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Abstract – The forward kinematic model (FKM) of a 

redundantly actuated robot is not unique:  if each actuator 

is equipped with an encoder, there are more joint data than 

strictly necessary for computing nacelle position. It is then 

possible to fuse competitive data to find the nacelle position. 
This paper proposes then a method based on a probabilistic 

approach to determine how computing the FKM to obtain, 

in terms of probability, the lowest Cartesian error. 

 

 

1. Introduction 

The problem of the FKM computation of redundantly 

actuated robots can appear as quite innocuous. In fact, these 

robots have more actuators than degrees of freedom (dof): 

there are more sensors data than necessary to find the 

Cartesian position. As there are several ways for computing 

the FKM (using the complete set or, for instance, only the 

minimal number of sensors data), because of the errors on 

mechanism parameters (arms length, nacelle dimensions…), 

each algorithm generates to its own Cartesian error. For 

redundantly actuated robots, this is an important point 

because the controller must necessarily be implemented in 

the Cartesian space: a joint controller would lead to drives 

forces divergence because of the presence of its integral 

element [1][2][3]. For such a control, except if the Cartesian 

error is computed with the jacobian matrix evaluated for the 

desired position, the FKM has to be used directly in the 

control loop. The accuracy of the solution it gives is then of 

the utmost importance. 

This paper proposes a probabilistic approach to 

determine the best computation algorithm. With this aim in 

view, we propose to determine the models sensibilities to 

variations of their parameters (as mechanism geometrical 

dimensions or drives positions) and then to compute the 

associated Cartesian standard deviation (std) when assuming 

that parameters are normally distributed with a given 

covariance matrix. 

 

This paper is divided into 6 sections. 

Section 2 introduces the problem of the FKM 

computation and gives some possible ways for its resolution. 

The choice of a probabilistic approach for determining how 

to solve it is then discussed.  

Section 3 permits to put in place the necessary 

mathematic tools related to the problem i.e. covariance 

matrices, transformation of random variables by a linear 

application and advantages of averaging.  

Section 4 is dedicated to the choice of a FKM strictly 

speaking. The equations giving the errors generated by 

computing a given model and the corresponding Cartesian 

error are, in particular, derived.  

Section 5 proposes the application of the developed 

approach to the choice of the FKM of ARCHI robot, a 3-dof 

mechanism actuated by four drives. 

Lastly, conclusions are given in section 6. 

 

 

2. Problem of the FKM computation and choice of a 

probabilistic approach 

 

2.1. Non-uniqueness of the FKM 

A redundantly actuated mechanism has more drives than 

its number of dof. To perform its Cartesian position, 

different computations are possible, using or not all joint 

data coming from the encoders. 

For instance, let's consider the 1-dof over-actuated 

mechanism presented in Figure 1: 

 

 

 

 

 
 

 

 

 

 
 

Figure 1. 1-dof mechanism actuated by two 

 drives (P: Prismatic joint, R: Revolute joint) 
 

Nacelle position can obviously be computed with the two 

following equations: 

 
x1 = FKM1(q1,L1) = 2

1
2
1 qL −  

x2 = FKM2(q2,L2) = 2
2

2
2 qL − . 

(1)

If the mechanism is perfect (i.e. has no errors on 

geometrical parameters), these two models give the same 

Cartesian position. Of course in reality it's not the case 

(errors on arms length or on drives position) and the models 

are not equivalent at all. 

It's also possible to compute the average of the two 

solutions given by (1) or to calculate it by weighting the 

solutions taking into account the jacobian condition number 

of the sub-mechanisms composed of only one of the two 
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arms (obviously, for any mechanism, when the condition 

number increases the precision decreases). 

The FKM can as well be computed iteratively. For an 

over-actuated mechanism, the relation between joint and 

Cartesian velocities can be expressed as: 

 
 

 

 xJq m && = , (2)

where Jm is a rectangular matrix. 

To calculate the Cartesian velocities, it is then necessary 

to solve an over-determined linear system. In such a way, it 

is possible to find its least square (LSQ) solution: 

 

 

 qJx mLSQ && += , (3)

where the operator "+" denotes the pseudo-inversion [4]. 

