polyps. (d)–(e) Examples of healthy tissue that
have similar shapes.

colonoscopic removal of all identifiable polyps resulted in a de-
cline in mortality rate between 76% and 90% compared with
historical controls [3]. Unfortunately, colon cancer is most often
discovered after the patient develops symptoms, and by then, the
likelihood of a cure has diminished substantially.

Fiberoptic colonoscopy (FOC) is considered the definitive di-
agnostic test [4] for the presence of colonic polyps as it affords
direct visualization and the opportunity for biopsy or removal of
suspicious lesions [3]. However, FOC is not feasible as a popu-
lation screening test due to cost, the small but real risk of com-
plications such as perforation, and due to the fact that there are
not sufficient endoscopists in the country to accommodate all
patients [4]. Moreover, the majority of colonoscopic examina-
tions performed in the United States are negative for polyps or
masses, therefore, a less invasive, more widely available proce-
dure that is also acceptable to patients is attractive.

Computed tomography colonography (CTC) (virtual
colonoscopy) is a recently proposed noninvasive technique
that combines spiral CT data acquisition of the air-filled
and cleansed colon with three-dimensional (3-D) imaging
software to create virtual endoscopic images of the colonic
surface [5]–[8]. The initial clinical results are quite promising
[9]–[15], yet the technique is still impractical due, in part, to
the time required to review hundreds of images/patient study.
This limitation begs for a computer-aided detection (CAD)
method to help the radiologist detect polyps efficiently from
the acquired CTC data.

Identifying colonic polyps using CAD is very challenging be-
cause they come in various sizes and shapes, and because thick-
ened folds and retained stool may mimic their shape and density.
Fig. 1 demonstrates the appearance of polyps and other tissue as
they appear in a virtual colonoscopy study.

Initial studies describing CAD for polyp detection have
focused on shape analysis and started from the intuitive ob-
servation on the similarity of the polyp shape to hemispheres.
Summerset al. characterized the colon wall by computing its
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minimum, maximum, mean, and Gaussian curvatures [16].
Following discrimination of polypoid shapes by their principal
minimum and maximum curvatures, more restrictive criteria
such as sphericity measures are applied in order to eliminate
nonspherical shapes. In [17], Yoshidaet al. use topological
shape of vicinity of each voxel, in addition with a measure
for the shape curvedness to distinguish polyps from healthy
tissue. Gokturk and Tomasi designed a method based on the
observation that the bounding surfaces of polyps are usually
not exact spheres, but are often complex surfaces composed of
small, approximately spherical patches [18]. In this method, a
sphere is fit locally to the isodensity surface passing through
every CT voxel in the wall region. Groups of voxels that origi-
nate densely populated nearby sphere centers are considered as
polyp candidates. Obviously, the clusters of the sphere centers
are more dense when the underlying shape is a sphere or a
hemisphere. In [19] and [20], Paiket al. introduced a method
based on the concept that normals to the colon surface will
intersect with neighboring normals depending on the local
curvature features of the colon. Their work uses the observation
that polyps have 3-D shape features that change rapidly in
many directions, so that normals to the surface tend to intersect
in a concentrated area. By contrast, haustral folds change their
shape rapidly when sampled transversely, resulting in conver-
gence of normals, but change shape very slowly when sampled
longitudinally. As a result, the method detects the polyps by
giving the shapes a score based on the number of intersecting
normal vectors. This score is higher in hemispherical polyps
compared with folds.

While these methods have demonstrated promising sensi-
tivity, they can be considered more as polyp candidate detectors
than polyp detectors because of their large number of false
positive detections. These methods have observed that polyps
have spherical shapes, and provided different measures of
sphericity. However, polyps span a large variety of shapes, and
fitting spheres alone is not an accurate measure. This paper
presents a statistical method to differentiate between polyps
and normal tissue. Our new 3-D pattern processing method,
called random orthogonal shape section (ROSS) method
generates shape-signatures for small candidate volumes, which
might be obtained by one of the above mentioned methods,
and then feeds these signatures to a support vector machines
(SVM) classifier for the final diagnosis of the volume. By using
statistical learning, the different characteristics of polyps and
normal tissue are automatically extracted from the data.

The paper is organized as follows: Section II describes our
proposed technique, explaining both the pattern processing and
the SVM classifier, and our evaluation methods. Section III
presents our results, followed by discussion in Section IV and
conclusions in Section V.

