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Abstract—We introduce a simulator (slimsim) for a subset
of AADL extended with formalized behavioral semantics for
nominal and error models. The simulator allows to perform
probabilistic analysis using the Monte Carlo method, on linear-
hybrid, stochastic models, which describe a combination of
nominal and error behaviors of hard- and software components.
The tool supports the use of different strategies, which control
the behavior of the simulator when dealing with various forms
of non-determinism. The simulator is tested using benchmarks of
the COMPASS toolset, as well as a case study by Airbus Defense
and Space.

I. INTRODUCTION

The design of safety critical systems requires a thorough
analysis to ensure that all the safety requirements are met.
In practice, this means that engineers must ensure that the
probability of failure for a system is below a given threshold.
Various methods are applied, such as Fault Tree Analysis, with
varying degrees of automation. In particular, the interest in
(safety) analysis of real-time systems is still growing, resulting
in the creation of new methods and tools.

As the main contribution of this paper, we present the
slimsim tool, which is a Monte Carlo simulator for specifica-
tions written in an extended subset of the Architecture Analysis
& Design Language (AADL) [1]. It has been integrated into the
COMPASS toolset [2], featuring non-deterministic, real-time
and continuous stochastic semantics, which previously could
not be treated at the same time as the expressivity of all these
features goes beyond the capabilities of the numerical analysis
engines so far. Statistical model checking in these areas is not
new, and various tools such as UPPAAL-SMC [3], MODES [4]
and PLASMA-lab [5] exist, but either do not support part of
the semantics, or interpret it in a different way. In particular,
the slimsim tool can handle specifications with transitions
guarded by real-time constraints or triggered by exponential
distributions, and processes that may synchronize on a shared
alphabet of events. Non-determinism is resolved by different
strategies, allowing the simulation process to be tailored to the
specific needs of the analysis.

Additionally, by means of a small, synthetic case study we
show the effect of applying different strategies to resolve non-
determinism of the input model. Resolving non-determinism
is a well-known problem and various approaches are known,
including those mentioned in this paper as well as related work.

The paper is structured as follows: In Section II some
preliminary details are given concerning Monte Carlo analysis

and an overview of the COMPASS toolset and its SLIM
language. The implementation of the simulator is explained in
Section III, detailing its architecture, the use of strategies, and
parallelization. Section IV shows the results of a benchmark of
the simulator, followed by a case study performed on a larger
example in Section V.

II. PRELIMINARIES

A. Statistical Model Checking

Statistical model checking techniques [6] make use of the
Monte Carlo method to check the satisfiability of a temporal
logic formula on a given model. Discrete event simulation is
used to randomly generate finite paths in the given model,
verifying whether or not some time-bounded property holds
for that path. As more paths are generated, better statistical
information about the property can be derived from these results.

This way the Monte Carlo approach approximates the
probability of the property holding based on the simulated
paths. As the outcome of each generated path can be seen as
some binary result (which is true if and only if the property
holds true), the outcomes of all paths can be seen as identically
distributed Bernoulli random variables. This allows various
statistical conclusions to be made using only a finite number
of paths.

Statistical model checking can be used both for qualitative
and quantitative purposes. Qualitative analysis is generally
based on hypothesis testing, determining whether a certain
property holds or not. The tool described in this paper focuses
on the analysis of quantitative properties, specifically timed
reachability properties, determining the probability that a given
property holds true.

B. Quantitative Statistical Analysis

In order to perform quantitative statistical analysis, we use
the Chernoff-Hoeffding (CH) bound, which is described in [7].
This bound is based on two parameters, δ and ε, which control
the statistical confidence and error bound of the statistical
outcome respectively. These parameters drive the formula
P [|X̄ − π0| ≤ ε] = 1 − δ, stating that the probability of the
difference between the true probability π0 of the property and
the estimator X̄ being bounded by ε lies within the confidence
1− δ. The estimator X̄ is determined by A/N , where the CH-
bound N is determined by the formula N = 4 ln(2

δ )/ε2, and
A is the number of randomly generated paths satisfying the
property of interest.



