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Abstract

In this thesis, we describe a statistical method for 3D object detection.   In this method, we

decompose the 3D geometry of each object into a small number of viewpoints.  For each view-

point, we construct a decision rule that determines if the object is present at that specific orienta-

tion.  Each decision rule uses the statistics of both object appearance and “non-object” visual

appearance.  We represent each set of statistics using a product of histograms.  Each histogram

represents the joint statistics of a subset of wavelet coefficients and their position on the object.

Our approach is to use many such histograms representing a wide variety of visual attributes.

Using this method, we have developed the first algorithm that can reliably detect faces that vary

from frontal view to full profile view and the first algorithm that can reliably detect cars over a

wide range of viewpoints.



Acknowledgments

I would like to thank my advisor, Takeo Kanade, for his guidance in this research.  His ideas,

insights, suggestions, questions, and enthusiasm were great help in stimulating my thought and in

bringing this research forward.  I would like to thank the other members of my dissertation com-

mittee Tai Sing Lee, Dean Pomerleau, and Sandy Pentland for their helpful feedback and sugges-

tions.  I would like to thank John Krumm for originally guiding me into this area of research as

part my summer internship in his laboratory in Sandia National Laboratories in 1995.  I would

like to thank Henry Rowley for his feedback on my research and for providing much useful data

and programs.  I would also like to thank the many people with whom I had valuable discussions,

provided helpful feedback on my research, and provided technical assistance including Chris Lee,

Alan Lipton, Rahul Sukthankar, Tim Doebler, Larry Ray, Farhana Kagalwala, David LaRose,

Michael Nechyba, Frank Dellaert, Mark Ollis, Simon Baker, Teck Khim Ng, Chris Diehl, Dennis

Strewlow, Martin Martin, Dongmei Zhang, YingLi Tian, Bob Collins, Jeff Cohn, Terence Sim,

Dave Duggins, Tom Drayer, Yanxi Liu, Tsuhan Chen, Tommy Poggio, Huang Fu Jie, Steve Seitz,

Sundar Vedula, Jeff Schneider, Geoff Gordon, and Marina Meila. And finally, most of all, I would

like to thank Laura and the rest of my family for their unwavering support and encouragement

during my graduate studies.



 1   Introduction 1

1.1  Challenges in Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2  Choosing a Representation for Object Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3  Representational Choices for Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4  Detection of Human Faces and Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5  Overview of Approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

 2  View-Based Detectors 10

 3  Functional Form of Detector:   Statistical Representation Using Histograms 13

3.1  Representation of Object and Non-Object Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2  Representation of Statistics Using Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3  Multiple Histograms to Represent Multiple Attributes of Visual Appearance . . . . . . 17

3.4  “Parts-based” Decomposition of Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1   Frequency/Scale Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.4.2   Orientation Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.4.3   Generalized Decomposition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.4.4   Spatial Decomposition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.4.5   Geometric Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.5  Implementation of Visual Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1   Wavelet Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.5.2   Quantization of Wavelet Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.5.3   Specification of Visual Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.6  Overall Decision Rule and Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7  Appendix: Wavelet Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 4  Functional Form of Detector:

Re-derivation from an Ideal Form 36

4.1  Ideal Functional Form of Detector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



4.2  Generalizations to Ideal Functional Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3  Wavelet Transform of Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4  Simplifications to Functional Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1   Statistical Independence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4.4.2   Quantization of Wavelet Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.4.3   Reduced Resolution in Pattern Position  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.5    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 5  Training Detectors 47

5.1  Images of the Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1   Collection of Original Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
5.1.2   Size Normalization and Spatial Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
5.1.3   Intensity Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
5.1.4   Synthetic Variation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

5.2  Non-Object Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3  Training Method (I) - Probabilistic Approximation  . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4  Training Method (II) - Minimization of Classification Error using AdaBoost . . . . . . 52

 6  Implementation of the Detectors 57

6.1  Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2  Searching for Objects at One Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3  Re-using Multi-resolution Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4  Heuristic Speed-ups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1   Coarse to Fine Search Strategy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
6.4.2   Adjacent Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
6.4.3   Color Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

6.5  Performance Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

 7  Face Detection Performance 63

7.1  Results in Face Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



7.2  Positional Decomposition of Face Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3  Analysis of Pair-wise Statistical Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

 8  Car Detection Performance 72

8.1  Results in Car Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.2  Positional Decomposition of Car Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.3  Analysis of Pair-wise Statistical Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

 9  Review of Other Statistical Detection Methods 77

9.1  Comparison of Our Approach to Previous Detection / Recognition Methods  . . . . . . 77

9.1.1   Local Appearance Versus Global Appearance  . . . . . . . . . . . . . . . . . . . . . . . . . .77
9.1.2   Sampling of Local Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
9.1.3   Representation of Geometric Relationships  . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
9.1.4   Representation of Local Appearance using Wavelets . . . . . . . . . . . . . . . . . . . . .78
9.1.5   Representation of Statistics/Discriminant Functions  . . . . . . . . . . . . . . . . . . . . .79
9.1.6   Estimation of Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

9.2  Summary of Previous Methods for Face Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.2.1   Sung and Poggio [18]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
9.2.2   Rowley, Baluja, and Kanade [14]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
9.2.3   Osuna, Freund, and Girosi [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
9.2.4   Moghaddam and Pentland [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
9.2.5   Colmenarez and Huang [20]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
9.2.6   Burl and Perona [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
9.2.7   Roth, Yang, Ahuja [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

9.3  Summary of Previous Methods for Car Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.1   Rajagopalan, Burlina, Chellappa [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
9.3.2   Papageorgiou, Poggio [83]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

 10  Conclusion 91

References  95



1

Chapter 1.  Introduction

Object detection is a big part of our lives.  We are constantly looking for and detecting objects:

people, streets, buildings, hallways, tables, chairs, desks, sofas, beds, automobiles. Yet it remains

a mystery how we perceive objects so accurately and with so little apparent effort.   Comprehen-

sive explanations have defied physiologists and psychologists for more than a century.

In this thesis, our goal is not to understand how humans perceive, but to create computer meth-

ods for automatic object detection.  Automated object detection could have many uses.  The avail-

ability of large digital image collections has grown dramatically in recent years.  Corbis estimates

it currently has more than 67 million images in its current collection[1].  The Associated Press

collects and archives an estimated 1,000 photographs a day[2].  The number of images on the

World Wide Web is at least in the hundreds of millions.  However, the usability of these collec-

tions is limited by a lack of effective retrieval methods.  Currently, to find a specific image in such

a collection, we have to search using text-based captions and low-level image features such as

color and texture.   Automatic object detection and recognition could be used to extract more

Figure 1.  Examples of computer detection of human faces

Figure 2.  Examples of computer detection of automobiles
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information from these images and help automatically label and categorize them.   By making

these databases easier to search, they will become accessible to wider groups of users, such as

television broadcasters, law enforcement agencies, medical practitioners, graphic and multimedia

designers, book and magazine publishers, journalists, historians, artists, and hobbyists.  Auto-

matic object detection could also be useful in photography. As camera technology changes from

film to digital capture, cameras will become part optics and part computer (giving true meaning to

the term “computer vision”).   Such a camera could automatically focus, color balance, and zoom

on a specified object of interest, say, a human face.  Also, specific object detectors, such as a face

detectors and car detectors, have specialized uses.  Face detectors are a necessary component in

any system for automatic face identification.  Car detectors could be used for automatically moni-

toring traffic.

1.1. Challenges in Object Detection

Automatic object detection is a difficult undertaking.  In 30 years of research in computer

vision, little progress has been made.  The main challenge is the amount of variation in visual

appearance. For example, cars vary in size, shape, coloring, and in small details such as the head-

lights, grill, and tires.  An object’s orientation and distance from the camera affects its appearance.

