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Abstract. In this paper, a database of water-related insurance

damage claims related to private properties and content was

analysed. The aim was to investigate whether the probabil-

ity of occurrence of rainfall-related damage was associated

with the intensity of rainfall. Rainfall data were used for the

period of 2003–2009 in the Netherlands based on a network

of 33 automatic rain gauges operated by the Royal Nether-

lands Meteorological Institute. Insurance damage data were

aggregated to areas within 10-km range of the rain gauges.

Through a logistic regression model, high claim numbers

were linked to maximum rainfall intensities, with rainfall in-

tensity based on 10-min to 4-h time windows. Rainfall in-

tensity proved to be a significant damage predictor; however,

the explained variance, approximated by a pseudo-R2 statis-

tic, was at most 34 % for property damage and at most 30 %

for content damage. When directly comparing predicted and

observed values, the model was able to predict 5–17 % more

cases correctly compared to a random prediction. No impor-

tant differences were found between relations with property

and content damage data. A considerable fraction of the vari-

ance is left unexplained, which emphasizes the need to study

damage generating mechanisms and additional explanatory

variables.

1 Introduction

In the autumn of 1998 extreme rainfall caused around 410

million euros (1998 value) of direct damages to households,

agriculture and industries in the Netherlands. Damage ex-

perts from the Dutch insurance sector identified a total num-

ber of 10 660 agricultural companies, 2470 buildings, 1220

other companies and 350 governmental agencies as being

damaged by rainwater (Jak and Kok, 2000). The rainfall

event with an associated return period of about 125 yr re-

sulted in flooding of areas before rainwater was able to enter

natural or engineered drainage systems. This type of floods

is commonly known as pluvial flooding (e.g. Hurford et al.,

2012a; Blanc et al., 2012; Falconer et al., 2009). Other se-

vere events that are well documented are the summer floods

of 2007 across the UK, for example in the City of Hull, that

are believed to be for a great deal related to pluvial flooding

(Pitt, 2008; Coulthard and Frostick, 2010), and the 2004 and

2006 floods in Heywood, Greater Manchester (Douglas et al.,

2010). These events are just a few of the many examples that

illustrate the serious consequences of high-intensity rainfall.

But also minor events with relatively small flood volumes

and extensions can produce considerable damage in the long

run due to their high frequency of occurrence (Freni et al.,

2010; Ten Veldhuis, 2011). The aforementioned events have

demonstrated that pluvial floods often occur at much smaller

ranges of spatial and temporal scales than fluvial and coastal

floods.

An increasing number of authors have acknowledged that

a lack of data availability and quality have been important

limitations in quantitative flood damage estimations (e.g.

Freni et al., 2010; Merz et al., 2004; Hurford et al., 2012b).

In the absence of damage data, a common approach in flood

damage estimation is to combine simulated flood depths

and/or flow velocities and stage-damage curves (e.g. Ernst

et al., 2008; Jonkman et al., 2008; Pistrika and Jonkman,

2009; De Moel and Aerts, 2011; Middelmann-Fernandes,

2010). The stage-damage curves are usually related to di-

rect damages occurring in large catchments and are derived

Published by Copernicus Publications on behalf of the European Geosciences Union.



914 M. H. Spekkers et al.: Insurance damage data and rainfall extremes

through synthetic and/or empirical approaches. Only few

studies have focused on modelling damages of pluvial floods

related to the malfunctioning of urban drainage systems (e.g.

Zhou et al., 2012a).

Insurance databases are a promising source for flood dam-

age data. These databases often contain many claim records

that have been collected continuously in time. Disadvantages

are the restricted access and the limited recordings of process

information, such as flood depth and extent measurements,

details on damage causes, and building information (Elmer

et al., 2010; Thieken, 2011; Zhou et al., 2012b).

A few recent studies have analysed insurance data re-

lated to pluvial floods. Freni et al. (2010) conducted a dam-

age assessment based on the outcomes of a simple and

a detailed hydrodynamic model in combination with stage-

damage functions derived from around 600 insurance dam-

age claims and water depth measurements for a case study

in Palermo, Italy. They concluded that uncertainty in stage-

damage function (40–50 % of average value) was higher than

the accuracy gained by adopting a detailed hydrodynamic

model. In another study, 1000 insurance damage claims re-

lated to sewer surcharging for the case of Aarhus, Denmark,

showed that costs per claim were not explained by rainfall

(Zhou et al., 2012b). They did find a significant relationship

between rainfall and total costs per day. These studies con-

firmed the need to obtain accurate damage data to further

investigate costs of pluvial floods.