C. COMPASS Toolset

The COMPASS toolset [2] was developed as part of several
research projects funded by the ESA in order to improve tool
capabilities for formal analysis during the early design stages
of for instance spacecraft [8]. As such, it is geared towards,
but not limited to, the space and avionics industry. The toolset
has successfully been used for various case studies by various
industrial partners and the ESA [9], [10], and is accessible
from http://compass.informatik.rwth-aachen.de.

The main modeling capabilities are expressed in the SLIM
language, a carefully designed dialect of AADL. It is used
to specify the system being analyzed (explained further in
Section II-D). This model can be analyzed in various ways:

Correctness analysis allows qualitative properties to be
checked using either BDD or SAT based model checking
[11], [12] (for explicit respectively bounded model checking),
abstracting from stochastic semantics.

Performability is its quantitative counterpart, translating the
input model to a Continuous Time Markov Chain (CTMC) or
Interactive Markov Chain (IMC) [13]. Here, real-time semantics
are abstracted away.

Properties for both analyses are expressed using user
friendly specification patterns, which are translated into LTL,
CTL or CSL equivalents, based on the tool used to perform
that analysis.

Safety analysis allows the generation of Fault Trees and
FMEA (Failure Mode and Effects Analysis) tables for input
models containing failure modes. Furthermore, the Fault Trees
can be further evaluated to determine the probabilities of the
various events.

FDIR analysis can check whether certain fault conditions
in the model can be detected, isolated and recovered from.
These fault conditions are based on the notion of alarms and
observables, which are Boolean elements in the model that
may be triggered by certain conditions.

Finally, diagnosability [14] is supported, which verifies that
the specification is able to correctly diagnose faults, meaning
that a property expressing the diagnosis must either always or
never hold in any two states with the same set of observations.

D. The SLIM Language

The SLIM language [15] (short for System-Level Integrated
Modeling language) is strongly based on AADL, a language de-
veloped in the avionics and automotive industry [1]. It supports
the specification of timed and hybrid systems (supporting linear
dynamics). Furthermore, it includes fault specifications, which
describe various possible causes of faults that can optionally
be triggered by events occurring with an exponential rate.

Nominal models are specified as sets of components,
representing various parts of the complete system, such as
processors, buses and threads. These components may contain
other (sub)components, which can either be another system
component, or a data component. Data components can be
defined as integers (or ranges thereof), Booleans, real numbers,
and clock and continuous variables. The latter allow for the
specification of timed or linear hybrid dynamics.

The behavior of components is specified by means of modes
and mode transitions. Transitions are triggered by a discrete
event, possibly internal, with an optional Boolean guard over
data components and optional side effects modifying data
components. Components can be connected by means of ports,
which can be data ports (where output values are expressions
over input values) or event ports. Data connections are limited
to the discrete and real types. Event port connections enable
transitions of various components to synchronize.

Based on the state of a component, its sub-components
may be enabled or disabled. This is referred to as dynamic
reconfiguration, and allows modeling of e.g. integration or
removal of components, or change in their electrical state. This
can be used to model spare components for example, where
one component can be exchanged with another.

An example SLIM model is shown in Listing 1, which
represents a simplified GPS unit with two operational modes,
acquisition and active. When activated, the GPS at-
tempts to acquire a signal, which is specified to succeed within
two minutes (but no faster than ten seconds). It then switches
to an active mode, upon which a variable indicating a fix,
measurement, is set to true.

Error models are specified separately from nominal models.
They describe fault behavior by means of error states and
transitions, similar to the modes and transitions of nominal
components. Transitions however are triggered either by error
events or error propagations. Error propagations are similar
to events in nominal specifications, and can synchronize with
other error components. Error events cannot synchronize, but
they are typically associated with exponential distributions,
controlling the rate at which they occur.

An error component can be associated with a nominal
component by means of fault injections, a process referred to
as model extension [15]. Fault injections specify the effect of
a fault occurring in the error model on the nominal model, by
means of modifying its data. Model extension automatically
adds error propagation connections between sibling components,
or components with a parent-child relationship, allowing them
to propagate.