A more general difficulty is that visual information is ambiguous.  Geometric ambiguity exists

since the three dimensions of the world are projected on to two in the image.  Also, a pixel’s inten-

sity depends on many dispersed factors in the environment.  It depends on the light sources: their

locations, their color, their intensity.  It depends on the surrounding objects.  Some objects may

cast shadows on the object or reflect additional light on to the object.  Pixel intensity also depends

on the reflective properties of the viewed surfaces.  A smooth surface will reflect light differently

than a rough one.

Figure 3. Objects of the same class can vary significantly in appearance
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Object detection is also difficult because images contain a large amount of data.  There may be

hundreds or even thousands of input pixels, each of which may carry important information.  To

use this information to its fullest extent, we would have to build the detector as an enormous table

with an entry for every possible input indicating its classification, object or non-object, such as

Table 1.  Such a representation would account for all the forms of variation we just mentioned.

Unfortunately, such a table is infeasible.  entries would be required for describing

the classification of a 20x20 region. Computer power and memory limit us to using a classifica-

tion rule that is hundreds of orders of magnitude smaller.  However, there is hope that we can get

by with such a representation.  The physical world imposes constraints on the appearance of

objects; that is, of all the possible images that could conceivably exist in the physical world, only

a small subset actually do.  Moreover, people and animals are living examples things that achieve

successful perception within their own computational limits.

Table 1: Ideal but infeasible classifier

(1,1) (1,2) . . . (20,20) classification

0 0 . . . 0 Non-object

0 0 . . . 1 Non-object

Figure 4.  Variation due to the pose (the relationship between the orien-
tation of the object and the position of the camera)

Figure 5.  Variation due to lighting and shadowing

256400 10963≈
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1.2. Choosing a Representation for Object Detection

The main issue in object detection is choosing a good representation within our computing

constraints.  An object detector must accommodate all the variation we mentioned and still distin-

guish the object from any other visual scene in the world.

The most attractive way to choose a representation would be to use an automated method that

would choose it for us.    Such a goal has motivated many methods such as genetic algorithms and

prune and grow methods for artificial neural networks. However, with current computer power,

this is too great a challenge.  The search space of possible models is enormous for the high dimen-

sional spaces created by images.

Ultimately, we must make representational choices by hand.1  In making these choices, we

have to ask the question: What relationships help distinguish the object from the rest of the visual

world?  The best we can do is make educated guesses.   We can look at the work of other research-

ers in object recognition and detection and try to understand why some models have been more

successful than others.  We can look at psychological and biological studies on how animals and

people see. And, we can use our intuition about what makes an object distinct from everything

else.  These sources of knowledge helped us to design the object detector we use in this thesis.

Let us first look at what some of the representational choices and trade-offs are.

1. This statement may sound surprising. Most papers on recognition do not discuss mak-
ing such decisions.  This omission is probably because these methods start from a repre-
sentational framework (e.g., a mixture of Gaussians, multilayer perceptron, quadratic
filter, etc.) in which representational possibilities have already been pruned.

. . . . . . . . . . . . . . .

35 45 . . . 28 Object

. . . . . . . . . . . . . . .

255 255 . . . 255 Non-object

Table 1: Ideal but infeasible classifier

(1,1) (1,2) . . . (20,20) classification
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1.3. Representational Choices for Object Detection

Below we outline some of the major differences among existing methods for detection and rec-

ognition:

• 3D vs. 2D - An object can be represented directly through a 3D model or indirectly through a

collection of 2D models.  For example, alignment methods [3] use explicit 3D models relating the

position of key features.  Modular viewpoint-based models [4][30][29] decompose appearance

into separate 2D models corresponding to different viewpoints.  There can be a small finite num-

ber of viewpoints [4] or the 2D information could be represented as a continuous function of the

3D pose of the object [30][29].  Generally, it is easier to represent appearance in 2D models than

in 3D models.  Conversely, shape can be directly represented using 3D models but only indirectly

represented using 2D models.

• Wholistic appearance vs. appearance of parts - There are many algorithms that treat the

object’s appearance as one monolithic quantity such as [30][29][5][6].  At the other extreme there

are algorithms that represent the object’s appearance as a collections of parts (edges, corners,

complex features) [9][10][39].  The trade-off is that while monolithic models capture relation-

ships across the full extent of the object, describing the model in terms of smaller parts concen-

trates the representation power and describes the appearance of these smaller portions in greater

detail.

• Feature vs. Geometry -  If we use a parts-based description, there is trade-off between how

much representational power we allocate to the description of the parts themselves and how much

we allocate to a description of their geometric relationships.  At one extreme, some representa-

tions do not model spatial relationships [9][84].  At the other extreme, others use a minimalist fea-

ture representation and emphasize geometric relationships [32][41][45][46][47].

•  Sampling density - If we represent the object in terms of parts, there is the question of what

parts to represent.  Do we choose a few salient features.  Say the eyes, nose, and mouth on a face

or some other relatively small subset of the visual information [26][4][40]?  Do we use an “inter-

est operator” or some other automatic method to select a small set of features to use [81][39][82].

Or do we uniformly sample the appearance of the object.  Obviously, both representation power
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cost increase by using a higher sampling density.

•  Non-object representation - Detection can be thought of as a two category classification

problem.  How do we represent the “non-object” category.  Do we not represent it all and thereby

implicitly assume a uniform distribution.  Or do we model it explicitly using real-imag-

ery.[14][18]  And if so what and how do we select images and weight them?

Probabilistic representation - At one extreme we can represent the object as a fixed determinis-

tic template.  Such a representation will work well if the object’s appearance does not vary and

environment (lighting, etc.) is controlled.  As object recognition methods try to cope with increas-

ing degrees of variation in the object and environment, they use different modeling techniques.

For example, if the only form of variation is lighting intensity, normalized correlation may be the

best solution.  If the object’s appearance is also subject to variation there are a plethora of methods

and techniques.  Below we discuss some the issues in making these choices:

- Dimensionality reduction - To use any statistical representation any method must signifi-

cantly reduce the dimensionality of the image in order to avoid overfitting.  There are many ways

to do this such as linear projection methods[5][29][30], and resolution reduction meth-

ods[14][18], or simply by hand selecting features.

- Probability functions vs. discriminant functions - We can model the statistics of each class

separately, or we can model the classification problem directly through a discriminant function.

- Flexibility of model - How many variable parameters are fit to the training data?  Can the rep-

resentation divide input space with a hyperplane, conic section[19][81][82], etc.  Can the proba-

bility distributions represent multiple modes?

- Parametric vs. non parametric - Non parametric models make no assumptions about the

nature of the distribution but are more costly in terms of data reduction requirements and retrieval

of probabilities.

- Estimation \ learning method-  Method for fitting model to training data.  Can best fit be

achieved or is method subject to local minima.  Does closed-form solution exist or is method iter-
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ative?

-Complexity of evaluation of probability - Given an input how much computation is required to

retrieve the associated probability?

1.4. Detection of Human Faces and Cars

Our representational choices will depend on the object we are trying to detect.  It is unlikely

that one representation will work for all kinds of objects.  In this thesis, we develop methods for

detection of human faces and cars.  For automobile detection we detect 2-door and 4-door passen-

ger cars excluding all trucks, sport utility vehicles, vans, mini-vans, station wagons, racing cars,

and pre-1950 models.  For both objects we detect upright objects allowing for variation between

full frontal view to full side view (no back views) and we have placed no restrictions on back-

ground scenery, lighting, or any other naturally occurring environmental conditions.