In this study, data from an insurance database containing

20 yr of water-related claims for private properties and con-

tents in the Netherlands, provided by the Dutch Association

of Insurers, were analysed. The analysis built on earlier work

by the Dutch Association of Insurers, where relationships

between rainfall and claim data were studied at a regional

scale (Ririassa and Hoen, 2010). Using simple linear regres-

sion, they found significant relationships between the total

amount of damage in a province (roughly 2500–3500 km2

in size) and hourly rainfall data (one or two rain gauges per

province), but the explained variance was low (4 % for con-

tent and 12 % for property). It can be argued that, given the

size of a province and the limited number of rain gauges

used, the model does not account for variations in damage

caused by local rainfall, whilst local convective rainfall is

probably an important contributor to damage. The aim of

this study was to investigate whether high numbers of dam-

age claims are associated with high rainfall intensities, con-

sidering rainfall at scales most closely related to functioning

of urban drainage systems. In an exploratory study, various

damage statistics were correlated with rainfall intensity and

the strongest correlation was found between rainfall intensity

and the number of damage claims. Rainfall intensity was se-

lected to characterise rainfall events as it was hypothesized

to be the most critical rainfall characteristic in relation to

damage generating mechanisms such as overloading of sewer

systems. Separate relationships were analysed between rain-

fall data and property damage data as well as content damage

data, through statistical analysis. A better understanding of

relationships between rainfall extremes and floods is useful

in the development of, for example, warning systems for plu-

vial floods (Hurford et al., 2012a; Parker et al., 2011; Priest

et al., 2011).

This paper is structured as follows. In Sect. 2 data sources

as well as the statistical model to link rainfall and insurance

damage data are described. Results of the statistical analysis

are discussed in Sect. 3, as well as the significance of pre-

dictor variables and the model performance, followed by a

discussion in Sect. 4. Conclusions and recommendations are

summarized in Sect. 5.

2 Methodology

2.1 Rainfall data

Rainfall data are based on two networks of rain gauges held

by the Royal Netherlands Meteorological Institute (KNMI):

a network of 300+ manual rain gauges (see Fig. 1, triangular

markers) and a network of 33 automatic rain gauges (solid

circles). The temporal resolution of the automatic network

is 10 min, and the spatial density is about 1 station every

1000 km2 (see also Table 1), with most of the rain gauges

located in rural areas or close to city boundaries. The man-

ual network measures daily volumes based on 08:00 UTC–

08:00 UTC intervals. The spatial density of the manual net-

work is about 1 station every 100 km2. All gauge data have

been extensively validated by KNMI (KNMI, 2000).

2.2 Insurance data

The insurance databases cover water-related damages to pri-

vate properties and content in the Netherlands and are sum-

marized in Table 1. Data related to property and content dam-

age are available from 1986 until 2009 and from 1992 until

2009 respectively. The database consists of data from a num-

ber of large insurance companies in the Netherlands, cover-

ing about 20–30 % of the Dutch market related to property

and content policies.

House owners can insure both property and content; ten-

ants can only insure content, while the rented property is

considered a commercial building. Commercial buildings

are covered in a separate database that is not used in this

study. Table 2 lists the key characteristics of the insurance

databases. All values are in 2009 euros. Every value associ-

ated with a year before 2009 was adjusted for inflation using

the consumer price index (Statistics Netherlands, 2012).

Water-related damages can be divided into two groups:

(1) non-rainfall-related damages and (2) rainfall-related dam-

ages. Examples in the first group are bursts of water supply

pipes and leakages of washing machines. Examples in the

second group are leakages of roofs and flooding from sewer

systems or regional watercourses. This distinction is not ex-

plicitly made in the data provided by insurance companies.
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Table 1. Summary of rainfall and insurance data sources.