An example error model is depicted in Listing 2. In
this model, a system can switch from a nominal state, ok
in this example, to any error state (transient, hot, or
permanent) by means of an error event (with a different
rate for each type of fault), governed by an exponential
distribution. Recovery from a transient fault is possible by
a non-deterministic time delay in the interval [200,300] msec,
and from a hot fault by restarting (the @activation event).

E. Model Semantics

We present here a simplified version of the formal model
underlying the SLIM language, with the full semantics available
in [16]. It is similar to Priced Timed Automata [4], Stochastic
Timed Automata (STA) [17] and the Probabilistic timed
processes described in [18], but with small differences, most
notably pertaining to exponential rates for individual transitions,
support for event based synchronization and/or forms of non-
determinism.

http://compass.informatik.rwth-aachen.de


Listing 1. Example SLIM nominal model of a simple GPS unit
device gpsDevice features

measurement : out data port bool default false;
end gpsDevice;

device implementation gpsDevice.i
flows

measurement := true in modes (active);
modes

acquisition : activation mode
urgent in 2 min;

active : mode;
transitions

acquisition -[ within 10 sec
to 2 min ]-> active;

end gpsDevice.i;

Listing 2. Example SLIM error model of a simple GPS unit
error model gpsError features

repair : out error propagation;
end gpsError;

error model implementation gpsError.i
events

e_trans : error event occurrence
poisson 0.1 per hour;

e_hot : error event occurrence
poisson 0.1 per day;

e_permanent : error event occurrence
poisson 0.01 per day;

states
ok : initial state;
transient : error state urgent in

300 msec;
hot : error state;
permanent : error state;

transitions
ok -[ e_trans ]-> transient;
transient -[ repair within 200 msec

to 300 msec ]-> ok;
ok -[ e_hot ]-> hot;
hot -[ @activation ]-> ok;
ok -[ e_permanent ]-> permanent;

end gpsError.i;

A specification is defined by one or more processes P =
〈L, l0, I,Tr,Var , A, T 〉, where L is the finite set of locations,
l0 ∈ L the initial location, Var the set of variables, A the set
of actions including internal action τ , and

• ν : Var → V the valuation function with ν(v) being
a value from the domain of variable v ∈ Var ;

• I : L→ Expr the function that assigns to each location
an invariant expression in Expr , which is a Boolean
expression over the continuous variables in Var . They
restrict the residence time in that location.

• Tr : L × V ar → R the function that assigns the
(constant) derivative of all continuous variables in all
locations.

• T ⊆ L × A × Expr ∪ R × E×L the set of discrete
transitions, with Expr being the set of Boolean guard
expressions over the variables Var ; R being a real-
valued parameter which if set indicates an exponential
delay – this value may only be set for transitions with
the internal action τ ; and E : (Var → V )→ (Var →

V ) being the function that updates the valuation upon
taking the transition.

In order to prevent ill-defined semantics for probabilistic
transitions, a single location may contain only transitions with a
Boolean guard or exit rate, it cannot combine both. Furthermore,
for locations with transitions that have an associated exit rate,
the invariant must be true.

The state of a process is defined as a tuple L× (Var → V ),
assigning a valuation of the variables to the current location.
A discrete transition 〈ls, α, g, e, lt〉 ∈ T allows the system to
move from location ls to lt, executing action α. The transition
is enabled if g is an expression that evaluates to true in the
current state, or describes an exponential delay. Upon execution
of the transition, the effect e is applied upon the valuation ν
of the variables.

A timed transition updates the valuation of the continuous
variables, based on the invariants of the current location. For
a continuous variable v ∈ Var and a delay d ∈ R, ν′(v) =
ν(v)+I(v)∗d. For a discrete variable v, ν′(v) = ν(v) remains
the same.

A complete specification is defined by a network of com-
municating processes. The state space of such a specification is
the cross-product of the state spaces of each process. Discrete
transitions can occur individually or in parallel, synchronizing
on the shared part of the combined alphabet of actions. Note,
a transition with an exponential delay cannot synchronize with
any other transition as the internal action τ does not synchronize
with other processes.

Various sources of non-determinism exist. Multiple transi-
tions T may be enabled at the same time, between different
processes or within a single process. Second, multiple delays
may be possible depending on the invariant of the current loca-
tion. Before discrete event simulation is possible, these forms
of non-determinism have to be resolved, see Section III-B.