We choose faces and cars because we wanted the challenge of two objects that differ in many

ways.  Faces are natural objects that are irregular in their shape.  Cars are man-made and consist

primarily of flat surfaces.  The surfaces on faces tend to be dull and non-reflective while those on

cars tend to be shiny and reflective.  Yet, in spite of these difference, we also choose these objects

because they are similar in a more abstract way.  They are both semi-rigid objects that have dis-

tinctive features in a fixed geometric arrangement.  On faces, the eyes, nose, and mouth form a

unique configuration.  On cars, the grill, windshield, tires, and headlights are in a relatively fixed

arrangement.  This similarity between cars and faces allows us to use the same underlying model

for both objects.  By being able to do so, we view this work as a first step toward developing a

general method that applies to the whole class of semi-rigid objects.  Hopefully, with little modifi-

cation other than that of the training data, we will be able to apply this method to the detection of

pedestrians, airplanes, ships, boats, bicycles, tanks, fire hydrants, stop lights, some animals ,and

many other objects with similar properties.

1.5. Overview of Approach

We use a 2D view-based approach for representing the 3D geometry of each object.  In this

approach, we use several decision rules for each object where each rule decides if the object is
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present at a particular orientation with respect to the camera.   In Chapter 2, we describe how we

partition the 3D geometry of each object into decision rules for separate views and how we nor-

malize the size and alignment of the object within each of these views.

All of these decision rules (for different objects and for different viewpoints for the same

object) have the same underlying functional form.  The only difference among the rules is that

each one is trained on a different set of images.  The key issue we address in this thesis is the

choice of the decision rule’s functional form.  This function form is the embodiment of all our

representational choices.

We use a statistically based representations to model variation in appearance for the object and

variation in the appearance of the rest of the visual world.  We capture these statistics using a rep-

resentation based on multiple histograms.  Each histogram captures the statistics of a different

attribute of visual appearance.  These attributes represent appearance over differing spatial

extents, frequency ranges, and orientations.  We use a large set of different attributes to take

advantage of as much information as possible in making a detection decision.  Depending on the

image, we may have to rely on different cues.  For example, in Figure 6 we show the variety of

cues that may or may not exist in images of a human face, such as lack or presence of low/high

frequencies, glasses, facial hair, shadowing, surface markings, etc.  In Chapter 3, we describe

these representational choices and derive the functional form of our detector.

We also view our representation as our best attempt at approximating an ideal functional form

within our computational constraints.  In Chapter 4 we re-derive our functional form by a series of

Figure 6.  The cues available for detecting faces vary widely from image to image.
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approximations to this ideal form.  Through this analysis we gain a better understanding of several

issues that are not obvious in the first derivation.  This derivation reveals the statistical indepen-

dence assumptions between the attributes.  It also reveals why it is useful to select non-object

samples by bootstrapping and why we should explicitly train the detector to reduce the classifica-

tion error over the training set.

In Chapter 5 we describe how we train each decision rule by collecting statistics from a speci-

fied set of training images.  First, we describe how we use bootstrapping to select “non-object”

samples.  We then describe how we use the AdaBoost algorithm to train the decision rules to

explicitly minimize classification error on the training set.

In Chapter 6 we describe the implementation of the detector.  We discuss issues related to

speed and efficiency.  In particular, our approach is to search the image in a coarse-to-fine fashion

pruning out unpromising candidates along the way.

We describe our performance for face detection in Chapter 7 and our performance for car

detection in Chapter 8.

In Chapter 9 we compare our approach to other probabilistic approaches to object detection,

specifically those for face detection and car detection.

In Chapter 10 we summarize our approach and discuss future topics of research.
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Chapter 2. View-Based Detectors

Our overall goal is to be able to detect the object over a range of orientations, sizes, and posi-

tions in an image.  We use a 2D view-based approach to accommodate variation in orientation and

we use exhaustive search in position and scale to accommodate variation in size and position.

A view-based approach works as follows.  For each object, we build several detectors where

each one is specialized to specific orientation of the object and can accommodate small amounts

of variation around this orientation.  To be able to detect an object at any orientation we apply all

these detectors to the image and merge their results such that they are spatially consistent.  In  Fig-

ure 7 we show such a face detection result using this approach.   In this example, each detector

left profile
detector

right profile
detector

frontal face
detector

merged
detections

Figure 7.View-based detectors
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detects all the faces corresponding to its orientation.  The woman in front was initially detected by

both the frontal and left profile detectors, because the orientation of her face is somewhat in-

between these orientations.  However, when the algorithm spatially integrates these results and

chooses the more confident detection which in this case is the frontal detection.

It may seem counter-intuitive to use a 2D based model such as this to represent a 3D object, but

there is an advantage to doing so.  The problem with a 3D model is that we do not have explicit

knowledge of the 3D geometry of the object.  All our information is in the form of 2D images.  To

maintain a 3D representation we would have to rely on 3D recovery methods which are error-

prone.  By maintaining 2D models we avoid introducing such errors into our representation.

The question of how many and which viewpoints to use is an open question.  One possible

answer is to select viewpoints from aspect graphs if the object has well-defined surfaces [62].

However, our approach was to simply determine the number of viewpoints through experimenta-

tion.  For face detection, we found that three separate detectors was sufficient: left-profile, frontal

views, and right-profile.  In practice, we built only two detectors, right-profile and frontal, since

we can detect left-profiles by applying the right profile detector to a mirror-reversed image. We

show example training images for these in Figure 8. For automobile detection, we originally used

three detectors, left-side, front, and right-side, but found it was necessary to use more.  There are

several explanations for this.  Automobile photographs tend to be taken from a wider variety of

vantages, from road level to views from a higher vantage point.  In comparison, we usually photo-

graph faces at eye level, except in surveillance cameras.  Also, the shape of an automobile is recti-

linear.  Small changes in angle will produce bigger changes in appearance than they do for a

sphere.  Overall, we used 15 decision rules corresponding to the following orientations: one fron-

Figure 8.  Example training images for frontal and right profile face views
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tal viewpoint and 14 side viewpoints.  Here again, we only had to train 8 detectors (7 right side

detectors and one frontal detector), since 7 viewpoints are mirror reflections of each other.  In Fig-

ure 9 we show example training images for each of the viewpoint we trained on .   We do not

detect back views of cars.  Also for both object we do not represent in-plane rotations.  Both faces

and cars tend to appear as upright objects.

In addition to detecting the object over variation in orientation, we also have to detect it over

variation in size and position within the image.  Our approach to detecting the object under these

variations is to use exhaustive search.  We train each view-based detector to only find the object

when it is normalized in size and centered in a given rectangular image window. (We design each

such detector to accommodate small variation about this size and alignment.)  To then detect the

object at position in an image, we have to re-apply each detector at all possible positions of the

rectangular window.  Then to detect the object at any size, we have to repeat this process over

magnified and contracted versions of the original image.

Figure 9.  Example training images for each car viewpoint
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Chapter 3. Functional Form of Detector:

Statistical Representation Using Histograms

In this chapter we derive the functional form of our detector.  We use a statistical representation

to model variation in visual appearance.  We model both the statistics of appearance of the object

and the statistics of the rest of the world.  The difficulty in modeling these distributions is that we

do not know their true characteristics.  We do not know if they are Gaussian, Poisson, multi-

modal, etc. These characteristics are unknown since it is not tractable to analyze the joint statistics

of large numbers of pixels.  Therefore, we sought statistical models that avoid making strong

assumptions about distributional structure while still retaining good properties for estimation and

retrieval.  As we will explain, the best compromise we found was histograms.