The iterative equation that gives the Cartesian position is 

then: 

 

 xn+1 = xn + Jm
+
(xn,qn)[q-qn]. (4) 

 

Notice that the algorithm stop condition can't be 

ε<− nqq  as usual for non-redundant mechanisms but has 

to be ε<− nxx  because as the mechanism is not perfect 

drives can't reach the exact desired joint position (encoders 

data used measure the geometrical errors consequences). 

 

Other solutions are also imaginable, as an example 

finding directly the LSQ solution to the non-linear system 

composed of the equations corresponding to the two arms or 

the solution that generates the lowest std. 

There are then many different ways for computing the 

Cartesian position of a redundant mechanism. 

 

 

2.2. Probabilistic approach for choosing a FKM 

Let's suppose that the robot direct and inverse kinematic 

models are: 

 
 

 

 
x = FKM(q, Pmech) 

q = IKM(x, Pmech), 
(5)

 

where Pmech is the vector containing the N geometrical 

parameters of the mechanism as arms lengths or nacelle 

dimensions for example. 

For a given nacelle position x, the Cartesian error due to 

an error dPmech of the geometrical parameters and dPact of 

actuators locations (due, for instance, to the encoders offset 

error) is (Figure 2): 

 

 dx = FKM(IKM(x, Pmech+dPmech)+dPact, Pmech) –  x. (6) 

Figure 2. Cartesian error generated by errors on models parameters  

 

Considering a given interval error for all the components 

of Pmech and Pact, it is then possible to perform the error 

interval with respect to dx. Nevertheless, this approach has a 

drawback: it considers the worst case. 

 

The approach developed here is a little bit different: it 

takes into account a given normal probability density 

distribution of the geometrical parameters and actuators 

locations (it has been verified time and again that a 

calibration or a measure lead to such a probability density 

distribution) characterized by a given covariance matrix to 

find the one generated in the Cartesian space. 

 

 

3. Mathematic tools, elements of probabilities 

This section describes the necessary mathematical tools 

for choosing a model. In particular, the notions of 

probability distributions, covariance matrices, correlation 

between variables and transformation of random variables 

by linear applications are recalled. 

 

3.1. Covariance matrix and random variable 

transformation by a linear application 
Let's consider a vector x = [x1,…,xn]

T containing n 

random values. Its covariance matrix is defined by [5]: 

 ][ T
x )x)(xx(xEC −−= , (7)

where E[…] represents the expectation value. 

The covariance matrix Cx of x can also be written as:  
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where ρij is the correlation coefficient [6] that describe the 

degree of relationship between xi and xj and 
ixσ the std of xi. 

If the components of x are independent, correlation 

coefficients are equal to zero and the covariance matrix is 

diagonal. 

 

Now, suppose that y is the image of the random vector x 

by the linear application associated to the m-by-n matrix A: 

 y = Ax,  nm×ℜ∈A .   (9) 

Its covariance matrix is then [7][8]: 

 
T

xy AACC = . (10)

 

3.2. Advantages of averaging 

If x  is the scalar corresponding to the average of x 

components: 

 ∑
=

=
n

i
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n

1
x

1

. (11)

the std of x  is then: 
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If the elements of x are independent and if their std are 

equal, it is easy to demonstrate that the std of the average is 
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lower than the one of each component:  

 σ
n

1
)xσ( ≈ . (13)

 

4. Choice of a model 

 

4.1. Sensibility to the errors on parameters 

Assume that f is the implicit function that gives the 

relation between the positions x and q of a n-dof robot 

actuated by m drives: 

 

 

 f(x,q,Pmech) = 0  ⇔  
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A differentiation of this equation leads to: 

 
 

 dqJdPJdxJ qmechmechPx += , (15)

with: 
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The Cartesian error defined by (6) due to dPmech and dPact is 

then: 
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with: 
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and:  

 [ ]qmechP
1

xSP JJJJ −= − . (19)

 

 

4.2. Cartesian error distribution 

Assuming that the components of dP are independent 

and normally distributed with a mean equal to zero and a 

covariance matrix CP defined by: 

 ])([
N1 PP ...σσdiag=PC , (20)

according to (10), the covariance matrix characterizing the 

probability density of the Cartesian error dx is: 

 T
SPPSPdx JCJC = , (21)

and the std of the Cartesian error norm is given by: 

 )( dxdx
Cmaxλσ = , (22)

where λmax(Cdx) is Cdx maximal eigen value. 
 