Path generation of such processes is then possible by evalu-
ating for a given state the possible discrete and timed transitions.
By employing a given strategy to resolve non-determinism for
both the discrete and continuous dynamics, the next state can
be generated by means of a probability distribution over either
the discrete or timed transitions. Generally, a path is then
generated by alternating between timed and discrete transitions,
see also [18].

Figure 2 shows a simplification of the model specified in
Listing 2. Here, three locations are represented as nodes, with
the label shown above the invariant of that location. Edges
represent the discrete transitions, with the action shown above
the guard or exit rate. The clock representing the delays in the
model is an implicit variable, reset to zero at every discrete
transition.

F. COMPASS Toolset Architecture

The COMPASS toolset makes use of various tool compo-
nents to provide the supported functionality. A frontend parses
input models and properties, which can then be translated
by backends into formats usable by the various tools. As
mentioned before, the properties can be represented by various
logics such as LTL, CTL and CSL, converted into the format



Fig. 1. Example of slimsim. After opening a model file, the user can enter
the required confidence and error bound, and specify the strategy to use. Then,
the run button will start the simulation.

ok

transient

≤ 300 msec
hot

e_trans λ = 0.1 per hour

repair

[200,300] msec

e_hot

λ = 0.1 per day

@activation

Fig. 2. Simplified STA of GPS error model.

supported by the various tools. Two backends are available for
the translation of the model. The primary, preexisting backend
translates the model into SMV [19] for use with the NuSMV
model checker [11]. NuSMV can then be used for analysis, or
its outputs can be chained to other tools (such as MRMC, see
Section IV).

As part of the work presented in this paper the simulator
format has been added as a secondary backend. This allows
for a single, consistent interface for validating the input model
before performing the analysis (such as checking for recursively
defined components).

The toolset provides the translated input model to the
tool(s) corresponding to a particular analysis. After analysis, it
processes the results and presents it to the user. Two interfaces
are available for this: A GUI (see Figure 1) provides user
friendly access, and a CLI (Command Line Interface) provides
more direct control and automation.

III. IMPLEMENTATION

A. Simulator Architecture

The architecture of the simulator can roughly be divided
in three parts: One part represents the static structure of the
input model; One part implements the behavior of the model
and finally a third part deals with the actual simulation.

The specification is loaded from a file that is generated by
the toolset, which in turn is translated into the corresponding
data structures. From this data, the actual model instance is con-
structed which contains the concrete connections between the
various components that may have been defined. Furthermore,
the various data of the model are allocated and initialized.

The model is then used to construct the event-data network,
which builds the connection topology of event and data ports
and keep tracks of the current state of the model [15]. This
network, the Network of Event Data Automata can then be used

to analyze the behavior of the model, by allowing the state
to change by progressing time or selecting discrete transitions
between modes. The event connections and data flows are used
by the network to determine which transitions can synchronize,
and the global effect of data assignments.

The simulation logic consists of three sub-parts: The
strategy determines how non-determinism is resolved, and
is explained in Section III-B. The generator part deals with
statistical analysis of the current results and determines whether
or not further simulation is required to attain the desired
accuracy and precision. Currently the generator implements the
Chernoff-Hoeffding bound, but future extensions may allow
other approaches such as Chow-Robbins or Gauss [20] (this may
require further considerations, see also Section III-C). Finally,
there is a part responsible for path generation, integrating the
other two parts into the actual simulation engine.

The complete simulator has been implemented in the C++
language, consisting of approximately 14,000 lines of code.
Additionally about 200 lines of Python code were necessary to
integrate it into the COMPASS toolset.

B. Strategies

The simulator supports the definition of strategies. This
mechanism allows the user to control the behavior of the
simulator where the input specification does not precisely dictate
what the next step should be (due to non-determinism). Since
such behaviors can alter the outcome of the simulation, it is
left to the user to decide what approach suits the analysis best.
In [18], it is shown that various approaches are possible, each
possibly leading to different outcomes of the statistical analysis.
Before the analysis is started, the user has to specify what
strategy to use (along with the confidence and error bound).

