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Abstract

We describe a statistical method for the characterization of genomic aberrations in single nucleotide polymorphism

microarray data acquired from cancer genomes. Our approach allows us to model the joint effect of polyploidy,

normal DNA contamination and intra-tumour heterogeneity within a single unified Bayesian framework. We

demonstrate the efficacy of our method on numerous datasets including laboratory generated mixtures of normal-

cancer cell lines and real primary tumours.

Background

Single nucleotide polymorphism (SNP) genotyping

microarrays provide a relatively low-cost, high-through-

put platform for genome-wide pro ling of DNA copy

number alterations (CNAs) and loss-of-heterozygosity

(LOH) in cancer genomes. These arrays have enabled

the discovery of genomic aberrations associated with

cancer development or prognosis [1-4] and two recent

studies, in particular, have examined 746 cancer cell

lines [5] and 26 cancer types [6] revealing much about

the landscape of the cancer genome. However, whilst

numerous robust computational methods are available

for the detection of copy number variants (CNVs) in

normal genomes [7-11]; the approaches applied to can-

cers are often sub-optimal due to data properties that

are unique or more pronounced in cancer.

Potential difficulties in the analysis of SNP data from

cancers have been considered since the earliest SNP

array based cancer studies [12-14] with the principle

obstacles being (1) variable tumor purity (normal DNA

contamination), (2) intra-tumor genetic heterogeneity,

(3) complex patterns of CNA and LOH events, and (4)

genomic instability leading to aneuploidy/polyploidy.

Moreover, these issues are also confounded by pre-

viously well-described technical artifacts associated with

SNP arrays such as: signal variation due to local

sequence content [15] and, complex noise patterns due

to variable sample quality and experimental conditions

[16].

Dedicated cancer analysis tools that compensate for

some of these factors have recently begun to emerge

[17-27] but there is currently no single coherent statisti-

cal model-based framework that unifies and extends all

the principles underlying these many methods. Here, we

propose such a framework and illustrate, on a number

of different datasets, the improvements in terms of

robustness and versatility that can be gained in cancer

genome pro ling, particularly in large-sample cancer stu-

dies involving the investigation of different molecular

sub-types and the use of modern high-resolution SNP

arrays (greater than 500,000 markers). Our methods are

implemented in a piece of software we call OncoSNP.

Characteristics of SNP data acquired from cancer

genomes

We begin with a brief examination of the characteristics

of SNP array data acquired from cancer genomes (for a

more thorough review of SNP array analysis and
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methodology, see [28-31]). SNP array analysis produces

two types of summary measurement for each SNP

probe: (i) the Log R Ratio (LRR) which is a measure

related to total copy number, analogous to the log ratio

in array comparative genomic hybridization (aCGH)

experiments; and (ii) the B allele frequency (BAF),

which measures the relative contribution of the B allele

to the total signal (here we use A and B as generic labels

to refer to the two alternative SNP alleles). Normaliza-

tion methods to extract these measurements for the Illu-

mina and Affymetrix SNP genotyping platforms have

been previously described [32,33] but is not a subject we

treat in detail in this article. In this paper, our examples

are based on the Illumina platform and we primarily use

the default normalization offered by Illumina’s proprie-

tary BeadStudio/GenomeStudio software or the tQN

normalization [33] where appropriate. However, the

methods described are not intrinsically tied to the Illu-

mina platform and we are actively working to transfer

these techniques for use with the Affymetrix platform.

Figure 1 (top panel) depicts data for chromosome 1 of

a breast cancer cell line (HCC1395, ATCC CRL-2324)

and a EBV transformed lymphoblastoid cell line

(HCC1395BL, ATCC CRL-2325) derived from the same

patient from a previously published dataset [24]. Down-

ward shifts in the Log R Ratios indicate DNA copy

Figure 1 Example cancer SNP data. (Top panel) SNP data showing the distribution of Log R Ratio (LRR) and B allele frequencies (BAF) values

across chromosome 1 for a cancer cell line (HCC1395) and its matched normal (HCC1395BL). The normal sample is characterized by a typical

diploid pattern of zero mean LRR (copy number 2) and BAF values distributed around 0, 0.5 and 1 (genotypes AA, AB and BB) with occasional

aberrations due to copy germline number variants (CNV). The cancer cell line consists of complex patterns of LRR and BAF values due to a

variety of copy number alterations and loss-of-heterozygosity events. (Bottom panel) SNP data is shown for a single copy deletion and

duplication on chromosome 21 for various normal-cancer cell line dilutions. In the presence of normal DNA contamination, the LRR signals for

the deletion and duplication are diminished in magnitude and the distribution of the BAF values reflects the aggregated effect of mixed normal

and cancer genotypes at each SNP. Note - the Log R Ratio values are smoothed and thinned for illustrative purposes.
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number losses relative to overall genome dosage, whilst

copy number gains cause upward shifts. The BAF tracks

changes in the relative fractions of the B allele due to

CNA and/or LOH.