Data source Temporal resolution Spatial resolution Availability Records

Manual rain gauge network daily volumes ≈ 1/100 km2 1950–today

Automatic rain gauge network 10-min volumes ≈ 1/1000 km2 2003–today

Property damage database by day district level 1986–2009 ≈ 300 000

Content damage database by day district level 1992–2009 ≈ 270 000

Fig. 1. Locations of 33 automatic rain gauges (solid circles) and

300+ manual rain gauges (triangular markers) and the area within

a 10-km radius of automatic rain gauges (open circles). Urban den-

sity (addresses/km2) is presented in grey scales.

Insurance companies use different systems to classify claims,

and the quality with which claims are assigned to groups

varies between companies.

Damage due to pluvial flooding is included in most of the

insurance policies after 2000 following advice issued by the

Dutch Association of Insurers (Ministry of Transport, Pub-

lic Works and Water Management, 2003). Damage due to

pluvial floods should be directly and solely related to lo-

cal extreme rainfall for a claim to be accepted. Flooding

from rivers, sea or groundwater is not commonly insured in

the Netherlands, and therefore if pluvial flooding coincides

with other flood types, the damage is not insured. Rainfall is

considered “extreme” when “rainfall intensity is higher than

40 mm in 24 h, 53 mm in 48 h or 67 mm in 72 h at or near the

location of the damaged property”, without “near” being pre-

cisely defined. The intensities are associated with occurrence

Table 2. Key characteristics of insurance databases held by the

Dutch Association of Insurers for the period 2003–2009.

Number of Number

policies in of
Damage per claim in euros

millions per year claims Mean P10 Median P90

Property 0.9 111 000 1486 205 825 3140

Content 1.8 96 000 1015 144 564 2202

frequencies of once every 3 to 7 yr in the Netherlands. It is

unclear how and to what extent fulfilment of this requirement

is examined by the insurance companies. Upon further in-

quiry, companies have indicated that detailed rainfall data to

examine individual cases of local rainfall are usually lacking.

The insurance database consists of four sub-databases: (1)

a damage claim database with records related to property;

(2) a damage claim database with records related to building

content; (3) a database with policy holder information related

to property insurances; and (4) a database with policy holder

information related to content insurances. The databases with

policy holder information related to content and property are

separate databases, and it is impossible to link them. There-

fore, content and property claims cannot be related to a single

household. The variables that are included in the database

are listed in Table 3. The address of the insured household

is available at 4-position district (i.e. neighbourhood) level.

Typical surface areas of districts are 1–5 km2 for urban areas

and 10–50 km2 for rural areas. Recorded damages include

the costs of cleaning, drying and replacing materials and ob-

jects and the costs of temporarily rehousing of people. For

the analysis in this paper, it is assumed that the number of

insurance policies is constant during one year. In case an in-

surance policy is only active for a part of the year, the insur-

ance policy is counted proportionally for that year. Duplicate

records were removed, as well as records with missing or

incorrect date, location or damage value (around 6 % of the

original database). Records with damage value equal to zero

were also removed (around 1 % of the records), as these are

damage claims that did not meet the policy conditions. First

and last day of the month were excluded as they, in a few

cases, showed unrealistically high claim numbers compared

to other days. These days are probably due to software de-

faults when exact damage date was unknown or not entered

by the insurer’s employee.
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Table 3. A brief overview of variables recorded in insurance

databases held by the Dutch Association of Insurers. The damage

claim records can be linked to the policy holder information through

the policy ID key.