II. M ETHODS

Fig. 2 gives an overview of our system, which consists
mainly of two components: A novel 3-D pattern processing
approach (ROSS) for feature analysis and a SVM classifier
[21]. These two components are discussed in Sections II-A and
II-B, respectively.

Fig. 2. Overview of the system.

A. ROSS Method

Fig. 3 gives an overview of the ROSS method. Here, we
mimic one of the ways radiologists view CT images of the
colon, i.e., by viewing images parallel to the axial, sagittal, and
coronal planes [8], [15] (Fig. 4). While viewing these three
planes gives substantial information about the 3-D shape, the
information is incomplete. In our approach, we first obtain a
large number ofrandomtriples of mutuallyorthogonal sections
through a suspicious subvolume. Because other structures
may co-occupy the resulting images, we next segment them
to isolate the putative polyp for further processing. We next
calculate a set of geometric attributes from each random plane,
and generate a histogram of these geometric attributes obtained
from each triple as a feature-vector to represent the shape. Ac-
cumulating histograms of these attributes over several random
triples makes the resulting signatures invariant to rotations
and translations. Careful choice of geometric attributes results
in robust signatures. Details of the image segmentation and
image-based geometric attributes are given in Sections II-A-1
and II-A-2, respectively. The histogram processing is discussed
in Section II-A-3.

In the ROSS method, we have chosen to sample through the
3-D shape in the form of two-dimensional (2-D) sections. The
statistics of the geometric information on these triples of sec-
tions potentially represent many variations of the shape. In order
to cover as many variations by using 3-D data directly, one needs
to fit prohibitive amount of ellipsoids or other primitive ob-
jects to the shape. Alternatively, one could use the histogram
of local structures such as the curvature at each voxel. How-
ever, this choice is not diagnostic enough since different shapes
might often have similar distribution of local information. As
discussed in Section II-A-2 and II-A-3, the ROSS method goes
through random samples of mutually orthogonal 2-D sections
and does not involve these problems, thus, is an efficient and
effective way to process the 3-D data.

1) Image Segmentation:In each image we first construct
a squarecritical window located in the center of the image,
surrounding the suspicious structure and excluding as much
of the extraneous tissue as possible. The size of the critical
window varies depending on the size and the shape of the
suspicious structure in the image. A window is considered good
when it contains a shape that is approximately circular and has
a small circular radius. Because elongated folds are common in
the colon, it was found to be useful to also explicitly rule out
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Fig. 3. Overview of the ROSS method.

Fig. 4. (a)–(c) Three cross sections of the body through the anatomical
directions: (a) axial; (b) coronal; and (c) sagittal. (d) Two 3-D renderings of
a polyp with different camera views. (e)–(g) Randomly oriented, mutually
orthogonal triple of planes through this polyp.

elongated regions when there is a circular region in the image.
To find a critical window’s size, an image is first binarized
by intensity thresholding, and the following target function is
computed for each window of size centered in the middle of
the image:

(1)

Here, is the radius of the circle that best fits the edges in
the binarized image, is the residue to the best fitting
circle, is the residue to the best fitting line all in the
subwindow , and and are constants. Details of the shape
fitting are described in the next section.is varied from 8 mm to
24 mm and the value of that yields the smallest is chosen
as the critical window size to calculate the geometric attributes.
Fig. 5 depicts the resulting critical window for several different
images.

In some cases, minimizing (1) may result in a critical window
that includes some portion of the surrounding colon wall. To
further accommodate these cases, a Gaussian weighting func-
tion, located at the image center, is used while fitting primi-
tive shapes. By weighting with this Gaussian mask, we aim to
give more importance to boundary points of a potential polypoid
shape than to those of the surrounding colon wall.

Fig. 5. Optimum segmentation window in various images.

Fig. 6. Volume renderings of different shapes (top row). Bottom row gives a
random cross section through these shapes. These images are specific examples
where fitting (a) a circle, (b) an ellipse, (c) parallel lines, and (d) a line produces
strong output about the 3-D shape.

2) Image-Based Geometric Features:Once we find the op-
timal critical subwindow in a particular image, we extract shape
and intensity related geometric features in the critical window.
For this purpose, we fit primitive shapes such as circle, quadratic
curve, and line to the largest connected edge component, i.e.,
boundary, of the shape. The boundary in each random plane is
determined by a 2-D Sobel derivative operation [22] followed
by thresholding. The mathematical details of the primitive shape
fittings are given in the Appendix.