In the non-cancer (normal) lymphoblastoid cell line,

the LRRs are distributed around zero corresponding to

DNA copy number 2; whilst the BAFs are clustered

around values of 0, 0.5 and 1 that correspond to the

diploid genotypes AA, AB and BB. Small aberrations in

the normal data can be observed due to germ line

CNVs but the genome is otherwise stable. The cancer

cell line presents a much more complex scenario with

extensive genomic rearrangements leading to consider-

able variation in the SNP data. This is not an atypical

scenario for cancers which often feature large numbers

of focal aberrations and whole or partial chromosomal

copy number changes although this can vary consider-

ably depending on the cancer type and the stage of the

disease. The question we address here is: how do we

translate this SNP data into actual copy number and

LOH calls?

Effects of polyploidy

One distinctive difference between the normal and can-

cer datasets is that the LRR values are not directly com-

parable. Experimental protocols for SNP arrays

constrain the amount of DNA, not the number of cells,

to be the same for each sample assayed. For example, a

purely metalloid genome containing no other chromoso-

mal alterations could not be distinguished from a

diploid genome, as the same mass of genomic material

would be hybridized on to the SNP array. The situation

is further compounded by standard normalization meth-

ods that transform the probe intensity data on to a com-

mon reference scale or “virtual diploid state” [34] in

order to correct for between-array or cross-sample

variability.

The result is that the (zero) baseline of the LRR for

the cancer cell line or tumor sample does not corre-

spond to a normal diploid copy number but to the

average copy number (ploidy) of the sample. In order

to determine absolute copy number values, a correct

baseline for the interpretation of the LRR values must

be determined but this is a challenging problem since,

for any particular cancer sample, the ploidy is generally

unknown a priori, maybe a fractional value and varies

from one cancer to the next. Methods to tackle base-

line uncertainty for polyploid tumors have recently

been developed [17,21] but these are only effective in

the absence of normal DNA contamination and intra-

tumor heterogeneity making them most effective for

use with cancer cell lines and very high purity tumor

samples.

Normal contamination and intra-tumor heterogeneity

Normal DNA contamination can also be a significant

barrier to the correct interpretation of SNP data as illu-

strated in Figure 1 (bottom panel). The SNP data shown

comes from various artificial mixtures of the cancer cell

line and paired normal cell line [33] for a single-copy

deletion and duplication on chromosome 21. The SNP

array measures both the contribution of the normal and

tumor genotypes hence, the B allele frequencies for the

deletion and duplication appear as four bands, ref1ecting

the mixed normal-tumour genotypes AA/A, AB/A, AB/

B or BB/B for the single-copy deletion and AA/AAA,

AB/AAA, AB/BBB or BB/BBB for the single-copy dupli-

cation. Moreover, as the normal DNA content increases,

the magnitude of the shifts in the LRR values associated

with the deletion and duplication are reduced.

It is of interest to note that whilst the presence of

normal DNA affects SNP data globally, localized varia-

tion can also exist due to intra-tumor heterogeneity and

aggregation from multiple co-existing cancer cell clones

each harboring their own distinct pattern of genomic

aberrations. These mixed signals must be deconvolved

in order to ascertain the underlying somatic changes

and a number of methods [20,22,24-27] have been pro-

posed to tackle the issue of normal DNA contamination.

These approaches often assumed the absence of the

effects of polyploidy described previously and therefore

are principally suited to the analysis of normal DNA

contaminated and near-diploid tumor samples.

Results and Discussion

Model overview

The development of our method, implemented in

OncoSNP, has been motivated by the need to address

both the effects of normal DNA contamination and

polyploidy simultaneously. Normal tissue contaminated

polyploid tumors are frequently observed in studies of,

for example, colon or breast cancers and, at the time of

writing, only one method Genome Alteration Print [23],

based on pattern recognition heuristics, has been devel-

oped to manage both these highly important issues in

SNP array based cancer analysis. Our approach differs

from previous methods in that it attempts to tackle the

issues of normal DNA contamination, intra-tumor het-

erogeneity and baseline ploidy normalization artifacts

jointly within a coherent statistical framework. The

model assumes that, at each SNP, each tumor cell of a

given specimen either retains the normal constitutional

genotype or possesses an alternative but, common,

tumor genotype. However, in contrast to other methods,

we explicitly parameterize the proportion of cells that

possess the normal genotype at each SNP. This propor-

tion is determined by a genome-wide fraction attributed
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to normal DNA contamination and the proportion of

tumor cells that have remained unchanged at that SNP

which is allowed to vary along the genome thus allowing

for intra-tumor heterogeneity (the underlying statistical

model is illustrated in Figure 2). We also include a LRR

baseline adjustment parameter that allows inference of

the unknown tumor ploidy in a statistically rigorous

manner.