Histograms, however, have one fundamental limitation.  A histogram can only use a discrete

number of values to describe appearance.  More importantly, because of limited computer mem-

ory and finite training data, a histogram can only use a relatively small number of discrete values.

To overcome this limitation we will describe how we use multiple histograms where each histo-

gram represents the statistical behavior of a different group of quantized wavelet coefficients.

With this representation, each histogram represents a different attribute of appearance in terms of

spatial extent, frequency range, orientation. Our approach is to use many such histograms to make

up for the limited scope and resolution of each individual one.

In this approach, by modeling groups of wavelet coefficients, we capture the statistics of

appearance over limited spatial extents.  However, we would also like to capture the overall geo-

metric configuration of the object.  Therefore, as we will explain, in each histogram, we represent

the joint statistics of appearance and position, where we measure position with respect to a local

coordinate frame affixed to the object.  This representation implicitly captures each part’s relative

position with respect to all the others.
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3.1. Representation of Object and Non-Object Statistics

Coping with variation in appearance is a big problem in object detection.  We not only have to

cope with variation in the object, but we also have to cope with variation in the rest of the world;

that is, we have to distinguish the object from anything else that might occur in the world.  For this

reason, we model both the statistics of appearance of the object, P(image | object), and the statis-

tics of appearance of the rest of the visual world, P(image | non-object).

Intuitively, the non-object statistics help us account for the distinctiveness or uniqueness of fea-

tures.  Some features on an object are more distinctive than others.  For example, a paisley pattern

is more distinctive than a plain white pattern.   On a human face, the eyes are more distinctive than

the areas on the cheeks.  Cheeks have little texture and could look like many other things in the

visual world.   However, an “eye-like pattern” and a “cheek-like pattern” will have similar proba-

bilities of occurrence on a face:

(1)

since each face has two cheeks and two eyes.  Yet, an eye seems to be a better indicator of a face

and should carry more influence than a cheek in making the classification decision.

We use the statistics of the rest of the world, P(image | non-object), to capture this notion of

distinctiveness.  Since “eye-like patterns” are rarer than “cheek-like patterns” in the visual world

at large, we would expect that:

(2)

Therefore, we can get a better measure of a given feature’s classification power by dividing1 its

object probability by its non-object probability:

1. It may seem arbitrary that we divided the two probability distributions in equations (3)
and (4).  Conceivably, we could have combined them in other ways, such as by subtrac-
tion.  When we re-derive the decision rule in Chapter 4, we will see how this equation
follows from Bayes decision rule.

P eye-like pattern face( ) P cheek-like pattern face( )≈

P eye-like pattern non-face( ) P cheek-like pattern non-face( )<
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(3)

This ratio will be large for distinctive features on the object -- patterns that occur frequently on the

object but occur infrequently in the rest of the visual world.

Our overall model for the decision rule will then be the ratio of the two probabilities:

(4)

If this ratio is greater than λ, we will decide that the object is present.  If it is less than λ then we

decide that the object is not present.

In the rest of the chapter we explain how we represent the two probability distributions, P(image |

object) and P(image | non-object).

3.2. Representation of Statistics Using Histograms

The difficulty in modeling P(image | object) and P(image | non-object), is that we do not know

the true statistical characteristics of appearance either for the object or for the rest of the world.

For example, we do not know if the true distributions are Gaussian, Poisson, multimodal.  These

properties are unknown since it is not tractable to analyze the joint statistics of large numbers of

pixels.

Since we do not know the true structure of these distributions, the safest approach is to choose

models that are flexible and can accommodate a wide range of structure.  The most flexible repre-

sentations are non-parametric methods, such as nearest neighbor, Parzen windows and other ker-

nel density models.  However, there are two problems with non-parametric models.  First, the high

dimensional nature of images presents a problem.  An enormous set of training examples and

drastic dimensionality reduction are necessary to avoid overfitting.  The second problem is the

high computational cost of probability retrieval from these models.  For a given input, probability

retrieval involves a computation over the entire training set; that is, we have to compare the input

to all the training data.  Even if efficient strategies such as k-d trees are used, probability retrieval

P feature object( )
P feature non-object( )
------------------------------------------------------------

P image object( )
P image non-object( )
-------------------------------------------------------- λ>
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calculations will be very time consuming.

An alternative would be to use flexible parametric distributions such as a multilayer perceptron

(artificial neural network) or mixture model.  Each of these models has some flexibility to model

multi-modal distributions and become a universal approximators as their sizes increase towards

infinity (i.e., a multilayer perceptron with infinite hidden units, or a mixture model with infinite

number of modes).  However, there are no closed form solutions for fitting these models to a set of

training examples.  Instead, we must estimate their parameters by iterative procedures: gradient

descent (backpropagation) and E-M, respectively.  These parameter estimates can become trapped

in a local minimum and be suboptimal. Also, it is questionable whether such models are appropri-

ate for detection.  For example, a multilayer perceptron forms decision boundaries that are combi-

nations of hyperplanes to a first approximation. It is not clear whether such decision boundaries

will be good for separating two or more classes in a high dimensional space [51][52].

Instead of these approaches, we use histograms as a basis for probabilistic representation (see

[9][10][54] for other histogram-based methods in computer vision).  Histograms are almost as

flexible as non-parametric methods.  Histograms, however, have the advantage that probabilities

can be retrieved by a table look-up rather than a computation over the original training data.  Esti-

mation of a histogram is also trivial.  We count how often each attribute value occurs in the train-

ing data.  This involves just one pass through the training images.  The resulting estimates are

statistically optimal: maximum likelihood, no bias, consistent, and  efficient (they satisfy the

Cramer-Rao lower bound).

We can model the accuracy of a histogram by considering each bin to be a binary variable:

either the input falls in the bin outside of the bin.  Let us say the true probability that the input falls

in the bin is p.  We can then model the probability of counting k occurrences in n trials by a bino-

mial distribution:

(5)

Given values for k and n, we can compute the maximum likelihood estimate for p as:

Pr k occurences in n trials( ) n!
k! n k–( )!
----------------------- pk 1 p–( )n k–=
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(6)

We can also compute the variance in this estimate:

(7)

As we can see the variance in our statistical estimates will be quite low if n is large.   This formula

will tell us how accurate our probability estimates are for given amount of training data, n.

3.3. Multiple Histograms to Represent Multiple Attributes of Visual Appearance

The main drawback of a histogram is we can only use a relatively small number of discrete val-

ues to describe appearance.   For example, if we were to directly represent the appearance as the

set of pixel values over a region, say just a small 8x8 region, there would be 2568 ~ 1019 bins in

the histogram.  It is impossible to represent a histogram this large in computer memory.  In gen-

eral histogram size will be limited by a combination of memory and limited amounts of training

data.

For the sake of argument, let us say that histogram size is limited to 100,000.  With this size we

are effectively limited to a 16.6 bit representation of appearance since 216.6 ~ 100,000.  Clearly,

16.6 bits of information is not adequate for the purposes of object detection.  We would like a

richer description of appearance.  To do so, we will extract multiple attributes from the image and

compute their histograms separately.  Each attribute will represent something different about the

image, for example, low frequency information over large spatial extents, high frequency infor-

mation over small extents, etc.  We will define these later in this chapter.

First, let us see how this strategy can improve our representation of local appearance beyond

16.6 bits.  For the sake of illustration, let us consider the representation of an 8x8 region, X.  If

each pixel is 8 bits, the total region requires 512 bits for exact representation.