A random slice of a sphere is a circle. Thus, fitting circles is a
means of measuring the sphericity of the 3-D shape [Fig. 6(a)].
When doing so, the residuals at each pixel on the boundary
are first weighted with a Gaussian located at the image center
as mentioned in the previous Section. The Gaussian weighted
residuals are then added together, and the least-square solution
gives the optimum circle. The residual to the least-square solu-
tion is recorded as well.

Similarly, the ellipsoidal nature of the shape can be measured
by fitting a quadratic to the edges. This way, we can capture
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Fig. 7. Illustration of the primitive shapes: (a) a randomly oriented plane; (b)
the edges in the image; (c)–(e) circle, quadratic, and line fit to the edges shown
in (b). (f) Another randomly oriented plane with nearly parallel lines (g) parallel
lines fit to the edges of the plane in (f).

the similarity of the shape to a pedunculated polyp [Fig. 6(b)].
The quadratic invariants given in the Appendix, as well as the
residual to the least-square solution are recorded.

The cross section of a fold on the image plane may contain
approximately parallel lines [Fig. 6(c)]. In order to capture this
structure, we apply parallel lines analysis, which includes fitting
lines to the two largest connected components of the boundary
points. We record the residual to these lines and the distance and
angle between these approximately parallel lines. Similarly, the
residual to the optimum fitting line gives information on the flat-
ness of the surface [Fig. 6(d)]. Fig. 7(a) and (b) gives an example
of a randomly oriented plane and the edges on this plane, re-
spectively. Fig. 7(c)–(e) illustrates three primitive shapes, circle,
quadratic and line being fit to this random plane. Fig. 7(f) shows
another random plane going through a thick fold and Fig. 7(g)
demonstrates two approximately parallel lines being fit to its
edges.

In order to extract information on higher order frequency
characteristics of the boundary, third-order moment invariants
are computed as well [23]. This gives information on the curvi-
ness of the boundary points.

In addition to all of these shape-based features, intensity fea-
tures are extracted from the tissue part of the image. For this,
the tissue part is first separated away from the background by
intensity thresholding and, next, the intensity mean and stan-
dard deviation of the tissue are calculated and recorded.

All the attributes mentioned so far are calculated for each
random triple of images. The three images in each triple are
sorted in the order of increasing radius of curvature, and the fea-
tures above are listed into a vector in this order. The resulting

-vector containing the attributes from the three planes rep-
resents the signature of the shape, relative to that particular triple
of perpendicular planes.

3) Obtaining the Histograms in High Dimensional
Space: We next obtain histograms of feature vector dis-
tributions over the randomly oriented triples. Given enough
triples, these histograms are essentially invariant to orientation
and position. Note, however, that creating histograms of-vec-
tors is problematic for large . Uniform distribution of, say,

bins/dimension would result in -dimensional histograms
and is, therefore, not tractable. A more efficient solution,

Fig. 8. Illustration of high dimensional histogram bins by an example in
2-D. (a) Data in two dimensions. (b) Uniform histogram bins. (c) Bins found
when clustering is applied. The storage gain (number of bins) is fivefold in this
particular example.

Fig. 9. Two polyps (left), a very similarly shaped fold structure (right), and
their signatures (center).

proposed here, represents a histogram by first computing the
representatives for the main clusters of features over a large
collection of vectors. New feature vectors are then assigned to
these clusters, rather than to fixed uniform bins. This method
is called vector quantization and is described in more detail in
[24]. Fig. 8 gives an example in 2-D space. Note that, storage
efficiency increases exponentially as the number of dimensions
increase beyond two.

In our implementation, suppose is the -vector obtained
from the th random triple of perpendicular planes extracted
from the th shape in a training set. We obtain s from all
of the shapes, and then invoke the-means algorithm [24], [25]
to compute vector clusters. The cluster centers are first initial-
ized to a random selection from s. Subsequent iterations of
the -means algorithm then alternately reassign vectors to clus-
ters and recompute cluster centers, resulting eventually in the
optimum cluster centers.