Bayesian methodology is applied to impute the

unknown normal-tumor genotypes, the normal genotype

proportion and to assign a probabilistic score of each

SNP belonging to one of twenty-one different “tumor

states” (Table 1). Experimental noise is accounted for

using a flexible semi-parametric noise (mixture of Stu-

dent t-distributions) model that is able to adaptively fit

complex noise distributions to the SNP data, and our

method further adjusts for wave-like artifacts correlated

to local GC content [35].

Our MATLAB implementation typically requires

between 0.5-3 hours processing per sample dataset

(containing approximately 600,000 probes) depending

on the run-time options specified. A variety of user

settings are provided to allow the performance of the

method to be tuned to the particular application and

longer processing times are required where little prior

information is provided and the method is required to

learn all characteristics directly from data. As the

method analyzes each sample independently, parallel

processing of multiple samples simultaneously is trivi-

ally implemented.

Polyploidy correction

In order to demonstrate the ability of OncoSNP to cor-

rectly adjust the baseline for the Log R Ratio to the actual

baseline for aneuploid/polyploid samples, we analyzed

SNP data for ten well-characterized cancer cell lines

(Table 2). Karyotype information for each cell line were

retrieved from the online database for the American

Type Culture Collection (ATCC) or previous karyotype

studies [36,37].

Figure 3(a-c) shows examples of the baseline adjust-

ment for three cancer cell lines focusing on selected

chromosomes. In each case, OncoSNP adjusts the base-

line to center on the regions of allelic balance (BAFs

equal to 0.5) corresponding to copy number 2 enabling

the correct absolute copy number values to be deter-

mined. Note that it is the allele-specific information in

the B allele frequencies that inform us of the baseline

error, and variation in the intensity-based LRR does not

yield this information on its own.

Figure 2 Illustrating the statistical model. (a) The tumor sample consists of DNA contributions from an unknown number of clones (here, we

illustrate three clones) and normal cells in different proportions. Each clone has its own set of tumor genotypes which are derived from the

normal genotypes by the loss or duplication of alleles. (b) Our statistical model assumes that, at each locus, there exists a normal and a

common tumor genotype. OncoSNP estimates the normal and common tumor genotype and the proportion of the sample explained by each

genotype from the SNP data. The situation depicted at SNP 5 involves clones with different tumor genotypes - this is not considered under our

model.

Yau et al. Genome Biology 2010, 11:R92

http://genomebiology.com/content/11/9/R92

Page 4 of 15



Overall, Figure 3d shows that a strong linear relation-

ship exists with near-diploid cell lines (SW837 and

HL60) requiring less baseline adjustment compared to

polyploid cell lines. This behavior is encouraging since

we might expect the degree of baseline adjustment

required to scale linearly with chromosome number. As

a result, OncoSNP was able to correctly estimate the

chromosome number for each cancer cell line.

Analysis of normal-cancer cell line mixtures

We applied OncoSNP to three datasets each containing

mixtures of normal and cancer cell line DNA. SNP data

was also generated in-house for 0:100, 25:75 and 50:50

normal-cancer cell lines mixtures (mixing ratios by

mass) for a hypo-diploid (SW837) and triploid (SW403)

colon cancer cell line. As paired normal cell lines were

not available for these cancer cell lines, we used an non-

paired normal DNA sample and filtered out non-compa-

tible SNPs (the filtering method is described in detail in

Supplementary methods in Additional file 1) to generate

pseudo-paired normal-cancer cell line mixtures. We also

analyzed the 0:100, 21:79 and 50:50 mixtures of the

HCC1395/HCC1395BL matched normal-cancer cell

lines from [24].

Figure 4 shows results from an analysis of chromo-

some 1 of the mixture series for SW837. OncoSNP

identifies the p-arm deletion successfully in all the sam-

ples even as the level of normal contamination increases.

GenoCN and Genome Alteration Print (GAP) show less

robustness particularly at the higher normal contamina-

tion level and, in the case of GAP for the 25:75 mixture,

it incorrectly predicts that the sample is tetraploid.

Additional plots for all three cell line mixtures are given

in Additional file 2. Figure 5 shows that overall,

OncoSNP estimates of chromosome number, copy

Table 1 OncoSNP tumor states

Tumor states

Tumor state Tumor copy number Allowable tumor-normal genotypes Description

1 0 (-, AA), (-, AB), (-, BB) Homozygous deletion

2 1 (A, AA), (A, AB), (B, AB), (B, BB) Hemizygous deletion

3 2 (AAAA, AA), (AAAB, AB), (ABBB, AB), (BBBB, BB) Normal

4 3 (AAA, AA), (AAB, AB), (ABB, AB), (BBB, BB) Single copy duplication

5 4 (AAAA, AA), (AAAB, AB), (ABBB, AB), (BBBB, BB) 4n monoallelic amplification

6 4 (AAAA, AA), (AABB, AB), (BBBB, BB) 4n balanced amplification

7 5 (AAAAA, AA), (AAAAB, AB), (ABBBB, AB), (BBBBB, BB) 5n monoallelic amplification