Let us assume a maximum of 100,000 total histogram bins.  As mentioned above, if we use one

visual attribute, we are effectively representing only 16.6 bits of the image:

p̂ml
k
n
---=

E p p̂ml–( )2[ ] p 1 p–( )
n

---------------------=
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(8)

where we use the variable patternr to denote the range of discrete values: r1, . . . r100,000.

The representation of probability then becomes:

(9)

However, if we use two attributes each represented by 50,000 discrete values, then we are effec-

tively representing the region with a total of 31.2 bits:

(10)

Our representation of probability then becomes:

(11)

where we have assumed statistical independence between the pattern1 and pattern2. We will

explore this assumption in more detail in Chapter 4.

Of course, we could use more attributes, each with fewer discrete values:

Appearance

Attribute #1 Attribute #2 Attribute #M
. . .

Figure 10.Decomposition of appearance into multiple attributes

patternr Quantizer X( )= pattern1 r1 r2 . . . r100 000,, , ,( ) ~16.6 bits∈

P X( ) Pr patternr( )≈

patternp Quantizep X( )= patternp p1 p2 . . . p50 000,, , ,( ) ~15.6 bits∈
patternq Quantizeq X( )= patternq q1 q2 . . . q50 000,, , ,( ) ~15.6 bits∈

P X( ) Pp patternp( )Pq patternq( )≈



19

(12)

Our representation of probability then becomes:

(13)

In the extreme, we could even represent the region using 50,000 binary-valued attributes. Such a

representation could be thought of as a large decision tree.

As we can see, the number of bits used to represent appearance can be increased as we decom-

pose our representation using more attributes.  However, the visual representation cannot be effec-

tively increased beyond 512 bits, since that’s how many bits are in the original representation of

the region.

While this strategy improves the fidelity of the visual representation, the larger goal is to

improve the accuracy of the probability,  given by equation (9). We would expect that equa-

tions  (11) and (13) can improve the accuracy over equation (9).  However, many questions

remain.  How do we decompose appearance into different attributes?  How many attributes do we

need? And how many discrete values do we use for each attribute?  There are no conclusive

answers to these questions.  In the next sections we provide some provisional answers.  We begin

by discussing how we decompose appearance into different attributes.

3.4. “Parts-based” Decomposition of Appearance

In this section, we describe the different ways we decompose appearance to form different

visual attributes.  In particular, we decompose the image in frequency, orientation, space, and

geometry.

3.4.1. Frequency/Scale Decomposition

In general, we would like to base our representation on visual attributes that are suited to the

patterns,1 Quantizes,1 X( )= patterns,1 s1 1, s1 2, . . . s1 m,, , ,( )∈

patterns,n Quantizes,n X( )= patterns,n sn 1, . . . sn m,, ,( )∈
. . .

patterns,2 Quantizes,2 X( )= patterns,2 s2 1, s2 2, . . . s2 m,, , ,( )∈

P X( ) Ps,k patterns,k( )

k 1=

n

∏≈

P X( )



20

scale of the features on the object.  If we base a representation solely on attributes that are too

small -- say, one pixel at the extreme -- they will not be powerful enough to describe anything dis-

tinctive about the object.  (Although there is a method for frontal face detection that works sur-

prisingly well using such a pixel-based representation [38]).  On the other hand, we do not want a

representation that only describes the object over large spatial extents.  First, large attributes are

not a desirable allocation of modeling resources.  They spread the limited representational power

over the entire object. This is true of any representation that reduces dimensionality in some way.

For example, if we look at the most significant eigenimages of a human face, we will notice a lack

of detail for small characteristics, such as the eyes and the nose. Second, a large template is

known to be sensitive to small differences in scale, position, and orientation [55].  Finally, the

matching of large regions may be strongly influenced by “irrelevant” pixels.  On many objects,

such as a car, there will be large indistinctive areas such as the hood and windshield that are punc-

tuated by relatively smaller areas of distinctive detailing such as the headlights and grill.  In

matching a large region, the majority of the pixels will come from untextured parts and dominate

selection of the match (using any norm that weighs each pixel equally such as L1 or L2).   This

may be one of the reasons, some researchers have tried to improve the eigenimage approach

[5][30] by using templates of smaller size to describe specific features [35][34].

Since important cues will exist at many sizes, the best solution is to describe the object over a

range of scales.  In the very least, we will need attributes to describe large areas, mid-sized areas,

and small areas. Such a representation may seem redundant.  Small areas exist as part of large

ones.  However, we can define these attributes to be completely independent, if we also divide up

the frequency content between them.  Since low frequencies only exist over large areas and high

frequencies can exist over small areas, the most natural decomposition is to use some attributes to

represent low frequencies over large spatial extents, attributes  to represent mid-range frequencies

using mid-sized attributes, and attributes to represent high frequencies over small spatial extents

as illustrated by Figure 11.

  The attributes describing small areas can do so at high resolution.  On a human face, they will

be important for representing features such as the eyes, nose, and mouth.  Similarly on a car, small

attributes are needed for the grill, headlights, tires, and various lines and boundaries.



21

Attributes computed over larger areas will be able to capture many other types of features. On

a face, the eye sockets are usually darker than the forehead.  On a car, various surfaces such as the

hood, windshield, and fenders may differ in average intensity.  By having these attributes special-

ized for low frequency content, we reduce their sensitivity to misalignment.

3.4.2. Orientation Decomposition

In addition to having attributes that are specialized in frequency content, we also specialize

some attributes in orientation content.  For example, an attribute that is specialized to horizontal

features can devote greater representation power to horizontal features than if it also had to

describe vertical features.

3.4.3. Generalized Decomposition

Finally, important cues may not be strictly localized at one orientation or in one frequency

band.  Some cues may exist over a wide range of frequencies.  For example, edges involve all fre-

quencies.  Similarly, not all cues exist at one orientation.  Corners involve both horizontal and ver-

tical edges.  Therefore, we define additional attributes that span wider ranges of frequencies and/

or orientations.  The trade-off is that these attributes will be limited to smaller spatial extents.

3.4.4. Spatial Decomposition

Since each of the attributes will have a limited spatial extent we will have to spatially decom-

frequency

spatial extent

Attributes with large extent

Attributes with mid-sized extent

Attributes with small extent

Figure 11.  Decomposition of appearance in terms of spatial extent and frequency range
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pose the object  We can decompose it in many ways.  We could sample a few regions that seem

distinctive to us or that we determine experimentally as shown in Figure 12a. Alternatively, we

could sample at regular intervals over the full extent of the object.  For instance, we could choose

sampling intervals to achieve critical sampling as shown in Figure 12b.

Instead, our approach is to oversample each attribute allowing these samples to partly overlap

as shown in Figure 12c.   We do this for several reasons.  First, while salient features, such as the

eyes, nose, and mouth on a face, are probably the most important for detection, other important

features may exist, too.  By sampling everywhere, we include anything that might contribute to

the detection decision. We also improve our detection decision by using more measurements.

This idea is similar to using more data to improve the accuracy of a statistical estimate [56].

Sampling with overlap may appear to lead to greater computational cost for evaluating the

attributes.  However, it does not.  If we were to sample the object more sparsely, we would still

end up densely sampling attribute values in each the input image.   The reason for this is that we

have to search the input image at all possible object locations, including overlapping ones.  For

each of these locations we collect a different set of attribute values.  Since we densely sample

these object locations we will end up with a dense sampling of attribute values, as well.

3.4.5. Geometric Decomposition

By decomposing and sampling the object spatially, we lose the ability to represent all the rela-

tionships between the various parts.  We believe that the spatial relationships of these various

parts is a very important cue for detection.  On the human face, the eyes, nose, and mouth appear

a. Selective sampling b. Critical sampling  c. Sampling with overlap

Figure 12. Examples of sampling strategies
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in a fixed geometric configuration.  This arrangement of these features is a distinctive characteris-

tic of faces.  If this geometric information becomes scrambled, the face becomes unintelligible as

shown in Figure 13.