Damage claim records Policy holder information

Damage value claimed Type of building

Damage value paid out Policy coverage

Date damage occurred Start date of policy

Damage cause End date of policy

Policy ID key Insured sum of property

Insured sum of content

4-position district code

Policy ID key

2.3 Aggregating rainfall and insurance data

This study covers data from April 2003 to 2009. Insurance

damage data were selected within a 10-km radius from the

automatic rain gauges based on the distance between the

district’s centroid and its nearest automatic rain gauge (ver-

sion shapefile of districts: March 2011). It is assumed that

rainfall measured at the rain gauges is uniformly distributed

in the rain gauge area. Rain gauge data are generally as-

sumed to be representative within a range of several kilome-

ters. Several ranges were tested and a 10-km range proved to

be the best compromise between distance from rain gauges

and number of data covered. In Overeem et al. (2011) it is

expected that the decorrelation distance for Dutch rainfall

events is larger than 15 km. They refer to a study by Berne

et al. (2004) where a decorrelation distance of 15 km was

found for typical intense Mediterranean rain events, which

are on average more intense and more convective compared

to rainfall events in the Netherlands. This justifies select-

ing the claims within 10 km from a rain gauge. Figure 2

shows two rain gauges and their neighbouring districts. In-

surance data were converted to count data: the number of

water-related claims ki and number of insured households

Ki were aggregated by day and by rain gauge area. The sub-

script i denotes the index of the observation. The number of

insured households per rain gauge area ranges from around

300 to 55 000 for property insurance and from around 300 to

120 000 for content insurance. The higher number of content

insurances is explained by the fact that property insurance

only concerns house owners, whereas content insurance con-

cerns both house owners and tenants. Observations with less

than 5000 households were filtered out as they were found

to be very sensitive to errors in data. The maximum rainfall

intensity Ii,z is determined for each day and rain gauge area,

where subscript z denotes the length in minutes of the mov-

ing time window, for z values 10 (original data), 20, 30, 40,

50, 60, 70, 80, 90, 120, 180, 240 or 480 min.

Fig. 2. Example to illustrate the subsetting of insurance data. The

two red dots are rain gauges and the open circles the rain gauge ar-

eas. The black crosses are the centroids of the districts. The shaded

areas are the districts that have been subsetted.

2.4 Distinguishing rainfall-related and

non-rainfall-related events

The distinction between non-rainfall-related and rainfall-

related claims is not explicitly made in the data provided

by insurance companies. Non-rainfall-related claims occur

throughout the year, whereas rainfall-related claims are clus-

tered on wet days. Consequently, a high number of claims in

a rain gauge region on a particular day is more likely to be

associated with rainfall. In the remainder of this paper, these

observations are labelled as “damage events”.

The number of claims that can be expected on dry days

was estimated based on claims recorded on dry days in 10-

km ranges from the network of 300+ manual rain gauges, in

order to obtain an independent estimate of the data associated

with gauges in the automatic network. Observations were

only selected in case of two subsequent dry days, because

the daily volumes recorded by manual gauges are based on

08:00 UTC–08:00 UTC intervals. It was found that the num-

ber of non-rainfall-related claims is well described as a bino-

mially distributed random variable:

ki ∼ B(Ki,ζ ), (1)

where Ki is the number of insured households and ζ the

probability that an individual, insured household will have

a non-rainfall-related claim on a day. It is assumed that ζ

is constant in both time and space. Best fits with data were

found for ζ = 3.2×10−5 (property data) and ζ = 1.3×10−5

(content data). The probability of obtaining y claims at least

as extreme as ki , the one observed, given the number of in-

sured households Ki (i.e. p value) is therefore

Pr(y ≥ ki | Ki) = 1 −
ki−1
∑

y=0

(

Ki

y

)

ζ y(1 − ζ )Ki−y . (2)

Any p value below a significance level α indicates occur-

rence of a damage event, as it is unlikely to be associated
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with non-rainfall-related claims. Different levels of signifi-

cance (α = 1 × 10−2, 1 × 10−3, 1 × 10−4 and 1 × 10−5) are

used to study its effect on the results. A binary variable Yi

is introduced to classify the observations that are considered

a damage event Yi = 1 and those that are not Yi = 0:

Yi =
{

1 if p value < α

0 if p value ≥ α.
(3)

2.5 Linking binary outcome to maximum

rainfall intensity

The outcome, damage event or not, can be linked to the maxi-

mum rainfall intensity (maximum within one day for the cho-

sen time window z) using various types of models for binary

data (McCullagh and Nelder, 1989). In this study a logistic

function was used, which yields

logit(θi) = log

(

θi

1 − θi

)

= β0 + β1Iz,i, (4)

where θi is the probability of a damage event (Yi = 1) and

β0 and β1 are regression coefficients. The regression coeffi-

cients are estimated using maximum likelihood estimation.

The likelihood ratio (LR) test is used to test if β1 is signif-

icantly different from zero, i.e. if maximum rainfall inten-

sity is a parameter that contributes to high numbers of dam-

age claims. There is no universally accepted goodness-of-fit

measure in logistic regression that represents the proportion

of variance explained by the predictors, such as R2 in or-

dinary least squares regression. Several pseudo-R2 statistics

have been developed that mimic the R2 in evaluating the

variability explained, which is one of the approaches used

in this study. In this study McFadden’s R2 is used, which

compares the log-likelihood of the model without predictor

and log-likelihood of the model with predictor (Long, 1997,

p. 104). The other approach directly compares observed and

predicted values from the fitted model using contingency ta-

bles, using a cutoff point of θ = 0.5.