8 5 (AAAAA, AA), (AAABB, AB), (AABBB, AB), (BBBBB, BB) 5n unbalanced amplification

9 6 (AAAAAA, AA), (AAAAAB, AB), (ABBBBB, AB), (BBBBBB, BB) 6n unbalanced amplification

10 6 (AAAAAA, AA), (AAAABB, AB), (AABBBB, AB), (BBBBB, BB) 6n unbalanced amplification

11 6 (AAAAAA, AA), (AAABBB, AB), (BBBBB, BB) 6n unbalanced amplification

12 2 (AA, AA), (AA, AB), (BB, AB), (BB, BB) 2n somatic LOH

13 3 (AAA, AA), (AAA, AB), (BBB, AB), (BBB, BB) 3n somatic LOH

14 4 (AAAA, AA), (AAAA, AB), (BBBB, AB), (BBBB, BB) 4n somatic LOH

15 5 (AAAAA, AA), (AAAAA, AB), (BBBBB, AB), (BBBBB, BB) 5n somatic LOH

16 6 (AAAAAA, AA), (AAAAAA, AB), (BBBBBB, AB), (BBBBBB, BB) 6n somatic LOH

17 2 (AA, AA), (BB, BB) 2n germline LOH

18 2 (AAA, AA), (BBB, BB) 3n germline LOH

19 2 (AAAA, AA), (BBBB, BB) 4n germline LOH

20 2 (AAAAA, AA), (BBBBB, BB) 5n germline LOH

21 2 (AAAAAA, AA), (BBBBBB, BB) 6n germline LOH

Description of the 21 tumor states showing corresponding copy numbers and genotypes. OncoSNP assigns a score of each SNP being in each of the twenty-one

tumor states.

Table 2 Cancer cell lines

Cancer cell lines

Cell line Chromosome number
(modal, range)

Reference

HL60 46 (44-46) Liang et al. (1999)

HT29 70 (69-73) Adbel-Rahman et al. (2000)

SW1417 70 (66-71) Adbel-Rahman et al. (2000)

SW403 64 (60-65) Adbel-Rahman et al. (2000)

SW480 58 (52-59) Adbel-Rahman et al. (2000)

SW620 48 (45-49) Adbel-Rahman et al. (2000)

SW837 38 (38-40) Adbel-Rahman et al. (2000)

LIM1863 80 (66-82) Adbel-Rahman et al. (2000)

MDA-MB-
175

84 (82-89) ATCC

MDA-MB-
468

64 (60-67) ATCC

A list of cancer cell lines analyzed and estimates of their chromosome number

retrieved from the literature.
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number and LOH from the mixtures remained highly

self-consistent even with the addition of the normal

DNA and were more robust than the other methods

tested. For the colon cancer cell lines, the chromosome

numbers predicted by OncoSNP (40 and 64 for SW837

and SW403 respectively) matched known karyotype

information (SW837, range 38-40; SW402, range 60 to

65) [36].

Whilst it should be stressed that careful sample prepara-

tion should keep normal contamination to a minimum

in many real studies of primary tumors, the reliability of

OncoSNP, up to 50% tumor purity, is nonetheless reas-

suring as clinical estimates of tumor purity can be

inconsistent with observed genotyping data [25].

Model comparison

In order to demonstrate the utility of integrating both

normal DNA contamination and LRR baseline correc-

tion within a single analysis model; we examined SNP

data acquired from laboratory generated normal-cancer

cell lines mixtures to simulate normal contamination of

tumor samples.

The data was analyzed using four variants of our

model: a germline model, in which we assume no base-

line adjustment is required and no normal DNA con-

tamination exists; a ploidy-only model, in which we

perform baseline adjustment only; a normal contamina-

tion-only model, where we allow for normal DNA con-

tamination but no baseline adjustment and our full,

Figure 3 Estimating baseline Log R Ratio adjustments due to ploidy. OncoSNP Log R Ratio baseline adjustments (red) for cancer cell lines

(a) HL60 (Chr10), (b) HT29 (Chr3) and (c) SW1417 (Chr8). HL60 has a near-diploid karyotype and OncoSNP has correctly identified that no Log R

Ratio baseline adjustment is required. HT29 and SW1417 have complex polyploid karyotypes and transformation of the SNP data to a virtual

diploid state needs to baseline ambiguity for the Log R Ratio. For example, in (b) and (c), regions of allelic balance with negative Log R Ratios

are identified. OncoSNP correctly locates the true baseline level for the Log R Ratio. In (d) the estimated Log R Ratio baseline adjustment for the

ten cancer cell lines analyzed is found to show a strong linear correlation to the modal chromosome number of each cell line. Baseline

adjustments are standardized for comparison against the Log R Ratio level associated with copy number 3 as the SNP data were acquired from

different versions of the Illumina SNP array.
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integrated OncoSNP model. It should be noted that all

the model variants we consider are nested within the

full model; and are obtained by either fixing parameters

or specifying strict prior probability distributions.