To model geometry, we represent the positions of each sample with respect to a coordinate

frame affixed to the object as shown in Figure 14.   This representation captures each sample’s rel-

ative position with respect to all the others and implicitly captures many geometric properties

[57].  For each attribute, we then represent the joint probability of appearance and position for

both the object and the rest of the world: P(pattern(x,y), x, y | object) and P(pattern(x,y), x, y | non-

object) where pattern(x, y) is the discrete value of the specified attribute sampled at position x, y.

However, there is no need to represent position at the original resolution of the image.  Instead,

we represent position at a coarser resolution to save on modeling cost and to implicitly accommo-

date small variations in geometric arrangements of the parts of an object. The functions i(x) and

j(y) indicate this reduction in spatial resolution, where r will be either 4, 8, 16, depending on the

specific attribute:

(14)

3.5. Implementation of Visual Attributes

In this section we describe the actual attributes we compute based on the image decomposition

Figure 13. Face with geometric relationships scrambled

i x( ) x
r
--= j y( ) y

r
--=
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described in the last section.  We choose each attribute to represent a subset of quantized wavelet

coefficients.   Overall, we use 17 different attributes with variation in spatial extent, frequency

range,  orientation, and quantization.

3.5.1. Wavelet Transform

To form different attributes, we would like to decompose the image in the ways described in

the last section.  In particular, we would like a representation jointly localized in space, frequency

and orientation.  To do so, we perform a wavelet transform on the image.  The wavelet transform

organizes the image into subbands that are localized in orientation and frequency.  Within each

subband, each coefficient is spatially localized as well.

The wavelet transform is not the only method that can produce a representation that is jointly

localized in space, frequency, and orientation.  Both the short-term Fourier transform (also known

as “Gabor wavelets”) and pyramid algorithms can create representations that are jointly localized

in space, frequency and orientation.  Wavelets, however, have no redundancy.  The number of

transform coefficients is equal to the original number of pixels in the image.  These other multi-

resolution decompositions produce transforms that are larger than the original image.

We use a three level transform with a biorthogonal 5/3 wavelet filterbank1 [58], producing 10

subbands, as shown in Figures 15 and 16. Level 1 coefficients describe the lowest octave of fre-

1. Low-pass coefficients: -0.1768, 0.3535, 1.0607, 0.3535, -0.1768. High-pass coefficients: 0.3535, -0.7071,
0.3535.

x

y

i

j

Figure 14.  Coordinate frames affixed to object.
Coarse resolution in attribute position in terms of i and j



25

quencies.  Each subsequent level represents a higher octave of frequencies.  In terms of spatial

extent, a coefficient in level 1 describes four times the area of a coefficient in level 2, which

describes four times the area of a coefficient in level 3.  In Figure 17 we illustrate these relation-

ships.

In terms of orientation, the LH bands are the result of low-pass filtering in the horizontal direc-

tion and high pass filtering in the vertical direction giving horizontal features.  Similarly, HL rep-

resents vertical features.

Level 3
LH

Level 3
HH

Level 3
HL

Level 2
LH

Level 2
HL

Level 2
HH

L1
HL

L1
LH

L1
HH

L1
LL

Figure 15. Wavelet representation of an image

Figure 16.  Images and their wavelet transforms.
Note: the wavelet coefficients are each quantized to five values.



26

An important property of the 5/3 filter is that its high-pass filter has one vanishing moment.  An

nth order vanishing moment means:

(15)

for high pass filter coefficients d(0) through d(m-1).  A zeroth vanishing moment indicates that the

coefficients add to zero.  The filter is “blind” to constants and the DC level of the signal across the

filter’s extent.  The output of the filter only represents changes in intensity.  Only level 1 LL repre-

sents DC information since it is the result of low-pass filtering in both directions.  Many high-pass

filters used for compression are designed to have a first and 2nd vanishing moments also.  This

can be accomplished by using longer filters.  These high-pass filters are then “blind” to linear and

quadratic changes in the image.  It remains an open question, whether there are any advantage to

doing this for detection.

For a more complete description of the transform and the properties of a biorthogonal 5/3 filter

bank see the Appendix of this chapter, Section 3.7, and [58][59].

frequency

spatial extent

(in one direction)

level 1 coefficients

level 2 coefficients

level 3 coefficients

Figure 17.  Properties of wavelet coefficients

jnd j( )
j 0=

m 1–

∑ 0=
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3.5.2. Quantization of Wavelet Coefficients

Since we plan to represent the statistics of each attribute using a histogram, we must quantize

the wavelet coefficients so they each take on a finite range of values.  In particular, we chose to

limit each attribute to 10,000 discrete values.  We made this choice out of practical considerations.

To avoid excessive storage and memory we would like to keep overall histogram size under 106

bins.  Position in x,y will take on order 102 values, therefore, we limit attributes to 104 values.

There are conflicting goals in choosing a quantization resolution for the transform coefficients.

We need enough quantization levels to preserve the recognizability of the object.  If the image

reconstructed from the quantized transform is unrecognizable to a human, it is unlikely to have

enough information for computer recognition.  Yet we want to use as few quantization levels as

possible.  By doing so, we can represent larger spatial extents with a fewer number of discrete val-

ues.

First, let us explain how we represent the various subbands.  To begin with, we discard all HH

bands.  This reduces the amount of information by almost a third while degrading appearance lit-

tle. In Figure 18 we show images with and without HH subbands.

We represent the level 1 LL subband differently from the remaining subbands.  It is the result

of successive low-pass filterings in both directions.  It represents a very low resolution copy of the

original image.  All the other subbands are produced by a high pass filtering in one direction.

Since the coefficients in the high pass filter sum to zero, its output represents differential measure-

ments.  To make the level 1 LL band consistent, we represent each coefficient in terms of its dif-

Figure 18.  Original images on top, HH bands removed on bottom.
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ferences with its neighbors.  In particular, we generate two representations for each coefficient.  In

the “vertical” representation each coefficient is replaced by the difference between it and its right

most neighbor.  In the “horizontal” representation, each coefficient is replaced by the difference

between it and its top neighbor.  This captures horizontal features.  These two representations

could be thought of analogous to a HL and LH band respectively, and we effectively treat them as

such.

We would like to quantize all coefficients to 5 levels.  Fewer than 5 levels were not sufficient

for preserving appearance, especially for cars.  In Figure 19 we show images reconstructed from

these quantized subbands for both 3 and 5 quantization levels:

The problem with 5 quantization levels is that it restricts us to attributes based on a very small

number of coefficients.  6 coefficients per attribute would exceed our limit of 10,000 discrete val-

ues since 56 = 15,625.  To overcome this limitation, our strategy is to apply only 3 quantization

levels each time we sample a coefficient.  However, since each coefficient will be sampled multi-

ple times, (because of sampling with overlap and samples from multiple attributes) we can apply a

different set of quantization thresholds each time we sample.  This way, each coefficient can be

evaluated with respect to 5 (or more) levels but as part of different samples.  More specifically, to

Figure 19.  Quantization of HL and LH bands:  Original images on top, 5 levels per coeffi-
cient in middle, 3 levels per coefficient on bottom.  Note: level 1 LL band is not quantized.
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achieve 5 quantization levels we will need 4 quantization boundaries, {-q2, -q1, q1, q2}.  We break

these quantization boundaries into two sets: {-q1, q1} and (-q2, q2}.  We will then specify each

attribute by a window of sampling sites with specified quantization thresholds.  For example, an

attribute defined over a 2x2 neighborhood could be defined with the following quantization at

each site:

By doing so, a coefficient quantized with respect to {-q1, q1} for one sample will be quantized

with respect to (-q2, q2} for another sample shifted by one.   With this strategy, we choose

attributes computed over windows of 8 coefficients, where each attribute is described by 38 =

6,561 discrete values.