3 Results

3.1 Logistic regression results

In Table 4 the results of the logistic regression are summa-

rized. Results are based on the 60-min rainfall intensity. The

significance levels α, used for the dichotomization of dam-

age data, range from 1 × 10−2 to 1 × 10−5. Table 4 lists es-

timates for slope coefficient β1, since this is the most impor-

tant parameter for interpretation of logistic regression results.

The standard error in β1 is denoted as SE. The slope coeffi-

cient is expressed in exponential form, exp(β1), which is the

odds ratio. The odd ratio should be interpreted as the factor

with which the odds (probability of a damage event divided

by probability of no damage) change as an effect one unit

change in the maximum rainfall intensity. For a large num-

ber of observations, LR ∼ χ2 with degrees of freedom equal

to the number of parameters being estimated.

The slope coefficient is significantly different from zero

in all cases (at p < 0.05 level), which means the maximum

rainfall intensity is a significant predictor for the probabil-

ity of occurrence of rainfall-related damage. The odd ratios

(exp(β1)) vary between 1.28–1.35 for property damage and

1.26–1.30 for content damage, indicating a 28–35 % (prop-

erty) and 26–30 % (content) increase in odds of a damage

event for each mmh−1 change in rainfall intensity. Different

time windows between 10 min and 4 h have been investigated

and produce similar results.

In Fig. 3 four examples of logistic functions are plotted as

well as the data on which models were fitted. The plots are re-

lated to cases of property damage (with the dichotomization

based on α = 1×10−3) and 10-, 20-, 30- and 90-min rainfall

intensities. The function links the probability of a damage

event θ on the y-axis to maximum rainfall intensity Iz on

the x-axis. The steepness of the slope of the logistic function

is determined by β1 (see also Table 4); a large slope coeffi-

cient makes the transition between “low damage” and “dam-

age event” more abrupt. The grey dots are the observations,

either Y = 0 in case of “low damage” or Y = 1 in case of a

“damage event”. A jitter function was applied to better visu-

alize the density of the data points. The open circles are the

calculated empirical proportions (number of observed Y = 1

in a bin divided by total number of observations in a bin n)

for eight non-overlapping equally sized bins. The error bars

represent one standard deviation σ of uncertainty on the em-

pirical proportion estimate, where σ =
√

θ(1 − θ)/n.

Most observations without damage (Y = 0) are associ-

ated with low-intensity rainfall; e.g. 99 % of the observa-

tions without damage are below 6.9 mm in 10 min. Few ob-

servations of low damage are associated with high-intensity

rainfall. The Y = 1 observations are distributed over a larger

range of rainfall intensities. The differences in the distribu-

tions of Y = 0 and Y = 1 are also reflected in the empirical

proportions (open circles), with increasing values for higher

rainfall intensities. Due to the low number of observations

for high rainfall intensities, large uncertainty ranges occur

for values of θ > 0.5.

3.2 Goodness-of-fit using pseudo-R2

McFadden’s R2 statistic was calculated using different time

windows (z) and thresholding criteria (α). Results are listed

in Table 5. The maximum rainfall intensity accounts for at

most 34 % (for property damage) and at most 30 % (for con-

tent damage) of the variance explained, taking into account

that these values are approximations and depend on the se-

lected pseudo-R2. There is a slight improvement in the model

predictability if rainfall intensity is based on longer time

windows, with an “optimum” between 2 and 4 h. The dif-

ferences are, however, rather small to be conclusive about
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Table 4. Logistic regression results for model fits on property and content data. The results are based on z = 60 min and a range of α levels.

The regression coefficient β1 has units in h mm−1.