Figure 6 shows genome-wide copy number profiles

attained from the four variants of our model on the cell

line mixtures. The analysis of the hypo-diploid cell line

SW837 mixtures showed that the germline- and ploidy-

only models, which do not take into account normal

DNA contamination, produced substantially different

profiles as the level of normal DNA contamination was

altered. Only the normal- and full OncoSNP models

were capable of reproducing genome-wide copy number

profiles consistently with minimal discrepancy.

The analysis of the triploid SW403 cell line mixture

series highlights the particular strengths of our model.

The correct interpretation of the SNP data requires con-

sideration of the underlying triploid nature of the cancer

cell line and the varying levels of normal DNA contami-

nation. As the germline-, normal- and ploidy-only mod-

els are only able to compensate for only one of these

factors but not both, there are discrepancies in the gen-

ome-wide profiles between samples. In contrast, the full

OncoSNP model reproduces genome-wide copy number

profiles for each mixture sample with relatively greater

consistency. These results motivate the utility of infer-

ring both baseline ploidy and normal contamination

within an integrated framework since the ploidy status

and tumor purity of actual clinical cancer samples are

often unknown.

Microdissected tumor samples

We validated our approach to determine stromal con-

tamination in an experimental setting by studying SNP

data for three primary breast tumors (Cases 114, 601

and 3,364). For each case, we analyzed data acquired

Figure 4 Example analysis of the normal-cancer cell line (SW837) mixture series. Copy number and LOH state classifications for

chromosome 1 of the colon cancer cell line SW837.
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from microdissected and non-dissected tumor material

such that, in an ideal scenario, predicted copy number

and LOH profiles obtained from the two samples should

be identical. Visual inspection of the SNP data suggests

that all three tumors are triploid and a baseline Log R

Ratio adjustment is required. Genome-wide copy num-

ber profiles for each material type and case are shown

in Figure 7 (more detailed plots are given in Additional

file 3). Qualitatively, the genome-wide copy number pro-

files produced by OncoSNP show the least discrepancy

compared to the other methods tested. It should be

noted that visual inspection of the SNP data for the

non-dissected material for cases 601 and 3,364 sug-

gested that they were highly contaminated by stromal

tissue and were reinforced by normal DNA content esti-

mates of 70% and 60% by OncoSNP, compared to 30%

and 20% in the microdissected material. The ability of

OncoSNP to recover so many gross profile features

despite this level of stromal contamination demonstrates

its ability to be robust in even the most extreme circum-

stances. For case 114, the non-dissected and microdis-

sected material were estimated to contain 30% and 10%

normal contamination.

Quantitatively, the proportion of SNPs showing copy

number classification discrepancies between the

microdissected and non-dissected sample analysis were

7.6%, 21.9% and 19.3% for cases 114, 601 and 3,364

respectively. This is compared to 6.4%, 52.1% and 27.0%

with GenoCN and 8.5%, 86.2% and 99.0% with GAP.

Note that whilst GenoCN showed strong reproducibility

for case 114, it misclassified the ploidy in both instances

as its operation is limited to diploid tumors.

Statistical uncertainty

A feature of our statistical framework is the ability to

highlight and explore ambiguity in the interpretation

of SNP data from contaminated polyploid tumor sam-

ples. Figure 8 shows a likelihood contour plot derived

from a cancer sample whose ploidy status and normal

DNA content are unknown. The likelihood plot gives

the probability of the SNP data associated with differ-

ent possibilities for the normal DNA content and LRR

baseline adjustments. In this example, the likelihood

possesses three modes each corresponding to a differ-

ent, but compatible, biological interpretation of the

data. The likelihood associated with each of the three

modes is very similar and in the absence of external

karyotype information, or prior knowledge of the

tumor ploidy or the level of normal DNA contamina-

tion, each of these interpretations is entirely plausible.

Figure 5 OncoSNP analysis of three normal-cancer cell line mixture series. Chromosome number estimates and copy number and LOH

state misclassification rates for three normal-cancer cell line mixture series. OncoSNP produces the greatest self-consistency of the three

methods tested. Red - OncoSNP, Green - GenoCN, Blue - GAP.
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Our statistical model allows us to explore this two-

dimensional parameter space enabling each of these

data interpretations to be considered in a statistically

rigorous manner. In contrast, methods that restrict

themselves to consideration of normal DNA contami-

nation or baseline adjustment only will only have

access to particular one-dimensional planes which may

lead to alternative interpretations of the SNP data

being missed. Although we anticipate that many can-

cers should exhibit a sufficient level of genomic altera-

tion to make the data informative about tumor ploidy

and purity, a consideration of alternate ploidy-purity

levels maybe an important factor in the characteriza-

tion of particular cancer sub-types that may not exhibit

complex changes.