3.5.3. Specification of Visual Attributes

We define four broad types of visual attributes: intra-subband, inter-frequency, and inter-orien-

tation. The first type of attribute takes all 8 coefficients from one subband.  We call these intra-

subband attributes.  These attributes are the most localized in frequency and orientation. Inter-

frequency attributes use coefficients from multiple frequency bands but the same orientation band.

Inter-orientation attributes use coefficients from both orientations, LH and HL, but from within

the same frequency band.  Finally, an inter-orientation / inter-frequency attribute has no restric-

tions on which the bands from which it draws is coefficients [61].  In Figure 21 we illustrate these

differences in the support of each type of attribute.

Our assumption is that all of these relationships are important.  Some visual cues will only

involve coefficients with a subband, others involve coefficients over a range of frequencies, some

involve both horizontal and vertical components, and some as relations across both frequency and

orientation.  Our provisional modeling choice was to give these relationships approximately equal

representational power.  With some slight exceptions, we choose to represent each transform coef-

-q1,

q1

-q1,

q1

-q2,

q2

-q2,

q2

Figure 20. Quantization levels assigned to a 2x2 neighborhood
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ficient in one intra-subband attribute, one inter-orientation attribute, at least one inter-frequency

attribute, and one inter-orientation / inter-frequency attribute.

Overall, we used total of 17 attributes for each face detector and 13 attributes for each car

detector. We also experimented with 33 attributes for two of the car detectors, where the 20 addi-

tional attributes represented long, straight and narrow spatial extents.  These additional attributes

improved performance, but the memory requirements were too large to do further development.

Below we describe the 17 attributes we used for face detection including the 13 attributes we used

for car detection. (We sample each of these attributes at small step sizes across the extent of the

image, i.e, wavelet transform)

• 6 intra-subband attributes.  These are taken from the following subbands as listed below in

Table 2.  Each is computed from a set of 8 coefficients, a 3x3 block with one coefficient removed.

In Figure 22 we show the shape of this window and for each coefficient we indicate the quantiza-

tion boundaries it uses (similar to diagram in Figure 20).

Table 2: Intra-subband Attributes

Subband

Level 1 LH faces, cars

Level 1 HL faces, cars

Level 2 LH faces, cars

Level 2 HL faces, cars

Level 3 LH faces, cars

Intra-subband Inter-frequency Inter-orientation Inter-frequency
Inter-orientation

Figure 21. Regions of support for each type of attribute
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• 4 inter-orientation attributes. These are taken from the following subbands as listed below in

Table 3.  Each of these is computed from spatially corresponding 2x2 blocks in the two subbands

as shown in Figure 23

Level 3 HL faces, cars

Table 3: Inter-orientation subbands

Subbands

Level 1 LL (horizontal)
Level 1 LL (vertical)

faces

Level 1 LH, Level 1 HL faces, cars

Level 2 LH, Level 2 HL faces, cars

Level 3 LH, Level 3 HL faces, cars

Table 2: Intra-subband Attributes

Subband

-q2,

q2

-q1,

q1

-q2,

q2

-q1,

q1

-q2,

q2

-q1,

q1

-q2,

q2

-q1,

q1

Figure 22. Region of support and quantization for intra-subband attributes

-q1,

q1

-q2,

q2

-q2,

q2

-q1,

q1

-q1,

q1

-q2,

q2

-q2,

q2

-q1,

q1

Figure 23. Quantization for inter-orientation subbands

LH or
LL horizontal

HL or
LL vertical
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• 6 inter-frequency attributes as given in Table 4

• 1 inter-orientation / inter-frequency attribute for faces only involving 1 LL-horizontal, level 1

LL-vertical, level 1 LH , level 1HL, level 2 LH, level 2 HL.

With this representation, the attributes that use level 1 coefficients will cover the largest spatial

extents and the lowest and smallest range of frequencies.  Conversely, the attributes that use level

3 coefficients will cover the smallest spatial extents and the highest (and largest) range of frequen-

cies.  The attributes that use level 2 coefficients represent attributes that are intermediate in spatial

extent and frequency range.  As we will see in Chapter 6, this representation allows us to search

for objects using a coarse to fine heuristic strategy.  For example, we can evaluate the image using

only attributes that consist of level 1 coefficients.  Based on the output probabilities from these

attributes we can decide how to evaluate the rest of the image.  We can terminate the search at

those regions that have low probability and continue searching for the object in those regions that

have higher probability.

3.6. Overall Decision Rule and Summary

By combining all the representational decisions in this chapter we can write the overall func-

tional form of our decision rule as:

Table 4: Inter-frequency subbands

subbands

Level 1 LL (horizontal),
Level 1 LH

faces

Level 1 LH, Level 2 LH faces, cars

Level 2 LH, Level 3 LH faces, cars

Level 1 LL (vertical),
Level 1 HL

faces

Level 1 HL, Level 2 HL faces, cars

Level 2 HL, Level 3 HL faces, cars
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(16)

Let us explain how we combine the various ideas in this chapter to get this form:

1.  Object and Non-Object probability - As described in Section 3.1, we write the probability

function of the object in the numerator and the probability function of the “non-object” in the

denominator.

2.  Histograms - We represent Pk(patternk(x,y), i(x), j(y) | object) and Pk(patternk(x,y), i(x), j(y) |

non-object), as histograms.  Each of these histograms represents the joint statistics of appearance,

given by patternk, and position on the object, given by x, y.  We compute multiple histograms over

17 discrete-valued visual attributes, patternk.

3.  Visual attributes - Each visual attribute, patternk, represents the values of a subset of quantized

wavelet coefficients.  We use four types of visual attributes:

a.  Intra-subband - Coefficient subset is localized in frequency, orientation and space.

b. Inter-frequency - Coefficient subset is localized in orientation and space only.

c. Inter-orientation - Coefficient subset localized in frequency and space only.

d. Inter-orientation / inter-frequency - Coefficient subset localized only in space.

4.  Sampling with overlap - We sample each attribute at regularly spaced overlapping intervals

within each candidate object region.

5. Multiplication of probabilities - In Chapter 4 we will see why we multiply the probabilities cor-

responding to different observations.  In particular, we will see how doing so corresponds to an

assumption of statistical independence of the observations.

6. Threshold - We have not explained how to set the threshold, λ.  In practice we will select it

P image object( )
P image non-object( )
--------------------------------------------------------

Pk patternk x y,( ) i x( ) j y( ), , object( )

Pk patternk x y,( ) i x( ) j y( ), , non-object( )
--------------------------------------------------------------------------------------------------------

x y region∈,
∏

k

17

∏ λ>≈
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empirically.  We can, however, interpret it as the ratio of the prior probabilities, if the probability

models are accurate (which they are not) as we will also see in Chapter 4.

3.7. Appendix: Wavelet Transform

The wavelet transform decomposes an image into “subbands” that are localized in frequency

and orientation.  A wavelet transform is created by passing the image through a series of filter

bank stages.  In Figure 24 we show one stage in such a series.  In each stage we filter the image

first in the horizontal direction.  We use a one-dimensional high-pass and low-pass filter pair.  The

high-pass filter (wavelet function) and the low-pass filter (scaling function) are finite impulse

response filters.  In other words, the output at each point depends only on a finite portion of the

input. The filtered outputs are then downsampled by a factor of 2 in the horizontal direction.