 
 

 

 
 

For the considered probability density distribution, 68 % 

of the errors will belong to the interval ],[
dxdx

σσ− and 

99.8 % to ],[
dxdx

3σ3σ− . 

 

To illustrate the Cartesian std computation, let's consider 

again the 1-dof robot presented in sub-section 2.1.  

If FKM is one of its models depending on the 

geometrical parameters L1 and L2: 
 
 

 
 

 x = FKM(q1,q2,L1,L2), (23)
 

 

the error defined by (17) is then: 
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and for errors characterized by 
1Lσ , 

2Lσ , 
1qσ and 

2qσ , the 

corresponding Cartesian variance is: 
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and therefore: 
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Considering FKM1, model using only the arm no1, the 

corresponding variance is then: 
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and similarly for FKM2. 

 

In a same way, it is easy to demonstrate that the variance 

obtained by averaging the two models solutions is: 

 )( 2
22

1xd σσ
4

1σ² += , (28)

and then, if 
21 LL σσ = and 

21 qq σσ =  we have σ1 = σ2 = σ 
and: 

 
2

σσ xd = . (29)

As it could have been expected, averaging permits to 

reduce notably the std. 

 

The LSQ solution xLSQ is: 

 )x(x
2

1
x 2

2
2
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2
LSQ += , (30)
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and therefore:  

 xd)dxxdx(x
x2

1
dx 2211

LSQ
LSQ ≈+= . (31)

The std obtained with the LSQ solution is then close to 

the one generated by averaging. 

 

Lastly, the FKM can be obtained by weighting the 

solutions performed with FKM1 and FKM2: 

 

 

 

 21w xw)(1xwx −+= . (32)
 

 

The weights can take into account the condition numbers 

of the sub-mechanisms jacobian matrices or they can be 

computed for minimizing the std. 

In the last case, the variance is then the polynomial 

function: 

 2
2

22
1

22 σw)(1σw(w)σ −+= , (33)

whose minimal value is given by: 

 
2
2

2
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2
2

opt
σσ

σ
w

+
= . (34)

If σ1 = σ2, wopt = 0.5: the lowest std corresponds to the  

average of x1 and x2. 

 

 

The different std for ]8.0;3.0[∈x are plotted in Figure 3. 
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Figure 3. Std generated by the several computations 

 of the FKM of a 1-dof robot actuated by 2 drives 

 

5. Application to the computation of the FKM of ARCHI, 

a redundantly actuated 3-dof robot 

 

5.1. Presentation of ARCHI robot 

ARCHI [9] is a 3-dof robot (allowing the nacelle two 

translations and one unlimited rotation) actuated by 4 linear 

drives (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. ARCHI robot and its joint and loops 

 graph (U: Universal joint, S: Spherical joint) 
 

5.2. FKM computations 

Many different ways are possible for computing the 

FKM, such as: 

          ●  use of only 3 joint positions; 

          ●  sub-mechanisms FKM solutions weighting; 

          ●  direct use of the hole sensors data directly; 

          ●  iterative model; 

          ●  LSQ minimization. 

Those models are first derived and then the Cartesian 

error they generate are compared. 