Conclusions

The development of our method has been motivated by

an on-going genome-wide study of one-thousand paired

normal-colorectal cancers. The pro ling of genomic

aberrations in these cancers is an important step in

identifying genetic abnormalities involved in disease

initiation and progression as well as patterns of somati-

cally-acquired alterations associated with particular clini-

cal phenotypes and therapeutic response. The genomic

features of colorectal cancer form a particularly useful

platform for methods development since colon tumor

samples frequently contain normal DNA contamination

and there exist at least two well-characterized molecular

sub-types: the microsatellite-stable (MSS) and microsa-

tellite-unstable (MSI) groups. MSI colon cancers are

Figure 6 A comparison of genome-wide copy number estimates using four variants of the OncoSNP model. Heatmaps are shown for

genome-wide copy numbers from four variants of our model: (i) Germline model involving no Log R Ratio baseline correction or normal

contamination, (ii) Ploidy-only model estimation of baseline correction used, (iii) Normal-only model estimation of normal DNA contamination

used and (iv) Full model the complete OncoSNP model incorporating both baseline and normal DNA contamination estimation. The full model

is able to accurately reproduce the same copy number profile for both cell lines (SW837/SW403) even in the presence of increasing levels of

normal DNA contamination. If normal contamination or baseline correction estimation is not used incorrect copy number profiles maybe given.
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associated with a near-diploid karyotype, with compara-

tively few structural rearrangements; whilst MSS colon

cancers are characterized by extensive structural rear-

rangements and frequently exhibit a triploid or tetra-

ploid karyotype [38]. As our approach considers the

combined effects of ploidy changes and tumor heteroge-

neity jointly within an integrated statistical framework,

we have been able to highly automate the process of

analyzing SNP data from a large cohort of colon cancers

and robustly operate over a range of scenarios posed by

each of the molecular sub-types.

Fundamental to the success of our approach is the rig-

orous exploitation of allele-specific information for esti-

mating normal DNA contamination and tumor ploidy.

Historically, one of the key advantages of SNP arrays

over aCGH technologies has been the availability of

allele-specific information to allow the detection of

LOH events. In our method, we have utilized this sec-

ond axis of information to determine absolute copy

number and predict tumor purity that would be challen-

ging to implement with the one-dimensional datasets

produced by aCGH alone.

Recently, next generation sequencing (NGS) technolo-

gies have proven to be a powerful new force in the

toolkit of cancer geneticists allowing cancer genomes to

be probe at greater resolutions and more levels of detail

than ever before [39-42]. Nonetheless, SNP arrays are

likely to remain a useful analysis tool in cancer studies

for the foreseeable future as SNP arrays remain more

cost- and resource-effective as a means of sampling

large numbers of tumors. In addition, as short-read

sequencing technologies are not immune to many of the

issues that we have discussed. For instance, [42] used

pathology review to estimate tumour cellularity in their

primary tumour and the brain metastasis and xenograft

samples and adjusted sequence read counts accordingly.

The integration and reconciliation of SNP data with

libraries of short-read sequence data would allow more

Figure 7 Genome-wide copy number profiles of primary breast tumors. Genome-wide copy number profiles for three primary breast

tumors (non-dissected and microdissected) using OncoSNP, GenoCN and Genome Alteration Print (GAP).
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accurate determination of normal DNA contamination

and allow the use of SNP data as a sca old upon which

to reconstruct the more detailed and low-level cancer

sequence data. It may also be possible to adapt the

methods presented here for use for short read sequen-

cing platforms. One possible approach is to model the

allele-specific read counts at known SNP locations

directly and modify the emission distribution in the

Hidden Markov model from a continuous to a discrete

distribution (for example Poisson or Negative-Binomial).

Alternatively, the existing data model can be maintained

and the read counts transformed into near-continuous

measures with the Log R Ratio represented as the log

ratio of the total read depth and a (local) normalizing

constant derived from, say, a matched germline sample

and the B Allele Frequency calculated from the ratio of

the number of reads containing the B allele to total read

depth. However, we would advise that any attempts to

implement these techniques for application to sequen-

cing technologies should be supported by extensive con-

trol and calibration experiments of the type described in

this paper and by previous works.

