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Abstract: The wind energy potential of the Antakya area was statistically analyzed based 8 years of wind data

sets (2002–2009). The 4-parameter Burr, 3-parameter generalized gamma, and conventional Weibull distributions were

regarded as suitable statistical models for describing wind speed profiles. The suitability of the models was tested by R
2 ,

RMSE, chi-squared, and Kolmogorov–Smirnov analysis. According to goodness-of-fit tests, the Burr distribution was

found to be more suitable than the generalized gamma or Weibull distributions for representing the actual probability

of wind speed data for Antakya. Based on the capacity factors estimated by the Burr model at a hub height, the power

generation potential of a commercial 330-kW wind turbine was also determined. The results show that the available

wind energy potential to generate electricity in Antakya is low; consequently, wind power would be suitable only for

stand-alone electrical and mechanical applications, such as water pumps, battery charging units, and local consumption

in off-grid areas.
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1. Introduction

Wind energy is quickly becoming preferred as an economical energy source around the world, with competitive

investors and progress in wind energy technologies over the last 3 decades [1]. Today, more than 1 billion

people, or 18% of the population worldwide, do not have access to grid electricity [2]. Hence, wind energy has

the advantage of being suitable for rural and remote regions. Turkey is challenged by a rapidly growing economy,

an expanding population, and a growing power demand. The country has been among the 4 fastest developing

energy markets around the world for the last 3 decades [3]. The wind energy sector has made rapid progress

and its capacity has increased from 146.25 MW in 2007 to 2089 MW in 2012, while the installed wind power

capacity in the European Union grew from 57 GW in 2007 to 100 GW in 2012 [4]. While the installed capacity

in Europe has increased by about 75%, Turkey’s capacity has increased 13.3-fold (1330%) over the same period.

Turkey possesses excellent wind resources, particularly in the Çanakkale, İzmir, Balıkesir, and Hatay regions.

Depending on the geographical position and seasonal influences, Turkey’s total feasible wind energy potential

has been reported by the Republic of Turkey Ministry of Energy and Natural Resources to vary between 5000

and 48,000 MW, and this situation has been providing significant growth for the Turkish wind market over the

coming years [5]. In the Hatay basins, the highest monthly wind speed value is 25.5 m/s and the annual average

wind energy potential is 25–50 W/m2 . In 2012, the electricity generated from the annual wind power in the
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Hatay region was 156 GWh (for an equivalent of 2500 hours of full load/year) [6]. As of 2013, the presently

established power lines in that basin have a capacity of 177.50 MW, plus an additional 253 MW currently under

construction [7]. Determining wind characteristics is necessary for estimating wind resources so that reasonable

decisions can be made regarding the technical and economic feasibility of any power plant generating electricity

from wind. In the last 15 years, many studies have been carried out to determine the wind profile and the

potential in Turkey and in many other countries. Moreover, wind speed was modeled by different probability

density functions in these studies. Sahin et al. investigated wind characteristics and wind potential using the

Weibull distribution in the Antakya and İskenderun regions of Hatay in Turkey [8]. It was concluded that the

rates of wind energy potential in both regions were adequate to generate electricity, thanks to the prevailing

southwesterly winds in the Antakya region. Sahin and Bilgili also researched the wind profile of the Belen region

of Hatay in Turkey using hourly wind speed and direction data for 2 years (2004–2005) [9]. That study showed

that Belen is a suitable area for wind energy. Similarly, Celik analyzed the acceptability of the Weibull and

Rayleigh distributions for modeling local wind profiles. Their parameters were based on 12 months of wind speed

and direction data recorded in the İskenderun region of Hatay in Turkey [10]. The Weibull distribution proved

accurate throughout Celik’s study and was more suitable than the Rayleigh distribution. However, the effects of

seasonal and monthly climates can change the degree of suitability of any distribution function [11]. In another

study, Gökçek et al. investigated the wind profile of the Kırklareli region in Turkey in order to determine the

energy potential that was attainable via use of wind for energy generation [12]. These researchers found that

the annual mean power density for this region (as calculated based on the Weibull distribution parameters) was

138.85 W/m
2

. Gökçeada Island (northern Aegean Sea, Turkey) is another windy area investigated by Eskin

et al. using wind speed and direction data recorded at a height above ground level (HAGL) of 10–30 m [13].