 

5.3. FKM using only 3 joint positions 

Here, the minimal number of data is used. The model is 

computed by finding circles intersections. For instance, to 

compute the FKM corresponding to the arms no 1, 2 and 3 

(x123 = FKM123(q,Pmech) so called x4 = FKM4(q,Pmech)), the 

positions of B12 and B34 are given by: 

 

 
         B12 = C1([q1,0], L1) ∩ C2([q2,0], L2) 

   B34 = C3([x12, y12],2D) ∩ C4([q3,0], L3). 
(35)

 

When the positions of B12 and B34 are known, the 

Cartesian position can be calculated thanks to the following 

equations: 

 

 

                 x = (x12+x34)/2 

                 y = (y12+y34)/2 

                 θ = tan-1((y34-y12)/(x34-x12)). 
(36)

A differentiation of the above relations leads to the 

equation that, according to (17), gives the Cartesian error 

due to errors on dP = [dL1…dL4 dD dq1…dq4]
T: 

 

 dPJdx
4SP4 = . (37)

The covariance matrix 
4dxC associated to this model is 

then given by (21). 

The 3 reminding models (FKM1, FKM2 and FKM3) and 

their associated covariance matrices are calculated similarly.  
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5.4. FKM using the whole joint positions 

 

5.4.1. FKM obtained by solutions weighting 

A direct averaging as: 

 ∑
=

=
4

1i
4

1
ixx  (38)

will generate the covariance matrix: 
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However, this solution is not suitable because of the 

presence of sub-mechanisms singularities (close to those 

locations, the errors due to the model become very high, see 

section 5.5.3). A solution can then consists in weighting sub-

mechanisms FKM solutions with their condition number: 

 ∑∑
==

=
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condwcondw ))(())(( / iiiw JxJx , (40)

with, for example: 

 kcondcondw −= )())(( ii JJ , (41)

choosing k = 1 or an higher value for taking less into 

account the solutions of sub-mechanisms close to singular 

positions. There is still a problem with this formulation: if a 

sub-mechanism is close to a singularity, the existence of a 

solution is not ensured because the vector of joint positions 

comes from sensors measures (and than takes into account 

the geometrical parameters errors). Considering for example 

the sub-mechanism composed of arms no 1, 2 and 3, it is 

possible that C3([x12, y12],2D) and C4([q3,0], L3) would not 

be neither secant nor tangent. It is then necessary to 

eliminate the sub-mechanism close to a singularity. This 

solution becomes nonetheless quite heavy to implement. 

 

5.4.2. LSQ minimization 

LSQ minimization corresponds to the LSQ solution to the 

over-determined system: 

 

 

 (x –D cosθ – q1)² + ( y –D sinθ)² = L1² 

 (x –D cosθ – q2)² + ( y –D sinθ)² = L2² 

 (x+D cosθ – q3)² + ( y+D sinθ)² = L3² 

  (x+D cosθ – q4)² + ( y+D sinθ)² = L4². 

(42)

       It is implemented with a classical gradient optimization 

algorithm. The sensibility matrix to the model parameters 

and the covariance are then easy to deduce. 

 

5.4.3. Iterative method using the jacobian matrix 

This solution is as always possible. The algorithm is 

implemented as described in section 2.1. 

 

5.4.4. Use of the hole sensors data directly 

This model is easily obtained by calculating the 

intersections of circles of radius Li centered on the points 

Ai[qi,0] (when considering no error on drives positions about 

y): 

 

 

 

(x12 – q1)²+y12² = L1² 

(x12 – q2)²+y12² = L2² 

(x34 – q3)²+y34² = L3² 

(x34 – q4)²+y34² = L4 

(43)

By differentiation, the sensibility matrix related to  

model parameters defined by (19) can be found and 

consequently the covariance matrix calculated. 

 

 

5.5. Models comparison 

 

5.5.1. Cartesian error / end-tool error 

The vector x is not homogenous. For this reason, the 

Cartesian error considered is the end-tool position (point P, 

see Figure 4). 

The std of the 2 coordinates of point P (e.g. xP and yP) is 

computed as well as the scalar: 

 2
y

2
x PP

σσσ += . (44)

 

5.5.2. Hypothesis on parameters errors 

The geometrical parameters of the robot are the one of 

the prototype that has been constructed1: L = 0.88 m and  D 

= 0.055 m. For FKM comparisons, the errors on geometrical 

parameters (L1…L4 and D) and drives positions (q1…q4) are 

supposed to be normally distributed with a mean equal to 

zero and std equal to 1 mm. 