Once the representative histogram bin centers are determined,
a histogram of feature vectors belonging to each particular shape
is calculated. When forming these feature histograms, the sim-
plest strategy would be to have each vector increment a counter
for the nearest cluster center. This method, however, is overly
sensitive to the particular choice of clusters. We adopted a more
robust solution, in which each feature vector partitions a unit
vote into fractions that are inversely proportional to the vector’s
distances to all histogram bin centers. The histograms, thus, ob-
tained, one/candidate volume, are the rotation and translation
invariant shape signatures used for classification as described
in the next section. Fig. 9 illustrates examples of signatures ob-
tained for three different shapes.

B. SVM Classification

Given the representative vectors for polyps and healthy tissue,
we computed the optimum classifier using training data and sub-
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sequently used that classifier on test data. In our problem, a
training set is a collection of candidate volumes that are clas-
sified by FOC and CT colonoscopy to be polyps or nonpolyps.

Proposed first by Vapnik, the SVM classifier aims to find
the optimal differentiating hypersurface between the two classes
[26] in the training set. Generally speaking, the optimal hyper-
surface is the one that not only correctly classifies the data,
but also maximizes the margin of the closest data points to
the hyperplane. Mathematically, we consider the problem of
separating the training set of points with

. Each data point belongs to either class and,
thus, is given a label . SVM [26]–[28] implicitly
transform the given feature vectorsinto new vectors in
a space with more dimensions, such that the hypersurface that
separates the, becomes a hyperplane in the space of s.
Thus, the linearly nonseparable data in the original space be-
comes linearly separable in a higher dimension. Finding this
hypersurface is a well-studied optimization problem [26]–[28]
that maximizes the distance of the hypersurface to the margin
points, so called the support vectors. Support vectors are essen-
tially the elements that carry the differentiating characteristics
between polyps and nonpolyps. In the classification process of
a test vector , only the support vectors need to be considered,
and the following simple expression needs to be calculated:

(2)

where the constants are computed by the classi-
fier-learning algorithm, and the are the computed support
vectors. is called the Kernel function, and is used to map
the data from its original dimension to higher dimensions so
that the data is linearly separable in the mapped dimension.
See [27] for details. Given the expression , the decision is
given based on the sign of

Decision
polyp if

nonpolyp if .
(3)

In clear contrast with the previous classification methods,
such as linear discriminant analysis (LDA), or nearest
neighbor methods that minimize the empirical risk—risk of
misclassification in the training set—SVMs minimize the
structural risk, given as the probability of misclassifying
previously unseen data, by utilizing the optimal hyperplane
between two classes of data. In addition, SVMs pack all the
relevant information in the training set into a small number
of support vectors and use only these vectors to classify new
data. This way, the distinguishing features of the two classes
are implicitly identified while the detracting less important
points are discarded. In other statistical classification methods
such as LDA or neural networks, the classification surfaces
are obtained by taking all of the data points into account,
which might statistically deteriorate the performance of these
methods.

C. Evaluation

We tested our system using data acquired from 48 patients (45
male, three female, ages 27–86, mean age 6012) in the supine

or prone position. Following colon cleansing and air-insuffla-
tion, CT imaging was applied using either a single detector (or
multidetector) CT system (GE Medical Systems, Milwaukee,
WI) with the imaging parameters of 3 mm (2.5 mm) collima-
tion, 2.0 (3.0) pitch, 1.0–1.5 mm reconstruction interval, 120
KVp (both SDCT and MDCT), 200 mA (60 mA). The resulting
images had an average voxel spacing of 0.740.74 1.28 mm,
with a total data size of 512 512 where is the number
of slices for a particular patient.

The 3-D CT data was preprocessed by the Hough transform
(HT) method as described in [19]. The outputs of this stage
are the locations of densely populated surface normal intersec-
tions along with their particular HT score. This yielded a total
of 31 099 hits of score 3000 or above, on the 48 patient datasets.
For computational efficiency, we kept all of the polyp hits, but
subsampled the nonpolyp (healthy tissue) hits, by randomly se-
lecting 50 nonpolyp hits/dataset. We extracted a subvolume of
size 32 32 32 from each location, and subsequently used it
as a candidate volume for the post processing stage. Some of the
hits were close to the boundary of the dataset, and it was not pos-
sible to get a 32 32 32 subvolume around them. Thus, these
hits were eliminated, eventually resulting in 40 polyp (sizes
from 2 mm to 15 mm in diameter) and 2219 nonpolyp hits. Sub-
volumes centered at each HT hit were used as input candidate
data for our system.