This study showed that Gökçeada Island has high wind energy (500 W/m2 at 25 m HAGL) due to atmospheric

stability and high wind speeds. In terms of statistical analysis and modeling, wind speed and wind energy

studies are very limited in Antakya. Therefore, the objective of this study was to determine the wind energy

potential in Antakya through the use of a variety of statistical distributions, including the Burr, generalized

gamma, and Weibull distributions.

2. Site and measurement details

The shores of Turkey along the eastern Mediterranean are suitable for wind power generation and therefore

are the most attractive regions for the construction of wind power plants. Antakya is the capital city of Hatay

Province, which is located in the eastern end of the Mediterranean Sea and within the border region of Turkey,

as seen in Figure 1. It is located at 35◦52 ′ –37◦ 04 ′N and 35◦ 40 ′ –36◦35 ′E, with 5403 km2 of surface area. The

coordinates of the Antakya meteorological observation station are 36◦12 ′N, 36◦9 ′E. All observations at the

meteorological station were measured using pressure and temperature sensors and an anemometer with 3 cups

(at 10 m HAGL). Instantaneous wind data measured at Antakya meteorological station were recorded as the

average of 60 min of data and transmitted to the Turkish State Meteorological Service (TSMS) from January

2002 to December 2009. These values obtained from TSMS have been quality-assured for this study. Statistical

software applications were used to assess the data obtained for the wind speed and the direction data.

2.1. Method

In the literature about wind energy, several methods have been proposed to estimate wind energy potential.

Statistical analyses are commonly used to describe wind profile based on a Weibull function. In our study, the
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4-parameter Burr and 3-parameter generalized gamma functions were tested as new models for wind speed. At

the end of the study, both estimated wind power densities and statistical errors of probability models were also

compared.
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Figure 1. The map of the region (Maphill, 2011).

2.2. Wind speed data

To evaluate the wind potential of any point requires precise identification of wind speed frequency distribution.

When the wind characteristics, and in particular the speed frequency distribution, are exactly known, the wind

power potentiality and the economic feasibility of a given wind power application of any size can be easily

estimated for the regions of interest [14]. Therefore, determination of wind speed variability is usually the

initial focus in order to define a suitable distribution for wind speed. Mean wind speed (MWS) denotes the

suitability of a windy area for electricity generation from wind. MWS, or Vm (m/s), of a region is defined in
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Eq. (1) for the available time series data. Thus, all MWS values (daily, monthly and annual) were calculated

with Eq. (1)

Vm =
1

N

N
∑

i

Vi, (1)

whereVi is the wind speed value at time i and N is the number of times wind speed was measured. In this study,

the wind speed data were collected at an observation height Hobs [m] that was different from the hub height.

The direct measurements at 10 m HAGL can be representative for small or micro wind turbines; larger wind

turbines have a hub height of around 50–100 m [15]. Therefore, it is necessary to determine the relationship

among wind speed Vhub [m/s] at hub height Hhub [m], the wind speed Vobs [m/s] at Hobs , and the surface

roughness length Z0 [m]. Hensen reported that the logarithmic law could be used to extrapolate the wind

speed because it is based on physical laws rather than on an empirical formulation [16]. For this study, the

logarithmic law was proposed as a relation given by Eq. (2) [17]:

Vhub = Vobs

[

(ln
Hhub

Z0
)/(ln

Hobs

Z0
)

]

, (2)

where Z0 was assumed to be 0.8 since the mast is located in an urban area [18].

On the other hand, calculation of average power output for a wind turbine is proportional to air density

and requires the measurement of air density ρ [kg/m3 ] [19].

Air density depends essentially on pressure and temperature, and air density can be calculated using the

ideal gas law [20]. Air density is given as:

ρ = p÷ (Rd × T ), (3)

where p is the air pressure [Pa], T is the temperature in degrees Kelvin [K], and Rd is the universal gas constant

of dry air [287 j/kg K].

2.3. Statistical analysis methodology

After the calculation of the MWSs, several distributions could possibly be used with the help of the calculation

of general wind parameters. The distributions that are used most often (and are most readily recognized) are

the Weibull, Burr, and generalized gamma distributions. In this study, each of these distributions was examined

for its ability (or lack thereof) to model wind speed frequency distributions in the Antakya region. Commonly

used methods are the moments method, the least squares method, the power density method, and the method

of maximum likelihood estimation (MLE) when determining the parameters of a distribution function [21,22].