In conclusion, we have described a novel computa-

tional tool (OncoSNP) for genomic copy number and

LOH pro ling of heterogeneous tumors using SNP

arrays. Using formal statistical modeling we are able to

jointly consider a number of complex factors arising in

SNP array-based tumor analysis. In a number of experi-

ments, we demonstrated the ability of our method to

give consistent results in the presence of both tumor

heterogeneity and unknown baseline ploidy using both

cancer cell lines and clinical samples. We believe that

Figure 8 Analysis of a tumor sample with an unknown ploidy status and normal DNA contamination. A likelihood contour plot shows

that there are three modes each corresponding to an alternative explanation of the SNP data: (a) the tumor has near-diploid karyotype and

contaminated with 50% normal DNA content, (b) the tumor has a tetraploid karyotype with 60% normal DNA content and (c) the tumor has a

near-triploid karyotype with negligible normal DNA content. The maximum log-likelihood at each mode is very similar.
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our method could substantially improve the analysis of

tumor SNP data particularly in large studies of clinical

samples where there may be exist considerable variation

in the underlying genetics as well as factors such as

tumor purity and sample quality.

Materials and methods

Materials

Dilution series

Illumina HumanCNV370-Duo BeadChip Infinium SNP

data for dilution series of 12 mixtures of cancer cell line

(HCC1395) mixed with its paired normal cell line

(HCC1395BL) were downloaded from the NCBI Gene

Expression Omnibus accession [GEO:GSE11976]. We

excluded chromosome 6 and 16 from analysis due to

copy genomic aberrations present in the normal cell line

HCC1395BL.

Cancer cell lines

Illumina HumanHap300 data for the promyelocytic leu-

kemia cancer cell HL-60 and colon cancer cell line

HT-29 were obtained from Illumina, and Human-610

Quad SNP genotyping data for the colon cancer cell

lines SW403, SW480, SW620, SW837, SW1417 and

LIM1863 were generated at the Ludwig Institute of Can-

cer Research using standard processing protocols. The

genotyping data for breast cancer cell lines MDA-175

and MDA-468 were downloaded from the NCBI Gene

Expression Omnibus accession [GEO:GSE18799] [23].

Primary breast tumors

Three breast tumors (cases 114, 601 and 3,364) that

had not received non-neoadjuvant therapy were ana-

lyzed in detail using material derived from microdis-

section. For each case, material containing pure tumor

and pure stroma cells respectively was microdissected

and compared to data obtained from surgically

obtained material from the same tumors. Case 114 was

of Luminal B type (23 mm tumor, moderately differen-

tiated infiltrating ductal carcinoma with an extensive

in-situ component. Node +ve, ER +ve (6.8 fm/mg pro-

tein), EGFR -ve (7.8 fm/mg protein)). Case 601 (20

mm 30 mm tumor, grade 3 with intraductal in-situ ca.

and in filtrating ductal carcinoma, node +ve, ER -ve

(1.5 fm/mg protein), Her2 +ve (histoscore of 3), EGFR

+ve (histoscore of 208)) was classified as ERBB2 posi-

tive based on expression microarray data with a frac-

tional rank of 0.982, Case 3,364 was 25 mm grade 3

infiltrating ductal carcinoma, ER positive (8 fm/mg

protein), PR positive (histoscore 8/8), Her2 positive

(histoscore 3+, one of ten axillary nodes +ve). For each

case, DNA was extracted from microdissected stroma

and tumor, as well as the original non-dissected sam-

ple and analyzed using Illumina Human-610 Quad

SNP arrays applying standard protocols.

Data processing

Genome Alteration Print was downloaded [43] and used

to analyze all datasets using default settings and the

highest ranked copy number and LOH predictions used

for comparisons. However, for the cancer cell line dilu-

tion series, we re-used the results that had previously

been generated by [23] and made available on the afore-

mentioned website.

GenoCN v1.06 was downloaded [44] and used with

default settings and stromal contamination settings on

for all datasets generated using Illumina Infonaut II SNP

arrays. Adjusted GenoCN parameters for the Log R

Ratio levels were used for Infonaut HD SNP array pro-

cessing and in these instances we used the same levels

that we specified for OncoSNP. The copy number and

LOH predictions from the Viterbi sequence were used

for comparisons.

OncoSNP was run on all datasets using 15 EM itera-

tions and with both stromal and intra-tumor heteroge-

neity options. In all cases, the ploidy prediction with the

highest maximum likelihood was chosen and the Viterbi

sequence of tumor states used for comparisons. We fil-

tered detected aberrations using a Log Bayes Factor of

30.

Statistical model

A complete description of our statistical model is pro-

vided in Supplementary Information in Additional file 1.

Let xi denote the tumor state at the i-th probe location

and (xi, n, xi, t) denote the associated normal and tumor

copy numbers. Furthermore, let zi = (zi, n,zi, t) denote the

B allele count for the normal and tumor genotype respec-

tively. The combinations (zi, n, (xi, n) and (zi, t, xi, t) fully

define the normal and tumor genotypes respectively. The

tumor state at each probe denotes the allowable combi-

nations of normal-tumor genotypes at that location as

shown in Table 1.