Because the performance charactheristics of our methods de-
pend on accurate differentiation of polyp and nonpolyp subvol-
umes, here we describe how the polyp subvolumes were se-
lected. Each patient in the study underwent FOC within 1–2
hours after acquisition of CTC data. To determine the gold stan-
dard for polyp versus nonpolyp volumes, a radiologist highly
experienced in CTC reviewed the CT data with knowledge of
the findings on FOC. This involved interactive viewing of the
CTC data on a workstation including multiplanar reformations
and selected 3-D viewing while searching for all polyps reported
on FOC according to their size and location. A candidate volume
was declared a polyp when the reviewer could confidently iden-
tify the polyp on CTC. If a polyp was reported on FOC but not
identified on CTC, the radiologist viewed the CTC data in the
opposite (supine or prone) patient acquisition to determine if
it was not visible due to obscuration by incomplete distension
or excess fluid in the colon. When such a polyp could not be
located in the test dataset, this polyp was excluded from fur-
ther analysis. In the case of polyp candidates identified by the
Hough transform but not corresponding to FOC abnormalities,
these were classified as nonpolyp volumes. Examples of non-
polyp volumes included normal colon, thickened haustral folds,
and foci of retained stool. In cases where the radiologist iden-
tified possible polyps but there was no corresponding lesion
on FOC, these areas were considered as potential false positive
CTC identifications and excluded from the study. We note that
the radiologist reviewer did not utilize the HT hits in reviewing
the CTC data but relied on reading experience and the FOC re-
sults alone.

We applied the ROSS method to each shape in the candidate
volume dataset. One hundred random triples of mutually per-
pendicular images were extracted from each candidate volume.
Each triple yielded a 26-vector which measures the following
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features on the random planes: Best-fit circle’s radius, residue
to the best-fit circle, line and quadratic curve, quadratic shape in-
variants, moment invariants, angle, and distance between nearly
parallel lines (if there are such pair of lines in the image), and
total residue to line fit in the pair of parallel lines. The distri-
bution of information belonging to the 26-vector of 100 triples
is estimated by high dimensional histograms as described in
Section II-A-3. The -means algorithm is executed to obtain
45-vector centers which are then used as histogram bin centers.
Therefore, the high dimensional histograms obtained by vector
quantization resulted in a 45-dimensional vector to represent
each particular candidate volume. These vectors were used by
the SVM classification algorithm with exponential radial basis
functions as kernel functions [29].

We conducted a tenfold cross-validation experiment to eval-
uate our system. First, we randomly divided the candidate vol-
umes into ten uniformly distributed sets of ten polyps (with
repetitions, average overlap between sets is 1.8 polyps, max-
imum overlap is four polyps) and 221 or 222 nonpolyps (healthy
tissue, without repetitions). In each of these ten experiments,
one set was used as the test set, and the remaining 30 polyps
and 1997 (1998) nonpolyps as training set. In our analysis, we
will refer to sensitivity as the fraction of detected polyps, and
to specificity as the fraction of detected normal tissue volumes
among the nonpolyp locations.

To examine the tradeoff between the sensitivity and speci-
ficity more quantitatively, we substituted zero-crossing sign in
(3), with a level crossing (SVM threshold,). As the level is
decreased, more true polyps are detected, but at a cost of more
false positives. In this way, for any input collection of polyps
and nonpolyps, we can obtain a receiver operating characteristic
(ROC) curve [sensitivity versus (1-specificity) curve]. Similarly,
the HT method uses a threshold,, that denotes the minimum
score necessary to declare a candidate volume to be a polyp.
Thus, by varying , one can also construct an ROC curve.

Our evaluation attempts to simulate the cascade in which HT
and SVM are actually meant to be used. In this analysis, we sim-
ulated a real system, where, the HT method is first executed to
achieve a predeterminedsensitivity level, and the SVMmethod is
executedafterwardsto improvethespecificitywithoutsacrificing
the sensitivity. To simulate this cascade system, we constructed
a multidimensional ROC surface for each experiment. As shown
in Fig. 10(a), two planar axes give the specificities of HT alone
and the cascade system (ALL), respectively, and the height gives
the sensitivity. In order to construct this surface, the HT hits with
a score higher than a threshold,, were subsequently classified
using an SVM threshold, . Varying relates sensitivity ( )
to HT specificity ( ) resulting in ROC . Observe that the
projection of this curve to the plane results in the
curve on the plane. For a fixed HT threshold,, varying re-
latesthesensitivitytospecificityofthecascadesystem( ).
This analysis is repeated for every (, ) pair resulting with the
ROC surface, every point of which denotes the sensitivity versus
specificity for the cascade system. By definition, for every HT
threshold, , the SVM is executed to obtain the maximum speci-
ficitywithoutsacrificingthesensitivityobtainedbyHT.Thecom-
binationof themaximumspecificitypointsobtainedforeveryHT
threshold, , gives the ROC curve of the cascade system and de-