In all cases, during this study, the parameters of the theoretical distributions were estimated using the MLE

method, one of the most efficient methods for this purpose [23]. The method for a fixed set of data and an

underlying statistical distribution selects values for the distribution parameters that maximize the likelihood

function. In addition, the MLE method supplies forecasts with favorable properties; that is, the forecasts

are asymptotically centered, have normal asymptotic distribution, and are efficient [24]. According to some

researchers, the Weibull function is the best for modeling the wind speed [25,26]. However, Hennessey, Aidan,

and Ododo have expressed that the Weibull function does not model the wind speed well for regions having very

low or calm wind speeds [27,28]. Therefore, in this study, the 4-parameter Burr function was also studied. The
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Weibull probability distribution function has been extensively used in wind energy applications and is defined

by the following equation:

f (x) =
k

c

[

V

c

]k−1

e−(
V

c )
k

, (4)

where k is the dimensionless shape parameter and c the scale parameter in m/s. k and c can be estimated

by using MLE [29,30]. The Burr distribution has a flexible form and it is considered a natural rival to normal

distribution for statistical modeling. In particular, the controllable scale and location parameters of the Burr

distribution make it appealing for fitting wind speed data and plotting a slightly positive skewness [31]. Valerio

et al. applied the Burr model to wind data collected in an urban area and their findings show that the Burr

model had a better congruity concerning the accuracy of fitting the empirical data [32]. The probability density

function of the Burr distribution is given by the following equation:

f (x) = αk

(

V − γ

β

)α−1

÷ β

(

1 +

(

V − γ

β

)α)k+1

; γ ≤ V < +∞, (5)

where β is the scale parameter in m/s, k and α are the dimensionless shape parameters, and γ is the location

parameter [33]. Among the 3 distribution models used in this study, the 3-parameter generalized gamma

distribution function was accepted as another useful model. Auwera et al. investigated the use of the 3-

parameter generalized gamma distribution to describe wind speed distributions [34]. Moreover, the generalized

gamma distribution provided better results in fitting the measured wind speed distribution than a number of

other distribution functions in this study. The generalized gamma distribution is also parameterized in terms

of 2 shape parameters (k − α) . The scale parameter β is defined by Eq. (6):

f (x) =
kV kα−1

βkαΓ(α)
exp(−(V/β)k). (6)

In order to assess the goodness-of-fit of the applied distribution models, the K−−S and chi-squared statistical

tests were used after stacked/unstacked negative and 0 wind speed values were eliminated. These tests measure

the suitability of an applied theoretical probability distribution function for a random sample of wind speed

values; that is, they indicate how well the distribution fits the existing wind speed data. However, the 2 tests can

produce different results due to the different analytical structures. The result of the chi-squared test statistic is

affected by bin changes. On the other hand, the K − S test is based on the empirical cumulative distribution

function (CDF) and is contrasted with the empirical distribution function of the data; thus, it is sensitive to

extreme values [35]. However, since the K − −S and chi-squared tests are commonly used ones, these tests

have been conducted as the first selection procedure. As the second procedure, RMSE and R2 values were

calculated between prediction and observation to make the best possible assessment. The definitions of these

statistics can be seen in Table 1: K is the number of bins, N is the total number of observations, and Oi and

Ei are observed and estimated frequencies for bin I, respectively. Furthermore, Yi represents the ith entry

of measured data while F is the cumulative distribution function. Estimated, observed, and mean values are

denoted by xi , yi , and y∗ , respectively, if equations of the R2 and RMSE are considered. In addition, the

relative errors (in %) of estimated wind speed (Pe) were calculated by the following equation:

Error(%) = (
Pe − Po

Po

)100%. (7)
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Table 1. Goodness-of-fit statistics.