The simulator implements four automated strategies, and
one manual input strategy:

• ASAP – The ASAP strategy implements the resolution
of time delays by determining the first possible time
point at which a discrete step becomes enabled. This
defines an ‘urgent’ semantics, where the model moves
as fast as possible. This strategy is similar to the one
employed by the MODES tool [4].

• Progressive – The progressive strategy determines
the exact intervals in which a discrete transition is
active, and randomly selects a time point from these
intervals by a uniform distribution, similar to UPPAAL-
SMC [3].

• Local – The local strategy only considers the invariant
of the current location, selecting the widest possible
range of delays.

• MaxTime – The MaxTime strategy will delay as
much as is allowed by the invariant of the current
location. This strategy can in particular helpful to find
actionlocks [18].

• Input – The input strategy asks the user what the
next step should be for each step in the simulation.
It presents the possible alternatives, both as discrete
transitions and time delays, as well as the current state
of the model.



As explain before, Figure 2 shows a simplified automaton
of the GPS example from Listing 2. The effects of the various
strategies can be exemplified by the transition from location
ok to transient. It is guarded by a non-deterministic time
interval between 200 and 300 msec. Here, the ASAP strategy
will schedule a delay of 200 msec, whereas MaxTime will
schedule 300 msec. The Progressive strategy uniformly selects
from the interval [200, 300] msec, determined by the guard.
The Local strategy ignores the guard, and selects from the
interval [0, 300] msec, based on the invariant.

For all strategies, underspecification of choice is always
resolved using a uniform distribution using the notion of
equiprobability, where the Progressive, Local, and MaxTime
strategies select the delay before the transition, and the ASAP
strategy select the (first executable) transition first, with only
one possible delay. Underspecification of time is, in so far
a strategy considers, an interval resolved by a (continuous)
uniform distribution as well.

C. Parallelization

The algorithm for Monte Carlo simulations lets itself be
parallelized rather trivially, as the outcome of each simulation
does not depend on any other. Thus, it makes sense to distribute
the workload in order to improve performance. However, care
should be taken that the use of multiple parallel processes does
not introduce any bias. The work in [21] shows that taking a
sample from a process into account as soon as it arrives alters
the outcome based on the number of processes. A solution
is to balance the workload between processors, ensuring each
processor performs the same amount of simulations. In the case
of the CH-bound, the number of samples required is known
a-priori and so a trivial solution is to have each processor
calculate N/k samples, for k processors. However, a more
general procedure is described in [22] where N does not have
to be known in advance. Here, the results of the processors
are buffered, until at least one sample is available from all
processors. Then, these samples are taken from the buffer. This
approach has been implemented in our simulator, to support the
use of other generators such as Chow-Robbins or Gauss [20]
in the future.

D. Deadlocks

One particular problem Monte Carlo simulators face is
dealing with deadlocks. In such cases, it is not possible to
produce further events, and the path generation has to stop.
Depending on the semantics of the underlying model, this may
be valid or invalid behavior. SLIM admits the specification of
models containing deadlocks and depending on the intention of
the user, this may not be desirable. In such cases, slimsim
can be configured to generate an error upon the detection of a
deadlock. In other cases, a path leading to a time- or deadlock
is considered to falsify the property being checked, as reaching
a goal state from such a state is not possible.

IV. BENCHMARKS

A comparison was made between the simulator and the
original analysis flow using CTMCs. In order to generate the
CTMCs from the input model, the toolset takes several steps.
First, the input model is translated into a NuSMV model.

Sensor 1
...

Sensor N

Filter 1
...

Filter N

Monitor

Out

Fig. 3. The layout of the sensor-filter model.

TABLE I. BENCHMARKING RESULTS FOR THE SENSOR-FILTER MODEL.
THE MODEL SIZE INDICATES THE NUMBER OF BOTH SENSORS AND FILTERS.

THE VALUES FOR THE SIMULATOR ARE MAXIMA.