Fig. 10. Illustration of an ROC surface example and how to obtain the ROC
curves from the surface.

noted by ROC . The projection of ROC to the
planeresults inthe curveontheplane.Thedifferencesofthe

and curves inherently show the improvements by the
cascadesystemoverHTalone.ToillustratetheROCcurvesbetter,
we plotted the ROC and ROC curves in 2-D in Fig. 10(b).
Our results report the resulting ROC curves for each of our ten
experiments.

To assess the statistical significance of the improvements for
a specific sensitivity level, we tested the null hypothesis that the
average difference between the specificities obtained by HT and
cascade of HT and our method is zero. For this we applied-tests
on ten values resulting from the ten experiments and calculated
the values for each sensitivity level.

III. RESULTS

Fig. 11 gives the ROC curves obtained from each of the ten
experiments. There is a considerable improvement in specificity
between the ROC curve of HT alone and that of the cascade
system in each of the experiments. Table I summarizes the speci-
ficities obtained for sensitivity levels of 100 and 95 for each ex-
periment (as read from the curves in Fig. 11) by our approach
and the HT approach alone, along with the areas under these
curves. The improvement in specificity at sensitivity level of
1.00 varied from 0.27 (Experiment #1) to 0.73 (Experiment #5)
and at sensitivity level of 0.95 varies from 0.20 (Experiment #1)
to 0.55 (Experiment #5). On average, the specificity of the HT
was 0.19 (0.35) for a sensitivity level of 1.00 (0.95). Observe
that, on average, the specificity was increased by 0.50 and 0.39
at sensitivity levels of 1.00 and 0.95, respectively, to achieve
final specificity values of 0.69 and 0.74. Similarly, the areas
under the curves increased from 0.80 to 0.92 on average.

We observed that the specificity level for a sensitivity of 0.28
or less was same for both HT and the cascade system and 1.00.
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Fig. 11. The results of each of the 10-experiments, showing ROC curves for HT alone and HT followed by our method.

TABLE I
ROC AREAS (AZ) AND THE SPECIFICITY (SPS) VALUES AT 100%AND

95% SENSITIVITY (SNS) LEVELS FOR THEHT AND THE TWO–STAGE

METHOD (HT FOLLOWED BY OUR METHOD; DENOTED ASALL) IN EACH

OFTENCROSS-VALIDATION EXPERIMENTS. THE SPECIFICITY VALUES OF THE

TWO-STAGE METHOD ARE THEVALUES AT THE OPERATINGPOINT SET BY HT
THAT WERE ACHIEVED WITHOUT SACRIFICING THE SENSITIVITY

The -tests for sensitivity level of 0.46 or more resulted in
values 0.05 or less. Thus, we reject the null hypothesis and
thereby accept that the improvements obtained by our system
are statistically significant for sensitivity levels of 0.46 or more.

The current implementation of the algorithm is in Matlab 6.0
(The Mathworks Inc., Nattick, MA) and requires an average of
200 ms to process one triple of mutually orthogonal planes with
a Pentium III 600-MHz processor PC. If 100 of triples are used,
this amounts to 20 s to process each candidate volume. We also
observed that the classification time is on the order of millisec-
onds, and is, therefore, not of practical importance when com-
pared with the time it takes for pattern processing.

IV. DISCUSSION

Previous methods in polyp recognition suffer from low speci-
ficity mainly since they incorporate simple intuitions about the

shapes of polyps and nonpolyps. Polyp recognition is a diffi-
cult problem, and so is the manual identification of discrim-
inating criteria between polyps and healthy tissue. Using sta-
tistical pattern processing, on the other hand, these criteria are
identified automatically from training data, thereby eliminating
the guess-work for obtaining the distinguishing features. More
specifically, using SVM as classifiers uses the training data to
extract the optimum discriminating hypersurface between the
two classes and, therefore, minimizes the probability of mis-
classifying previously unseen (test) cases.