Statistic Definition

Chi-squared χ2 =
K
∑

i=1

(Oi−Ei)
2

Ei

K − S D = max(F (Yi)− (i− 1)/N, i/N − F (Yi))

RMSE RMSE = (1−
n
∑

i=1

(yi − xi)
2)0.5

R2 R2 = 1−

[(

N
∑

i=1

(yi − xi)

)

÷

(

N
∑

i=1

(yi − y)2
)]

2.4. Wind power density

Calculation of wind power density is another step in assessing wind energy potential. Wind speed data measured

over the 8-year period were employed to estimate the wind power density in the windy area of the Antakya

region. The expected monthly or annual wind power density can be expressed by using Eq. (8):

P = (1/2)ρV 3
m, (8)

where ρ , which depends on altitude, air pressure, and temperature, is the mean air density and Vm3 is the

third power of the MWS value. The Battelle Pacific Northwest Laboratory developed a wind power density

classification table to classify wind resources; this table is reproduced in Table 2 [36]. In this table, wind power

density classification ranges from Class 1 (the lowest) to Class 7 (the highest). Each class represents a range of

wind power density [W/m2 ] or a range of equivalent MWSs at heights of 10 m and 50 m [37]. Class 1 and 2

areas are considered unsuitable and marginal for wind power development, respectively. In many cases, Class 3

and higher classes are considered to be useful for wind turbine generators of up to 750-kW rating.

Table 2. International commercial system of classification for wind power density.

Wind Wind power density Wind power density
power (W/m2) and speed (W/m2) and speed
class (m/s) 10 m (m/s) 50 m
1 ≤ 100; ≤4.4 ≤ 200; ≤5.6
2 ≤ 150; ≤5.1 ≤ 300; ≤6.4
3 ≤ 200; ≤5.6 ≤ 400; ≤7.0
4 ≤ 250; ≤6.0 ≤ 500; ≤7.5
5 ≤ 300; ≤6.4 ≤ 600; ≤8.0
6 ≤ 400; ≤7.0 ≤ 800; ≤8.8
7 ≤ 1000; ≤9.4 ≤ 2000; ≤11.9

2.5. Capacity factor and selecting wind turbine

Capacity factor (Cf ) is one parameter in measuring the productivity of a wind turbine. Cf compares how

much electricity a wind turbine actually produces over a given period of time with the amount of power output

for the wind turbine running at full capacity for the same amount of time. Cf , given by Eq. (9), can be

expressed as a percentage [38].

Cf = WEP/WEPmax, (9)
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MERT and KARAKUŞ/Turk J Elec Eng & Comp Sci

where WEP represents actual wind energy produced [Wh/year] by the wind turbine and WEPmax is the

maximum wind energy that the wind turbine produces [Wh/year]. Additionally, annual electricity production

(AEP) can be calculated by Eq. (10):

AEP = WEP × T (10)

where T is 8760 h. In this study, an Enercon 33 (rated power output is 330 kW at a wind speed of 13 m/s

and a cut-in wind speed of 3.0 m/s) commercial wind turbine was used for estimating energy production. The

turbine’s power curve is given in Figure 2 [39].

0 

100 

200 

300 

400 

1 3 5 7 9 11 13 15 17 19 21 23 25 

P
o

w
er

 (
k

W
/h

) 

V (m/s) 

Ener con E -33 330 (kW) 

Figure 2. Power curve of wind turbine (model no. E-33, Enercon Ltd.).

3. Results

3.1. Descriptive wind speed statistics

The annual MWS and standard deviations in the Antakya–Hatay region during the period from 2002 to 2009

are presented in Figure 3 and exhibit similar variations. As indicated over the entire 8-year period, the highest

average hourly wind speed of 7.90 m/s was recorded in July 2003, while the lowest MWS of 0.10 m/s occurred

in November 2009. The mean annual wind speed in the period from 2002 to 2009 was 2.59 m/s. The highest

maximum wind speed occurred in 2008; it was 20.04 m/s west–southwest. The yearly wind characteristics,

which were derived from the measurements of the wind speed data in the site from 2002 to 2009, are given in

Table 3. Wind speed characteristics are critically important for the evaluation of the possibilities of wind power

utility. This evaluation is usually achieved by the values given in Table 3. While mean speed varied from 2.39

m/s to 2.70 m/s, maximum hourly MWS was 7.90 m/s in 2003. Standard deviation, describing the amount of

variability or dispersion around MWS data, varied between 1.52 m/s in 2009 and 1.71 m/s in 2006. Skewness

(a measure for the degree of symmetry in a variable distribution) did not exceed 0.53. Kurtosis (a measure of

the peakedness of wind speed distribution) varied from –0.82 to –1.07 for all periods. In order to construct the

regional wind rose (the analysis of the frequency distribution based on yearly and seasonal wind speed data), all

hourly average wind speed values and wind directions were used; these are given in Table 4. According to this

table, wind directions behave similarly in spring and fall. The prevailing wind direction was south–southwest

(86.01%) during the summer, while the prevailing wind direction was northeast (60.46%) during the winter.