Model
Size

CTMC
Time (s)

Simulation
(ε = 10−3)

Time (s)

Simulation
(ε = 10−4)

Time (s)

CTMC
Memory

(MB)

Simulation
Memory

(MB)
2 5.33 47.50 4453.09 23.19 19.91
4 29.93 51.61 4887.09 76.29 21.99
6 59.75 50.58 4725.42 89.14 24.21
8 289.97 52.65 4801.40 180.22 26.63

10 725.67 52.65 5120.87 178.35 29.13
12 1360.11 57.80 5398.62 196.43 32.75
14 3187.02 59.88 5668.64 2469.20 35.00

Using the NuSMV model checker, the reachable state space
is generated as a BDD, which is then exported to a data
format used by the Sigref library [23]. In the next step, the
Sigref library is used to reduce this state space by means of
weak probabilistic bisimulation (preserving the reachability
properties), and generate a CTMC. Finally, MRMC [24] is
used to analyze the model based on the property specification.

As this part of the tool-chain is limited to discrete models, an
un-timed model (a model without clocks) was used to perform
the comparison. This model describes a system consisting of
a sensor and a filter component, both with various degrees of
redundancy. A monitor can detect a fault in either component,
and switch to a redundant version. When either all sensors or
all filters have failed, the entire system fails. By increasing the
number of redundant components, the complexity of the model
is increased. See also Figure 3.

The sensor provides a discrete output in a limited range
(1..5). This output is then multiplied by a constant factor in
the filter. The sensor has a failure mode in which the output
becomes too high (>5); the filter has a failure mode which sets
the output to zero. These values are interpreted by a monitor,
which distinguishes between these two failures and switches
the corresponding component to a redundant version. When a
component fails and there are no more redundant components,
the entire system has failed. The benchmark defines a time
bounded property that determines the probability of this event.

The main results of the benchmark are shown in Table I.
The benchmark was executed on a HP 685c G7 blade system,
having four AMD 6172 Opteron processors (with 48 cores
total) and 192GB of RAM. Both the simulator and MRMC
used the same input model, with the input parameter δ set to
0.98 and ε to 1 · 10−3 and 1 · 10−4 (see Section II-B). The
simulator was run with 20 threads in parallel.

It can be seen that the time and resource usage of the
CTMC approach increase greatly with model size. This is to
be expected as the entire state space needs to be generated,
which drastically increases in size with larger models. For the
simulator, these values increase slightly, as the number of paths
generated (and thus results stored) remains constant. However,
the simulation time increases quadratically as the error bound
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Fig. 4. The architecture of the industrial case study. The connections
between the GPS, Gyro and DPU units have been hidden for clarity. Rounded
connections are for power, the others for signals.

is reduced in size (which is directly related to the use of the
CH-bound).

Some remarks are in order: Although the CTMC approach
is sensitive to the size of the model, it is less so in the time
bound of the property being analyzed. The opposite holds for
the simulator. Here, an increase in the time bound may lead
to the path generator requiring more steps to reach this bound,
thus increasing simulation time. It should be noted that the tool
chain spends relatively little time in the MRMC model checker,
and requires significantly more to generate and minimize the
state space [25], thus the size of the complete state space
being of great influence. Furthermore, the analysis performed
by MRMC is a great deal more accurate, which is important
for properties for which the probability is very close to either
zero or one (see also Section VI for a discussion of rare-event
simulation). Nevertheless, the results show that especially for
model with large state spaces, simulation is a viable alternative
if the loss of precision is acceptable.

V. INDUSTRIAL CASE STUDY

A case study was performed together with Airbus Defense
and Space. The goal of the case study was to evaluate the
analysis capabilities of the entire toolset. As such, it is not
intended to reflect an actual design, but rather serves as an
abstract example of a realistic design. In this paper, we present
part of the case study involving the design of a launcher, an
overview of which is shown in Figure 4.

a) Launchers: A launcher is generally short-lived, less
than a few hours, with the purpose of delivering a payload
such as a satellite into earth’s orbit. It requires systems with
high availability, as loss of control for a few milliseconds can
mean loss of the entire launcher itself, as well as its payload.