In addition, and in clear contrast with previous methods,
the ROSS method does not explicitly make any assumptions
about the polyp shape. By choosing reasonable planar at-
tributes, it captures many characteristics of shapes accurately.
Consequently, the approach is applicable to other 3-D pattern
recognition problem and also to the discovery of any new polyp
shapes. The generality is assured by including the new shape
samples to the training set of the algorithm, and designing new
planar attributes if necessary.

Our algorithm does not assume anything about the nature
of the preprocessing algorithm. Any high sensitivity, low
specificity preprocessing algorithm is a potential preprocessing
method for our algorithm. Our experiments show that the
algorithm improves the specificity for sensitivity level of 1.00
by 0.50 from 0.19 to 0.69 on average. This amounts to 62%
fewer false positive detections without sacrificing sensitivity.
This, in turn, results in a decrease in the radiologist’s post-CAD
examination time.

In the training process, the SVM classifier determines the
support vectors, i.e., the data points that carry the differentiating
characteristics of the two classes. Understanding the resulting
support vectors could give valuable feedback for designing new
features for the system. More specifically, the clusters of closeby
support vectors from the two classes belong to similar shapes in
polyps and nonpolyps. Further analysis of these closeby support
vectors will help observe the distinguishing features of similar
polyps and nonpolyps.
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Fig. 12. Illustration of a polyp (ellipse) that has a HT hit displaced from the
actual location. As seen on all three images, the edge of the fold is much closer
to the center of the image; thus, in this case the fold was processed instead of
the actual polyp.

In this paper, we have provided a cross-validation experi-
ment to test our method. The most straightforward approach to a
cross-validation study is to use nonoverlapping test sets in each
experiments. However, this would result in test sets that contain
four polyps in our case. Since we want to report the specificity at
95% sensitivity level, we would have to interpolate between the
specificities at 75% and 100% sensitivity levels for obtaining the
specificity at 95% sensitivity level. This would involve a large
amount of bias toward the specificity level at 100%, and would
not be accurate. Therefore, we chose to repeat the experiments
with overlapping test sets of ten polyps each, and reduce the in-
terpolation bias to obtain the specificity at 95% sensitivity level.
As for the experiment with overlapping test sets, each fold of the
tenfold cross-validation study is valid since there is no overlap
between the test sets and the training sets. Finally, we report the
ROC curves for all of the ten experiments, but not an average
ROC curve. Therefore, we evaluate each experiment indepen-
dently, and thereby avoid any bias that could occur in an average
ROC curve.

As shown in the previous section, the improvements in speci-
ficities varied from experiment to experiment. In order to un-
derstand the reasons for this, we analyzed Experiments #7 and
#1 where the improvements in specificities were the least 0.35
and 0.27, respectively. In experiment #7, performance was poor
due to a single polyp of 6.5 mm in diameter that w as located
on a haustral fold. We observed that the HT hit belonging to
this polyp was 6.7 mm away from the real polyp center as man-
ually identified by the radiologist. Fig. 12 illustrates examples
of random planes taken around the HT hit. Obviously, in this
case, our method processed the nearby fold but not the polyp,
resulting in a low score for the candidate volume. Excluding this
polyp from this experiment would result in a specificity level of
0.64 for the cascade system at sensitivity level of 1.00. We ob-
served a similar example in Experiment #1. In this experiment, a
polyp of size 3 mm in diameter received the lowest SVM score.
The HT hit for this polyp was 3 mm away from the actual lo-
cation. Excluding this polyp from experiment #1 would result
in specificity of 0.85 for sensitivity level of 1.00. We observed
that this polyp recurred in Experiments #3 and #8, which also
had relatively smaller improvements. Thus, the low scores that
some of the polyps received in the cascade system were caused
by the mismatch of locations from the preprocessing stage.

The current implementation of the ROSS method has
adjustable parameters that may be optimized. Currently,
the random images are centered at a random displacement,
uniformly distributed between negative five and five voxels,

around the HT hit. As mentioned above, we observed that some
of the HT hits were more than five voxels away from the real
polyp center as identified by the radiologist, resulting in poor
performance. On the other hand, examining a larger volume
around the HT hit might impair the system by placing planes
on nearby structures. This trade off is under investigation.