If annual wind speed data are taken into consideration, it is evident that the wind blows predominantly from

the south–southwest (202.5◦) about 44% of the time, and from the northeast (45◦) about 27.8% of the time.

However, in terms of power production, the summer is more suitable due to more energy-carrying winds. In

addition, for the construction of wind turbines, minimally high buildings that exist in the investigated area

should be considered, since the mast is located in an urban area (Z0 ≥0.8).
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Figure 3. Annual MWS and standard deviations.

Table 3. Yearly wind speed characteristics.

Year Mean SD Variance Min Max Skewness Kurtosis
2002 2.55 1.59 2.52 0.00 7.10 0.51 –0.86
2003 2.66 1.62 2.62 0.10 7.90 0.43 –0.98
2004 2.69 1.63 2.65 0.00 7.50 0.43 –0.92
2005 2.68 1.70 2.89 0.00 7.60 0.45 –1.00
2006 2.70 1.71 2.92 0.00 7.40 0.40 –1.07
2007 2.54 1.63 2.65 0.00 7.50 0.53 –0.82
2008 2.51 1.58 2.51 0.00 6.70 0.42 –0.99
2009 2.39 1.52 2.31 0.00 6.90 0.47 –0.88
Avg. (m/s) 2.59 1.62 2.63 0.01 7.33 0.46 –0.94

Table 4. Season and overall wind direction frequency.

N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW

Winter 74 307 1306 126 11 5 3 9 10 132 41 52 9 7 11 57

Spring 36 120 550 112 9 2 3 1 26 952 218 89 20 11 15 44

Summer 3 10 14 6 2 1 2 0 16 1899 224 15 4 2 4 6

Autumn 43 135 571 65 7 7 2 4 14 871 261 114 46 13 3 28

Overall 156 572 2435 309 29 15 10 14 66 3854 744 270 79 33 33 133

3.2. Wind speed distribution fitting

Due to the changes in the local meteorological conditions and the random nature of the wind, estimating the

behavior of wind speed is difficult. It is more practical to represent its behavior using a probability function;

also, the seasonal variation of wind speed data can help in describing local wind profiles. Due to the skewness

and kurtosis values over the 8 years of the study, it is clear that wind speed data in this study can be analyzed

with distributions aside from the normal distribution. The reason is that these values are equal to 0 for normal

distribution. Therefore, in this study, the Burr, generalized gamma, and Weibull distributions were used to

determine the wind distribution that best describes the wind speed variation of Antakya. Monthly, seasonal, and

annual variations for actual and estimated MWS, power density, and parameters of each distribution in Antakya

at 10 and 50 m HAGL are listed in Tables 5–7. The Weibull parameter c varied between 1.42 m/s in December

and 4.97 m/s in July, while k varied between 1.73 in May and 4.52 in August. The highest values of c and

k were obtained in the summer, when the wind is usually regular with high speeds. The monthly generalized

gamma shape parameter k varied between 0.90 m/s in July and 1.01 m/s in November. The highest value of

k was 0.99 in winter and the highest values of α and β were obtained in summer and autumn, respectively.

For the Burr distribution, the k shape parameter varied between 707.67 in July and 5.80 in January, while the

scale parameter β varied between 12.04 in August and 94.71 in April. The highest value of the other shape
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Figure 4. Seasonal histograms of the wind speed data.
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Figure 5. Probability difference plots of the fitted Burr, generalized gamma, and Weibull models.
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Figure 6. a) Monthly variation of SD. b) Seasonal variation of SD.

parameter α was obtained during the summer. Height values of the γ parameter were observed in the spring

while the Burr location parameter γ varied between –16.36 in July and 0.09 in January. As seen in Table 6,

average wind speeds estimated by the Burr, generalized gamma, and Weibull distributions were very close to

real wind speeds. Table 6 also contains the monthly variation in mean actual wind power density (at 10 m

HAGL) in Antakya. As can be seen in Table 7, the monthly mean power density was highest during summer

and lowest during winter (at 10 m and 50 m HAGL). The mean wind power densities estimated by the Burr,

generalized gamma, and Weibull distributions are very close to real mean wind power density values. However,

both MWS and power density values, which were estimated by the Weibull distribution, were less successful.