As such, many systems run in warm or hot redundancy.
Upon detection of a fault, the system immediately switches to
a different component and/or disables the faulty component.
This requires some mechanism that is capable of detecting a
fault and performing the recovery operation. In the case study,
the output signals of all the components are abstracted and
encoded as Booleans, indicating whether or not a correct signal
is available. Thus, by simply observing the value of the signal,
the system can decide whether or not the output of a component
is still correct.

Three types of faults can occur in the system: Transient, hot
and permanent. Transient faults are those that correct themselves
within a certain amount of time. Hot faults require intervention
and can be corrected by resetting the system, e.g. by turning
it off and back on again. Finally, permanent faults cannot be
recovered from.

b) Launcher Components: The components of the
launcher in the case study can roughly be divided into four
groups: One group responsible for providing power to the other
components; one group providing information about the location
and trajectory for navigation (the sensors); one group processing
the navigational data; and finally the thrusters (actuators) which
are controlled by the processors.

The systems are connected via buses. These buses are used
both to distribute power and transfer data signals. The case
study models these buses as opaque objects which have no
associated failure model. Rather, failures are modeled for the
other components.

Power is distributed by means of multiple PCDUs (Power
Conditioning and Distribution Units). Each PCDU is modeled
as a battery and a number of power outputs, which can be
connected to the various devices. The battery is modeled using
continuous, linear dynamics to represent the amount of energy
left. A battery is associated with a single, permanent failure
mode. Upon failure of the battery, no power is delivered and
the PCDU fails, including all its outputs.

Navigation is based on inputs from GPS and gyroscope
(gyro) devices. A GPS is modeled as a simple device with two
states: acquisition and active (see also Listing 1). A signal is
only available in the active state. A GPS is modeled with three
failure modes. Two of which, a transient and a hot failure, can
be recovered from. The third is a permanent failure mode. Each
failure mode is associated with a separate failure probability
(as described in Listing 2).

A gyro is a device that can measure the orientation on two
axes. Both axes are modeled as independent devices, each of
which can independently fail. Furthermore, a dependent failure
can cause the entire gyro to fail. In both cases, only a single,
permanent failure mode is modeled.

The inputs from the GPS and gyro devices are processed by
a Data Processing Unit (DPU), which in turn sends command
signals to the rest of the equipment, including the thrusters. The
DPUs are contained within two redundant On Board Computers
(OBCs), which consists of a voting triplex of three DPUs
running in hot redundancy. The output of the triplex is based
on a majority vote of the DPUs. If any DPU fails, it will switch
to a duplex mode. If a second DPU fails, the triplex itself fails,
causing the OBC to fail.

c) Error Models: Two error models for the DPUs have
been modeled, with two different behaviors for the OBCs. In
the first case, the DPUs are associated with a permanent fault,
and the OBCs simply vote on the output of the DPUs. In the
second case, the DPUs are associated with a hot fault with
a higher failure rate, which can be recovered from after a
non-deterministic delay. The OBCs will switch off and on a
DPU once after detecting a fault to attempt to clear the fault.
However, due to the limited range of the interval, the recovery
might fail if it is performed too early. The difference in failure
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Fig. 5. Probabilities of system failure containing DPUs without (left) and
with (right) repair.

rates has been applied to make the (lack of) effect of the
strategies more clear.

To connect the error specifications with the components,
fault injections have been specified which affect the power
and control signals. In case of a fault (be it transient, hot or
permanent), either power is disabled, or the signal set to false,
indicating a failure.

The case study itself consists of approximately 800 lines
of SLIM code, featuring 20 nominal and error component
definitions and 37 component instances. Furthermore, 20 fault
injections were specified. The case study and tool are accessible
from [16].

d) Experimental Results: In order to evaluate the relia-
bility of the system, probabilistic reachability properties were
defined, evaluating the probability of a system failure occurring.
The system is considered failed if control of the thrusters is
lost, which happens if neither triplex can send a command
to the thrusters because it has failed. This property has been
specified using the probabilistic existence pattern, which can
be translated into the CSL formula Pr(�[0,u]failure), where
failure is an atomic proposition indicating failure, in this case
both triplex commands being false and the system being in
flight. Here, u controls the upper time-bound of the property.