95 % C.I. exp(β1)

data α β1 SE LR d.f. p exp(β1) Lower Upper

property 0.01 0.265 0.0093 766 1 < 0.001 1.30 1.28 1.33

0.001 0.309 0.0113 723 1 < 0.001 1.36 1.33 1.39

0.0001 0.319 0.0126 626 1 < 0.001 1.38 1.34 1.41

0.00001 0.325 0.0141 528 1 < 0.001 1.38 1.35 1.42

content 0.01 0.248 0.0081 882 1 < 0.001 1.28 1.26 1.30

0.001 0.281 0.0097 782 1 < 0.001 1.32 1.30 1.35

0.0001 0.276 0.0107 597 1 < 0.001 1.32 1.29 1.35

0.00001 0.282 0.0118 516 1 < 0.001 1.33 1.30 1.36

Fig. 3. Logistic functions (solid lines) fitted on property damage data. Plots are related to the cases of z = 10, 20, 30 and 90, using α =
1 × 10−3. The grey small dots are the binary observations, either Y = 0 or Y = 1. A jitter function was applied on the binary observations

to better visualize the density of the data points. The open circles are the calculated empirical proportions for eight non-overlapping, equally

sized bins. The error bars represent one standard deviation of uncertainty on the empirical proportion estimate.

what time window best predicts damage. An optimum, if

true, may reflect the temporal scale at which failure mech-

anisms (e.g. floodings, leakages of roofs) have caused dam-

age. It would be interesting to have more detailed informa-

tion on the cause of a damage claim, which would possi-

bly allow characterising temporal scales of different damage

generating mechanisms. The results suggest that for this kind

of analysis there is no need to collect rainfall data with tem-

poral resolutions smaller than 10 min. Lowering the signifi-

cance level α, and hence selecting observations that are re-

lated to a larger number of claims, improves the predictabil-

ity by high rainfall intensities. In other words, the results

Hydrol. Earth Syst. Sci., 17, 913–922, 2013 www.hydrol-earth-syst-sci.net/17/913/2013/
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Table 5. Evaluation of model performance using McFadden’s R2. Outcomes are given for ranges of z and α.

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 0.102 0.111 0.114 0.117 0.118 0.120 0.123 0.124 0.126 0.127 0.126

α = 0.001 0.186 0.205 0.212 0.215 0.218 0.220 0.224 0.228 0.230 0.227 0.222

α = 0.0001 0.234 0.255 0.263 0.268 0.273 0.275 0.277 0.278 0.280 0.275 0.269

α = 0.00001 0.280 0.305 0.314 0.323 0.329 0.331 0.335 0.339 0.344 0.340 0.333

content α = 0.01 0.092 0.099 0.103 0.107 0.109 0.110 0.114 0.116 0.118 0.116 0.110

α = 0.001 0.167 0.177 0.183 0.189 0.192 0.195 0.202 0.207 0.212 0.210 0.196

α = 0.0001 0.190 0.201 0.209 0.217 0.223 0.227 0.237 0.244 0.250 0.248 0.239

α = 0.00001 0.232 0.244 0.256 0.266 0.272 0.277 0.285 0.292 0.298 0.294 0.284

Table 6. Rainfall thresholds: rainfall intensity in mm h−1 for time window z at which probability of a damage event θ = 0.5.

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 52.2 36.3 27.8 22.7 19.3 17.0 12.6 10.3 7.8 6.4 4.0

α = 0.001 56.2 39.1 29.8 24.4 20.8 18.2 13.5 10.9 8.2 6.8 4.3

α = 0.0001 60.1 42.0 32.1 26.2 22.2 19.4 14.5 11.8 8.8 7.3 4.6

α = 0.00001 64.5 45.2 34.6 28.2 23.9 20.9 15.6 12.5 9.3 7.7 4.8

content α = 0.01 56.3 39.4 30.1 24.5 20.8 18.2 13.5 10.9 8.2 6.8 4.4

α = 0.001 60.8 43.1 33.2 27.0 22.8 20.0 14.7 11.9 8.8 7.2 4.6

α = 0.0001 67.8 48.4 37.3 30.3 25.7 22.4 16.5 13.2 9.8 8.0 5.0

α = 0.00001 71.6 51.2 39.6 32.2 27.2 23.8 17.6 14.1 10.4 8.6 5.3

indicate that observations related to a larger number of claims

are more likely to be associated with rainfall data than ob-

servations related to a smaller number of claims. Property

damage is better explained by rainfall than content damage,

although the differences are marginal (1–4 % point).