The highest mean power value was 212.46 W/m2 in August and the lowest mean power was 5.38 W/m2 in

December at 50 m; therefore, Antakya is classified as a wind power density class 2 region (≤250 W/m2) . This

means that the region is not suitable for large-scale wind energy convertor systems. In this study, probability

density distributions derived from the measured hourly time series data versus those obtained from the Burr,

generalized gamma, and Weibull models during seasonal periods at the site (at 10 m and 50 m HAGL) are

illustrated in Figure 4. The Weibull model overpredicted wind speeds in May, June, July, and August, which

were in the ranges of 3 to 5 m/s and 10 to 12 m/s, respectively. The generalized gamma model underpredicted
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Table 5. Monthly, seasonal, and annual variations for parameters of distributions.

Burr parameters
Gen. gamma Weibull
parameters parameters

Month k α β γ k α β k c
January 5.80 1.82 17.38 0.09 0.98 3.30 0.45 2.05 1.70
February 524.96 1.83 47.87 0.05 0.96 3.17 0.43 1.90 1.62
March 173.82 1.75 39.31 0.05 0.97 2.92 0.63 1.86 2.13
April 414.02 1.61 94.71 0.09 0.99 2.61 0.80 1.83 2.34
May 567.75 1.94 88.63 –0.06 0.92 3.02 0.87 1.73 3.32
June 253.56 5.95 19.34 –3.12 0.91 6.57 0.50 2.37 4.56
July 707.67 17.75 30.84 –16.36 0.90 7.12 0.49 2.46 4.97
August 68.77 8.19 12.04 –2.38 0.96 17.55 0.22 4.52 4.83
September 344.70 3.33 27.62 –1.13 0.91 3.98 0.67 1.89 3.61
October 537.33 1.72 78.92 0.05 0.96 2.80 2.80 1.77 2.09
November 24.78 1.36 16.64 0.08 1.01 1.90 0.82 1.55 1.69
December 259.30 1.86 28.14 0.00 0.94 3.01 0.39 1.77 1.42
Winter 7.43 1.83 4.55 0.04 0.99 2.73 0.53 1.85 1.66
Spring 510.41 1.64 113.15 0.08 0.97 2.62 0.85 1.77 2.59
Summer 510.41 9.24 19.45 –5.98 0.92 8.13 0.42 1.85 1.66
Autumn 894.82 1.49 221.27 0.06 0.95 2.27 0.91 1.57 2.42
Annual 1141.10 1.51 293.76 0.07 0.95 2.28 1.04 1.58 2.81

Table 6. Actual–estimated MWS and power densities.

Observed MWS [m/s] and
Estimated MWS [m/s] 50 m

power density 10 m
Month VObs PObs VObs VBurr VGGamma VWei

January 1.52 2.18 2.49 2.50 2.49 2.47
February 1.44 1.84 2.36 2.37 2.36 2.36
March 1.91 4.19 3.12 3.12 3.11 3.10
April 2.11 5.60 3.45 3.46 3.45 3.40
May 2.94 14.98 4.81 4.82 4.79 4.85
June 3.95 35.69 6.46 6.47 6.44 6.62
July 4.31 46.11 7.06 7.07 7.04 7.22
August 4.39 48.41 7.19 7.20 7.19 7.22
September 3.13 17.81 5.13 5.16 5.11 5.24
October 1.87 3.84 3.06 3.06 3.04 3.05
November 1.55 2.26 2.54 2.54 2.54 2.49
December 1.26 1.23 2.06 2.06 2.05 2.07
Winter 1.41 1.71 2.30 2.42 2.42 2.41
Spring 2.32 7.47 3.80 3.80 3.80 3.77
Summer 4.22 43.26 6.91 6.84 6.82 6.95
Autumn 2.18 6.13 3.57 3.57 3.55 3.55
Annual 2.54 9.74 4.16 4.16 4.14 4.13
Relative Mean Error 0.46% 0.62% 1.17%

data by 7 to 9 m/s. This is reflected by the underestimated probabilities in the summer, as seen in Figure

4. However, the same figure indicates that the Burr model performed better than the generalized gamma and

Weibull models in all periods. In addition, the probability plot used to test whether the empirical CDF values
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MERT and KARAKUŞ/Turk J Elec Eng & Comp Sci

Table 7. Variations for estimated mean power density of distributions (at 50 m).