Similarly, the output of SVM classifier is strongly depen-
dent on the choice of the Kernel function [29]. While we used
exponential radial basis functions, other alternatives might be
linear kernels, polynomial kernels, radial basis functions, or his-
togram-specific kernels. Future work will involve the analysis of
different types of kernels and the design of kernels that are most
suitable to our pattern processing approach.

The current implementation of the algorithm takes on average
20 s to process each candidate subvolume; We expect that opti-
mized code could decrease the run time. Currently, 100 random
triples are used to characterize a 3-D shape. A reduction in the
number of random triples would reduce the time required; how-
ever the trade off with accuracy needs to be explored. If a less
than adequate number of views is used, the triples could be bi-
ased toward some specific orientation in space. To find this ad-
equate number, an easy attempt is to test the reproducibility of
the ROSS method. That is, the shapes should have the same sig-
natures regardless of the random views used in the analysis. In
order to test the reproducibility, we conducted an experiment
with synthetic shapes, such as cylinders, ellipsoids and spheres.
Two different random sets of orthogonal views are obtained
from each shape. The value ofis varied between five and 100.
At the same time, the two signatures (and ) obtained by the
two different random sets are compared by the following error
function:

(4)

where is the number of histogram bins. Ideally, the signatures
belonging to the two random sets should be identical. Fig. 13
illustrates the average error versus the time complexity. Here,
we would like to remind that processing time for each random
triple is approximately 200 ms, and the total processing time is
a linear function of the number of planes used (). The figure
demonstrates that the number of random triples could be further
reduced with only a negligible loss from the accuracy.

The algorithm is parallelizable, i.e., parallel processors could
process portions of the random planes independently, further
reducing the required processing time. In the extreme case of
using 100 parallel processors to process the 100 planes sepa-
rately, the processing time reduces to 200 ms or less. Another
way to parallelize is to divide the candidate volumes among the
processors, i.e., one processor/candidate volume would result in
20 s or less/patient.

V. CONCLUSION

Virtual colonoscopy is a promising new imaging technique
to evaluate the human colon for precancerous polyps. Due to
the large amount of radiologist time involved in reviewing hun-
dreds of images in a search for small lesions, CAD is necessary
to make the approach efficient and cost-effective. Previous
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Fig. 13. Illustration of error in reproducibility versus time complexity of the
method. Time to process a subvolume is a linear function of the number of
random triples. Each triple takes 200 ms to process.

automated detection methods had a high sensitivity for polyp
detection, but relied on human observations to differentiate
polyps from normal folds or retained fecal material. In this
study, we proposed a statistical pattern processing approach
that yields a high polyp detection rate with a reasonable
number of false positives, thereby showing the feasibility of
computer-based screening. One of the main contributions of
the paper is the ROSS method, which combines the information
from many ROSSs to generate reliable shape signatures. We
also show that the use of an SVM classifier is capable of
distinguishing implicitly the differentiating characteristics of
polyps and healthy tissue, thus improving specificity compared
with the preprocessing stage. Studies integrating our CAD
methods with radiologist readers will be used to measure
potential improvements in sensitivity and efficiency compared
with unassisted radiologist interpretation.

APPENDIX A

Let be a collection of points in the image boundary with
image coordinates with . In this section
we will describe the mathematical details to fit primitive shapes
such as circle, quadric curve, and line to the collection of points

.
A circle is defined by its three parameters: The coordinates

of its center and its radius . The points satisfy the
circle equation

(5)

In order to find the three unknowns , equations
coming from each point are stacked and a linear least-square

solution is obtained. Let A and b be the following matrix and
vector:

...
...

(6)

then is the least-square
solution to the best fitting circle. Similarly, the residue to the
least-square solution is .

A quadratic is defined by the following equation:

(7)

Similar to the circle equations, the matrix and the
vector are built by stacking the left and right sides of
the equation, thus, the least-square solution is given by

. The least-square residue is given
by, .

The quadratic equation can also be written in the following
form:

(8)

where is given by

(9)

The singular values of the matrix are invariant to rotations
of the quadratic shape and, thus, are recorded as quadric invari-
ants.

The equation of a line is defined by a point on the line
and its direction. Given a collection of points for

, the best fitting line (in the least-square sense)
goes through the central point . The line itself can then
be written as

(10)

where is the direction of the line. Let be
the normalized point coordinates of

(11)

is then given as the first singular vector of, where is the
following matrix:

(12)
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Given and the best fitting line equation is complete.
For any point , the error to this line is given as

(13)
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