3.3 Goodness-of-fit using contingency table

Another way to look at model performance is to directly

compare observed and predicted values using contingency

tables. The model is said to have predicted a significant dam-

age event if the estimated θ is greater than or equal to 0.5 and

no damage if θ is smaller than 0.5. The rainfall intensity for

which the probability of success equals 0.5 is here defined

as the rainfall threshold, although it does not necessarily im-

ply a sudden transition from “no damage” to “damage”. The

rainfall thresholds are listed in Table 6 for different α and

z. The thresholds are slightly higher for lower significance

levels and higher for content damage compared to property

damage; however, these differences are small compared to

uncertainty introduced by assuming gauge measurement to

be representative for the area in a 10-km range of the rain

gauge.

In a 2×2 contingency table the observed Y (0 – no damage

observed or 1 – damage observed) is compared with the pre-

dicted Y (0 – no damage predicted or 1 – damage predicted).

Table 7 presents the contingency table for α = 1 × 10−5 and

z = 60 based on property damage data. The percentage of

correct predictions (= a+d
n

= 0.997) is heavily skewed in this

Table 7. Contingency table, cutoff point θ = 0.5 (α = 1×10−5, z =
60, property data).

Damage predicted No damage predicted

Iz ≥ 20.9 Iz < 20.9 Total

Damage observed a = 19 b = 101 120

No damage observed c = 13 d = 34 056 34 069

Total 32 34 157 n = 34 189

case due the high number of days without damage. An al-

ternative performance index, less sensitive to skewness of

observations, is the sum of fractions of correctly predicted

observations (= a
a+b

+ d
c+d

) (Kennedy, 2003). Using this ap-

proach, scores are presented in Table 8 for a range of z and

α. The models score around 5–17 % better compared to ran-

dom predictions. In most cases, property damage is better

predicted by rainfall than content damage, although the dif-

ferences are small and for a few cases scores are equal. The

scores do not improve when lowering the significance level

from 1 × 10−4 to 1 × 10−5. The highest scores are obtained

for time windows between 30 and 50 min, which are smaller

than the 2 to 4 h found using McFadden’s R2.

4 Discussion

The contingency tables can be used to address the fractions

of type 1 errors and type 2 errors. Type 1 errors (b in Table 7)
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Table 8. Scores using alternative performance index (= a
a+b

+ d
c+d

).

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 1.05 1.07 1.07 1.07 1.07 1.08 1.07 1.07 1.07 1.07 1.06

α = 0.001 1.08 1.13 1.14 1.14 1.14 1.12 1.12 1.11 1.10 1.10 1.10

α = 0.0001 1.11 1.16 1.17 1.16 1.16 1.15 1.15 1.14 1.13 1.11 1.12

α = 0.00001 1.11 1.15 1.17 1.16 1.16 1.16 1.16 1.16 1.13 1.14 1.12

content α = 0.01 1.04 1.05 1.06 1.06 1.07 1.07 1.06 1.06 1.07 1.06 1.05

α = 0.001 1.07 1.09 1.11 1.10 1.10 1.10 1.11 1.11 1.11 1.10 1.08

α = 0.0001 1.06 1.08 1.10 1.12 1.12 1.12 1.14 1.12 1.13 1.12 1.10

α = 0.00001 1.07 1.07 1.09 1.11 1.13 1.12 1.12 1.14 1.14 1.12 1.12

can be indicative of local rainfall that caused damage, while

it was not recorded by the local rain gauge due to insuffi-

cient spatial density of the rain gauge network. They can also

indicate that rainfall intensity does not sufficiently represent

the damage generating mechanism and that other exploratory

variables such as total rainfall volume, wind speeds or build-

ing characteristics need to be added to the model. Type 2 er-

rors (c in Table 7) can be related to local rainfall that hit the

rain gauge, but not the surrounding urban area. They can also

be related to cases of overnight rainfall where people claim

the day after. The time window approach used in this study

allowed rainfall intensity to be based on rainfall prior to mid-

night; still rainfall that fell before the start of the time window

was not analysed. Both types of errors could be reduced with

a higher spatial resolution of rainfall data. Weather radar data

are able to provide a better representation of spatial variabil-

ity, although it is less accurate in determining the intensity

than gauge measurements.