Month
Estimated power density [W/m2] 50 m
PObs PBurr PGGamma PWei

January 9.56 9.59 9.53 9.30
February 8.10 8.11 8.02 8.03
March 18.40 18.41 18.26 18.08
April 24.59 24.70 24.58 23.53
May 65.75 65.89 64.74 67.13
June 156.62 157.47 155.18 168.19
July 202.35 203.15 200.70 216.30
August 212.46 212.92 212.06 214.61
September 78.15 79.19 76.96 83.25
October 16.86 16.91 16.68 16.75
November 9.92 9.90 9.97 9.35
December 5.38 5.38 5.30 5.47
Winter 7.52 8.77 8.74 8.58
Spring 32.77 32.85 32.70 31.97
Summer 189.84 184.22 182.48 193.39
Autumn 26.91 26.83 26.55 26.54
Annual 42.75 42.97 42.21 41.99

Table 8. Monthly, seasonal, and annual variations for parameters of distributions.

Goodness Burr (4P) Gen. gamma Weibull
of fit K − S Chi-squared K − S Chi-squared K − S Chi-squared

test Stats - Rank Stats - Rank Stats - Rank Stats - Rank Stats - Rank Stats - Rank
January 0.05307 - 1 58.012 - 3 0.05450 - 2 31.358 - 2 0.06804 - 3 28.542 - 1
February 0.05787 - 2 32.985 - 2 0.08246 - 3 62.180 - 3 0.05741 - 1 32.445 - 1
March 0.03457 - 1 27.726 - 2 0.04449 - 3 35.124 - 3 0.04151 - 2 18.665 - 1
April 0.04697 - 2 20.897 - 1 0.04486 - 1 21.965 - 2 0.06327 - 3 56.990 - 3
May 0.09331 - 2 49.839 - 1 0.11223 - 3 78.759 - 3 0.08528 - 1 57.473 - 2
June 0.04887 - 1 17.687 - 1 0.12076 - 3 138.17 - 3 0.11040 - 2 137.75 - 2
July 0.04669 - 1 14.438 - 1 0.15418 - 3 215.01 - 3 0.13195 - 2 204.35 - 2
August 0.05288 - 1 52.837 - 2 0.10172 - 3 61.975 - 3 0.06008 - 2 44.683 - 1
September 0.06236 - 1 45.863 - 1 0.12146 - 3 106.67 - 3 0.07685 - 2 85.443 - 2
October 0.04532 - 1 44.136 - 2 0.05931 - 3 40.118 - 1 0.04583 - 2 54.460 - 3
November 0.04528 - 2 19.942 - 1 0.03913 - 1 26.833 - 2 0.04754 - 3 46.605 - 3
December 0.04771 - 1 44.229 - 2 0.08203 - 3 134.60 - 3 0.05907 - 2 43.637 - 1
Winter 0.04111 - 1 44.347 - 1 0.05046 - 3 147.85 - 3 0.04505 - 2 44.985 - 2
Spring 0.04428 - 1 45.411 - 1 0.04632 - 2 48.439 - 2 0.05466 - 3 98.811 - 3
Summer 0.03084 - 1 34.051 - 1 0.12672 - 3 546.19 - 3 0.10961 - 2 402.35 - 2
Autumn 0.04100 - 1 65.919 - 1 0.05017 - 3 68.270 - 2 0.04313 - 2 84.304 - 3
Annual 0.06197 - 1 621.960 - 2 0.07228 - 3 697.53 - 3 0.06576 - 2 587.39 - 1
R2 0.999660 - 1 0.999644 - 2 0.999105 - 3
RMSE 0.02087 - 1 0.0213655 - 2 0.033887 - 3

followed theoretical CDF values can be seen in Figure 5. Based on SD values of monthly wind speed data,

the Burr distribution was more successful between May and September. However, the Weibull distribution