Figure 5 shows the evaluation results for the two versions
for the case study with permanent (left graph) and recoverable
(right graph) faults for the DPUs (experiments were run with
parameters δ = 0.9 and ε = 0.005). In the left graph, the
results are the same for all possible strategies. This is due
to the fact that the behavior of the model only contains
probabilistic or deterministic transitions, thus time scheduling
has no effect. In the right graph, the different strategies result in
different behavior, due to the non-deterministic delay required
for recovery. The ASAP strategy always schedules the repair too
early, whereas the MaxTime strategy never does so. The Local
and Progressive strategies are somewhere in between, randomly
selecting delays before restarting a DPU. The Progressive
strategy performs slightly better, as it makes it more likely
for the DPU error model to preempt a too early recovery
attempt.

VI. RELATED WORK

Statistical model checking is an active field, and there is
a fair amount of past and current research. On the practical
side, various tools have been developed that make use of this
technique as well. Tools such as YMER [21], (P)Vesta [26],
[27], MRMC [24], and APMC [7] allow various Markov models

to be analyzed by statistical means. More recently, and more
closely related to our tool, the MODES [4] and UPPAAL-
SMC [3] tools have been developed, which support real-time
stochastic models, introducing support for underspecification
of time. Aside from the input language, these tools differ from
ours mainly on the semantics of the input language, as well as
the possible scheduling approaches. A major difference between
UPPAAL-SMC and our tool is that UPPAAL-SMC supports
broadcast events only. For MODES, the main difference is that
only the ASAP strategy is supported. The PLASMA-lab [5]
and Prism [28] tools find their way in the middle, supporting
non-deterministic, but not real-timed, models specified in the
Prism Reactive Modules language.

An important aspect of statistical model checking lies in the
scope of rare-events: occurrences of behavior that only occur
with a very low probability. Whereas model checking using the
full state space guarantees such events are detected, they are
inherently unlikely to be found by regular statistical analysis.
Various methods are introduced to support rare-event simulation
for discrete systems [29], [30], [31], [32], which introduce a
bias in the model to make such events more likely to occur,
adjusting the final probability to take this into account.

One particular downside of using statistical model check-
ing for non-deterministic models such as ours is that it is
currently not possible to accurately determine the possible
lower and upper bounds of the properties’ probability. Various
approaches are suggested to address this, such as reinforcement
learning [33] or defining history-dependent schedulers [34].

Finally, an important aspect of the efficiency of the simulator
is the number of paths that it requires to determine the final
outcome. Various methods exist to find such bounds. The
Chernoff-Hoeffding bound of our implementation is well known,
but other approaches exist, both for quantitative and qualitative
analysis. The work of [20] introduces various tests, and
classifies them according to correctness, power and efficiency.

VII. CONCLUSION

This paper introduced our statistical model checker for
the COMPASS toolset, supporting an AADL dialect input
formalism (SLIM) with linear-hybrid and stochastic aspects.
The main aim is to support performability analysis (that is,
probabilistic dependability) for which no tools existed that
supported the SLIM semantics.

The Monte Carlo method was chosen as it provides a
tractable, yet powerful approach to support the combination of
real-time and stochastic semantics. By allowing the implemen-
tation of various strategies, we address the issue of different
possible interpretation of non-determinism which is inherently
required for the path generation.

The tool has been integrated into the existing COMPASS
toolset, allowing it to be used alongside the various other
analyses that it supports, and integrating it into both a GUI
and CLI based system.

A benchmark and an industrial case study of a launcher show
that the use of Monte Carlo simulation is a viable approach.
Although it shows that for smaller discrete model it can be
outperformed by the existing tool-chain, for larger models, or
timed models, simulation can be a better alternative.



A. Future Work

One point of improvement is more complete support for path
generation strategies, giving the user more control to steer the
simulation, for instance regarding non-deterministic transitions.
This also includes controlling the scheduling order of transitions
and the memory policies [18] being used. Automating or
guiding the strategy selection would help improve usability, as
this requires a less intricate knowledge of the methods.

Another item of interest is support for the full spectrum of
CSL specifications [35], beyond the predefined patterns of the
COMPASS toolset. This would include nested operators. The
work of [21] shows that this has a fairly high complexity, but
is manageable by using memoization techniques.
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