The need to reduce type 1 and type 2 errors can be differ-

ent for different stakeholders. As an example from the wa-

ter manager’s perspective, a decision to open or not to open

a water storage facility may lead to unpreparedness in case of

a type 1 error or unnecessary costs in case of a type 2 error. A

more risk-seeking attitude (accepting some damage) of a po-

tential decision-maker allows a larger cutoff point (θ > 0.5),

and a more risk-averse attitude (accepting no damage) allows

a smaller cutoff point (θ < 0.5).

A considerable fraction of the variance is left unexplained,

which emphasizes the need to study other explanatory vari-

ables. There are a few aspects that need to be considered

when taking other explanatory factors into account: (1) the

explanatory variable should be available and parameterized

at the level of 4-position districts, as this is the scale at

which insurance data are available; (2) data should be avail-

able nationwide if the analysis is performed on the whole

insurance database; and (3) since additional data come from

different sources, different levels of data quality need to be

taken into account. Explanatory factors that are worthwhile

to investigate in a future study are topographical properties,

urban drainage system properties (e.g. drainage capacity,

age of infrastructure, percentage of surface water), level of

urbanization, socio-economic indices (e.g. income of house-

holds, property value), and district properties (e.g. percent-

ages of low-rise and high-rise buildings, percentage impervi-

ous surface).

The results of this study are of practical relevance for in-

surers, water managers and meteorologists. Some insurers

have indicated that the staffing of their call centres (that re-

ceive the claims) during extreme events is an issue, and that

a better knowledge of what events are likely to cause consid-

erable calls (tens of times more than on a regular day) can

be helpful to adjust the capacity of their call centres. It can

also be relevant for insurers when reconsidering their policy

conditions. The current “rainfall clause” that is being used

(see Sect. 2.2) has some flaws. For example, the rainfall in-

tensity criteria that are mentioned in this clause are not re-

lated to capacities of urban drainage systems. Dutch urban

drainage systems are designed to cope with 21.6 mm h−1;

the “40 mm in 24 h” criterion, for example, normally should

not cause sewer flooding. The results of this study show that

short-duration intense rainfall already results in a significant

number of claims. Another interesting application is the de-

velopment or validation of weather alarms, which are usu-

ally based on some meteorological thresholds. Climate re-

searchers may use the model to extrapolate probabilities of

rainfall damage given some projected change in rainfall ex-

tremes.

The extent to which the available insurance data can be

used for pluvial flood damage models is limited for two main

reasons. First, it is hard to distinguish those claims that are

related to pluvial floods from those claims related to other

failure mechanisms (e.g. leakages of roofs). Insurers use dif-

ferent definitions for pluvial flooding and different systems to

categorize claims. A better and more systematic documen-

tation of claim data could overcome this problem. Second,

the building addresses are available at the level of 4-position

districts (i.e. neighbourhoods), and therefore it is impossible

to relate claims to attributes of individual households, such

as the level of precaution, basement use and door thresh-

old level. Simplified damage assessment may be possible

at the level of neighbourhoods, taking into account district-

specific properties.
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5 Conclusions and recommendations

This study investigated relationships between water-related

damage data from insurance companies and rainfall extremes

for the period of 2003–2009 in the Netherlands. The results

show that high claim numbers related to private property and

content damages were significantly related to maximum rain-

fall intensity, based on a logistic regression, with rainfall in-

tensity for 10-min to 4-h time windows. The variance ex-

plained by rainfall intensity, approximated by a pseudo-R2

statistic, was at most 34 % for property damage and at most

30 % for content damage, depending on the selected time

window. When directly comparing predicted and observed

values, the model was able to predict 5–17 % more cases cor-

rectly compared to a random prediction. No important dif-

ferences were found between property and content damage

data. A considerable fraction of the variance is left unex-

plained, which emphasizes the need to study damage gen-

erating mechanisms and other explanatory variables, such as

total rainfall volume, wind speed or building characteristics.

For simplified flood risk assessment, it could be of interest

to use the insurance database to investigate relationships be-

tween the total damage of all damaged buildings and rain-

fall characteristics. There is also a need for high-resolution

rainfall data at the urban scale to have better spatial linkages

between rainfall and claim data. A better documentation of

exact damage causes in insurance databases is essential to

detail relationships with damages caused by failure mecha-

nisms of urban drainage systems.
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