performed better during the remaining months. During the winter, the Weibull model had the lowest SD (0.83
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m/s); during the summer (the windiest season), the Burr distribution had the lowest SD (1.31 m/s). This

situation is illustrated in Figure 6. From this figure, it is clear that if the wind speed increases in the stable

weather conditions, the Burr distribution can give the best fit-to-wind speed data. Based on 3 distribution

models, 4 different goodness-of-fit tests were applied; the results are given in Table 8. Comparing the suitability

test results (K − S , R2 , chi-squared, and RMSE), the best distribution function can be selected according to

the highest value of R2 and the lowest K−S , chi-squared, and RMSE values. From Table 8, the K−S , and R2

values for the Burr distribution are 0.06197 (Rank 1) and 0.999660 while the chi-squared and RMSE values are

621.960 and 0.02087, respectively. The Weibull K − S , chi-squared, R2 , and RMSE values are 0.06576 (Rank

2), 587.39, 0.999105, and 0.033887, respectively. According to RMSE and R2 results, the Burr distribution

ensures a close fit throughout the empirical distribution when compared to the other models. As mentioned

in section 1, there have been only limited studies in Antakya so far. When our results are compared with the

studies conducted by Celik, and Bilgili and Sahin, the assessment process can be divided into 3 parts. In the

first part, the descriptive statistics of this study and the results of Celik, and Bilgili and Sahin are similar with

respect to the mean values of the data. In the second part, based on wind data fitting procedures, Celik, and

Bilgili and Sahin used Weibull and/or Rayleigh distributions and proposed the Weibull distribution in all cases.

However, we implemented the untested Burr and generalized gamma models, as well as the tested Weibull, to

determine the wind profile of Antakya. We found that Burr had better adaptability than the Weibull model

based on goodness-of-fit test values. Finally, concerning mean power densities, the results from the studies by

Bilgili and Sahin differed from our own. Their investigations were achieved using the Wind Atlas Analysis and

Application Program (WAsP). The WAsP runs based on wind turbine types. However, details of the turbine

used in their study are not given. Therefore, the comparison is not equitable. The results of Celik and our

study, on the other hand, are well-matched.

3.3. Wind power assessment

In this work, due to the region’s wind profile, the small-scale Enercon E-33 (330 kW) wind turbine was selected

to estimate power production. The performance evaluation of the turbine was done with the wind data at 50

m HAGL. The turbine was also placed in the same location as the mast to improve the verifiability of the

results. The wind turbines characterization results, observed–estimated seasonal energy producing (MWh), and

Cf values can be seen in Figure 7. It is important to underline that, for the 4 seasons, the highest and the

lowest energy was produced in summer and winter, respectively, with 233 MWh (33%) and 21 MWh (2%).

Choosing the right turbine design and size may support applications requiring less electricity, such as water

pumps, battery charging units, and local off-grid consumption.
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4. Conclusions

In this study, wind characteristics of the Antakya region of Hatay Province were statistically analyzed. Perfor-

mances of the probability models were compared to the measured monthly and yearly wind speed values. The

results can be summarized as follows:

a) The lowest–highest MWS (at 10 m and 50 m HAGL) were 4.39–1.26 and 7.19–2.06 m/s, respectively.

b) The mean standard deviation of the Burr frequency distribution was about 1.15 m/s for the annual

MWS. The values of the Weibull and generalized gamma distributions were 1.25 and 1.28, respectively. The

most likely incoming wind directions were northeast (45◦) and south–southwest (202◦) throughout the study

period.

c) The Weibull and the generalized gamma distributions need be taken into consideration in the Antakya

region. For power production, due to the low SD and best-fitting curve for high wind speeds (see Figure 4), the

Burr distribution can be preferred for all seasons.

d) The highest mean power density value was 212.46 W/m2 in August and the lowest average power

density was 5.38 W/m2 in December (at 50 m HAGL). The best period for wind power production was during

the summer months.

These results show that, overall, the potential to generate electricity from wind in Antakya is low; wind

power cannot be used alone to meet all the energy needs in the region. However, this study might help to

encourage the utilization of small-scale wind energy projects in Antakya, particularly for electrical applications

in rural areas, such as traffic warning signs, street lighting, wireless Internet gateways, battery chargers, and

water pumps.
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