 

5.5.3. Errors generated by the FKM using 3 joint positions 

The errors are computed for y = -0.5 m and 

];[ 900θ∈ degrees (the error doesn't depend on the position 

about x). The std of the Cartesian error and the condition 

number of the sub-mechanism composed of arms  no 1, 2 

and 3 are plotted in Figure 5. 
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Figure 5. Std of the Cartesian error generated by the FKM of a sub-

mechanism of ARCHI robot and its corresponding condition number 

 

It is clear that when approaching a singularity, σ 
increases quickly: it's not possible to use only 3 of the 4 

drives positions to compute the FKM. 

 

 

5.5.4. LSQ minimization vs iterative model using the 

jacobian matrix 

These two solutions have been compared for the same 

std of the models parameters. Std of the Cartesian errors 

have been computed by a random draw of 200 values with a 

normal probability density distribution for each robot 

                                                           
1 http://www.lirmm.fr/~marquet/ 

B12 

B34 
C = (B12+B34)/2. 
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location (these locations, corresponding or not to sub-

mechanisms singularities, have been chosen at random 

inside the workspace). 

It has to be noticed that for several locations the gradient 

algorithm implemented for finding the LSQ solution 

converges to a local minimum that doesn't correspond to the 

robot configuration. 

Table 1 sums-up a part of the results obtained. 

 
 Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 Pos.7 

y 

θ 
-0.6 m 

0 deg 

-0.6 m 

45 deg 

-0.7 m 

35 deg

-0.7 m 

60 deg 

-0.7 m 

75 deg 

-0.8 m 

60 deg

-0.8 m 

65 deg

σ (mm) 

It. FKM 
2.23 2.00 1.71 1.95 1.65 2.47 2.03 

σ (mm) 

LSQ 
1.74 2.01 1.74 1.88 1.64 2.44 2.02 

cond(J123) 17 10 10 10 11 10 10 

cond(J124) 17 45 118 28 17 18 16 

cond(J134) 17 11 10 11 13 12 12 

cond(J234) 17 221 41 75 28 30 25 

Singular 

sub-

mech. 

not 

any 

arms 

2, 3, 4 

arms 

1, 2, 4 

not 

any 

not 

any 

not 

any 

not 

any 

 

 
 

 

Table 1. Comparision between the iterative FKM and the LSQ solution 

 

When one sub-mechanism is singular (positions 2 and 3 

in the table), σ keeps small for the two models and both std 

are nearly the same. For the 7 positions which have been 

chosen at random, σ mean value is about 2 mm: it's half the 

one obtained for the FKM using only 3 drives positions 

(about 4 mm, see Figure 5) even when no sub-mechanism is 

singular. This proves that the use of the minimal number of 

drives positions is not suitable even when the corresponding 

sub-mechanism is not singular. 

 

5.5.5. Iterative model vs FKM using directly the whole drive 

positions 

The scalar σ has been computed for robot Cartesian 

positions defined in sub-section 5.5.3. It is given by a 

theoretical equation for the FKM using directly the whole 

drives positions and obtained by a random draw of 200 

values for the iterative model (Figure 6). 
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Figure 6. Std of the Cartesian error generated  

by the iterative FKM of ARCHI robot and by  

 the one using directly the whole drives positions 

 

Errors are still nearly the same for the two FKM: about 

2-2.5 mm and sub-mechanisms singular positions have no 

effect. 

6. Conclusion 

When the exact dimensions of the mechanism are 

unknown, the probabilistic approach presented in this paper 

permits to compare the error probability generated by the 

use of a given model for finding the nacelle position of a 

redundantly actuated robot. 

The FKM of ARCHI studied proved that neither the use 

of the minimal number of drives positions nor the FKM 

obtained by direct averaging are suitable at all. The other 

models led to std nearly the same. The LSQ solution is tricky 

to implement because of the possible convergence of the 

gradient minimization algorithm to local minimum and has 

no special interest compared to the iterative model that uses 

the jacobian matrix. This last solution or the one using 

directly the whole drives positions would then be preferred. 
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