Let π0 denote the normal DNA fraction of the tumor

sample due to stromal contamination and  = ={ } i i
n

1

denote the proportion of tumor cells having the normal

genotype at each probe. The data y y= ={ }i i
n

1
consists

of a set of two-dimensional vectors yi = [ri, bi]′ whose

elements correspond to the Log R Ratio and B allele fre-

quency respectively.

Given (x, z, π, π0) the data is assumed to be distribu-

ted according to a (K + 1)-component mixture of Stu-

dent t-distributions, where ki indicates the mixture

component assignment of the i-th data point,

y x z m
m x z

i i i i
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l
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l
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where St( , , )( ) ( )
k

l
k
l  is the probability density func-

tion of the Student t-distribution with mean 
k

l( ) and

covariance matrix Σ
k
l( ) associated with the k-th mixture

component and the l-th genotype class and v degrees of

freedom. The 0-th component is an outlier class which

assumes uniformly distributed data over a specified

range.

The elements of the mean vectors m(xi, zi) = [mr(xi),

mb(zi, xi)]′ are given by the following:

m r r gr i i x i x ii n x i t

( ) ( ( ) ) ( )( ) ,,
,

x = − + + − − + +      1 1 10 0 0 0 1 (2)

where gi is the local GC content at the i-th probe

location and

m
z z

x
b i i

i i n i i t

i

( , )
( ( ) ) ( )( )

( ( ) )

, ,
z x =

− + + − −

− +

    

  

1 1 1

1

0 0 0

0 0 ii n i i tx, ,( )( )
.

+ − −1 1 0 
(3)

Prior distributions

The prior distribution on the mixture weights is given

by a Dirichlet distribution:

w
( ) | ~ ( ),l  Dir (4)

where a is a concentration parameter which in the

numerical results we used a = 1 to give a at prior on

the mixture weights.

The prior distributions on the mixture centers and

covariance matrices are given by standard conjugate

Normal-Inverse Wishart distributions:


k

l
k
l

k
l

k K l
( ) ( ) ( )| , ( , ), , , , , , ,  ~ N 0 = … =1 1 2 3 (5)


k
l

k
l

k
l

k K l
( ) ( ) ( )| , ~ ( , ), , , , , , ,   S SIW = … =1 1 2 3 (6)

where τ is a hyperparameter that controls the strength

of the prior and IW(g, Λ) denotes the Inverse-Wishart

distribution with parameter g and scale matrix Λ.

A beta prior is assumed for the outlier rate,

       | , ( , ),~ Be (7)

where (an, bn) are hyperparameters associated with

the Beta prior. For the numerical results we set these as

(1,1) to give a uniform distribution.

A normal prior is assumed for the local GC content

regression parameters,

 | ~ ( , ),  N 0 2I (8)

where Ip is a p × p identity matrix.

A discrete prior is assumed for the stromal contami-

nation content and intra-tumour heterogeneity levels,
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where in the numerical results we have used a
π0 = b

π0

= 1 and a
π
= 1, b

π
= 2.

The tumor states are assumed to form an inhomoge-

neous Markov Chain with transition matrix,

p i i
i i

i i

( | )
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,
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x x

x x

x x
−

−

−
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1
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(11)

where r = (1/2) (1-exp(-(1/2L) (si-si-1) and si is the

physical coordinate of the i-th probe and L is a charac-

teristic length which we set as L = 2,000,000 for the

numerical results.

Posterior inference

We estimated the unknown model parameters using an

expectation-maximization algorithm. Multiple restarts

were used to explore different baseline of the Log R

Ratio and the baseline with the greatest likelihood was

chosen for the calculation of summary statistics.

Summary statistics

We used the Viterbi algorithm to extract the most

likely sequence of tumors states and for each aberrant

segment in the Viterbi sequence we calculated an

approximate Bayes Factor (score) of that segment

belonging to each of the tumor states. In addition we

also recorded the maximum a posteriori estimates of

the Log R Ratio baseline adjustment b0 and the stro-

mal contamination π0.

Availability

A MATLAB based implementation (for 64 bit Linux

systems) of our software is available for academic and

non-commercial use from the associated website [45]. In

addition, SNP data analyzed in this paper are also avail-

able from this website and from the Gene Expression

Omnibus Database under Accession No.[GEO:

GSE23785].

Additional material

Additional file 1: Supplementary methods. Detailed description of

statistical methodology.
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Additional file 2: Genome-wide analysis of three normal-cancer cell

line mixtures. Plots showing genome-wide copy number and LOH

analysis for three normal-cancer cell line mixture series.

Additional file 3: Genome-wide analysis of three primary breast

tumours. Plots showing genome-wide copy number and LOH analysis of

three primary breast tumours.

Abbreviations

aCGH: Array-based comparative genomic hybridization; BAF: B Allele

Frequency; CNV: Copy number variant; LOH: Loss of heterozygosity; LRR: Log

R Ratio; SNP: Single nucleotide polymorphisms.
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