These signals are then each filtered by an identical filter pair in the vertical direction.  We end up

with a decomposition of the image into 4 subbands denoted by LL, HL, LH, HH.  Each of these

subbands can be thought of as a smaller version of the image representing different image proper-

ties.  The LL (low-pass in both horizontal and vertical) is simply a low-frequency, low-resolution

version of the original. The LH (high-pass filtering in the vertical direction and low-pass filtering

in the horizontal) subband represents vertical features, such as lines and edges.  Similarly, HL rep-

resents horizontal features.  And, to some extent HH represents diagonal features.

These four subbands could be thought of as one frequency band or one level in a wavelet trans-

form.  To further decompose the image in frequency, we iterate on the LL band; that is we decom-

pose the LL band just the same way we decomposed the original image by sending it through

another stage of filtering identical to the first.  We can do this multiple times with each new LL

band to generate multiple levels in the decomposition.  In our representation we use a 3 stage filter

bank generating a a 3-level decomposition in frequency.

If the high pass - low pass filter pair is chosen properly, the original image can be reconstructed

from its transform with no loss of information.  Such filter banks are called perfect reconstruction

filter banks.  Several books describe their design [58][59].  There are several filter pairs we can

choose that will give perfect reconstruction.  We can choose orthogonal filters of various lengths:

Daubechies 4, Daubechies 6, Daubechies 8 or we could choose linear phase of various lengths 3
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(low-pass)/5(high-pass), 7/9, FBI 7/9, 11/13, etc.  It is not possible to choose filters that are both

orthogonal and linear phase except for the trivial case of Haar wavelets.  We choose symmetric 5/

3 mainly because it served several practical needs.  By having linear phase there is no ambiguity

about the alignment of the coefficients in successive levels of the decomposition. We choose fil-

ters of short length, 5/3 rather than 7/9 or 11/13 because we wanted to capture localized informa-

tion.  Remember, each coefficient describes a localized region in space, frequency and orientation.

Also, of course, smaller filters have less computational cost.  Finally, there is also some evidence

that human vision is less sensitive to errors with symmetric filters (i.e. linear phase) [60], but there

has not been rigorous verification of this.

Image

High-pass

Low-pass

2

2

High-pass

Low-pass

2

2

High-pass

Low-pass

2

2

horizontal filtering vertical filtering

HH

HL

LH

LL

Figure 24.  A filter bank stage
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Chapter 4. Functional Form of Detector:

Re-derivation from an Ideal Form

We can also view the functional form of our detector as representing our best attempt at

approximating to an ideal functional form within our computational constraints.  In this chapter,

we re-derive our functional form through a series of approximations to an ideal functional form.

By deriving our decision rule this way we get a clear picture of the functional form’s representa-

tional capacity and its deficiencies.  In particular, we have a complete record of all the transforma-

tions and simplifications that limit its representational power.  Also, through this analysis, we gain

a better understanding of several issues that were not apparent in the first derivation in Chapter 3.

This derivation reveals why it is useful to select non-object samples by bootstrapping and why we

should train the detector to explicitly reduce the classification error on the training set. Also, we

see why we divide object probability by non-object probability (in section 3.1) -- a consequence

of Bayes’ decision rule.  Similarly, we see how multiplying the probabilities from different

attributes (Section 3.6) corresponds to an assumption of statistical independence of the observa-

tions.

4.1. Ideal Functional Form of Detector

In Chapter 1 we introduced an ideal classifier as a large table as shown in Table 5 below.   This

classifier is ideal in several ways.  First, it based on a full representation of the data.  The classifier

uses the entire raw input, not a selected or filtered portion of it.  Second, it minimizes the proba-

bility of error, assuming each entry in the table is labeled with its most probable classification.

Finally, it is concise representation of the output. For each input, we simply represent its classifi-

cation and nothing else.  Of course, such a table is not feasible.  It is not possible to enumerate

every possible input in a table.  There are too many; we would need a table with 256400 entries for

classification of a 20x20 region where each pixel takes on 256 values.

Although this decision rule is intractable, it provides a useful starting point for deriving a feasi-

ble decision rule.  In our case, the functional form of our decision rule, equation (17), can be
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derived by a series of two generalizations (Section 4.2), a wavelet transform (Section 4.3), and

three simplifications (Section 4.4), as we will explain below.

(17)

4.2. Generalizations to Ideal Functional Form

We immediately notice several differences between equation (17) and the ideal model, Table 5.

First, in the ideal classifier, each entry in the table states a classification, object or not-object.  On

the other hand, our classifier outputs a continuous value which it compares to a threshold.  Also,

our classifier separately represents object and non-object properties, whereas the table does not.

Thus, to transform the table into equation (17), we must first make it more general in these ways.

These generalizations turn out to have important implications for the training of our detector, as

we will show.

First, we generalize the output of this table from binary values (object, non-object) to posterior

probabilities, as shown in Table 6. The posterior probability, P(object | image), states the proba-

bility that object is present for a given input.  The probability that the object is not in the image is

simply the complement of the posterior probability, P(non-object | image) = 1.0 - P(object |

image). To make the best decision, we always choose the classification, object or non-object,

which has the higher probability.  Equivalently, we decide that the object is present in the input

Table 5: Ideal but infeasible classifier

(1,1) (1,2) . . . (20,20) classification

0 0 . . . 0 Non-object

0 0 . . . 1 Non-object

. . . . . . . . . . . . . . .

35 45 . . . 28 Object

. . . . . . . . . . . . . . .

255 255 . . . 255 Non-object

Pk patternk x y,( ) i x( ) j y( ), , object( )

Pk patternk x y,( ) i x( ) j y( ), , non-object( )
--------------------------------------------------------------------------------------------------------

x y region∈,
∏

k

17

∏ λ>

25620x20
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image if:

(18)

This decision rule is known by the names of Bayes decision rule and the maximum a posteriori

(MAP) decision rule.

Now to generalize the decision rule further, we substitute Bayes theorem for P(object | image)

in equation (18):

(19)

Through some algebra we can re-write the decision rule as a likelihood ratio test:

(20)

  The left side of this equation is called the likelihood ratio.  It divides object probability by non-

object probability.  If the ratio of these two probabilities is greater than the ratio of the prior prob-

abilities, the right side of the equation, then we decide that the object is present. In equation (3) in

Chapter 3 we divide object probability by non-object probability as a direct consequence of this

Table 6: Ideal classifier using posterior probabilities

(1,1) (1,2) . . . (20,20) P(Object | Image)

0 0 . . . 0 0.000001

0 0 . . . 1 0.000003

. . . . . . . . . . . . . . .

35 45 . . . 28 0.87521

. . . . . . . . . . . . . . .

255 255 . . . 255 0.00004

P object image( ) 0.5>

P image object( )P object( )
P image object( )P object( ) P image non-object( )P non-object( )+
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 0.5>

P image object( )
P image non-object( )
-----------------------------------------------------

P non-object( )
P object( )

----------------------------------> λ=
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equation.

There are two advantages to writing the Bayes’ decision rule as a likelihood ratio test as given

by equation (20).  First, it is often easier to separately collect statistics for the two probability

functions, P(image | object) and P(image | non-object), than it is to directly collect statistics for

the posterior probability function.  Also, by expressing the decision rule this way, we factor out

the contribution of the prior probabilities and combine them into a scalar threshold, λ.  By chang-

ing this threshold we can apply the algorithm to different settings in which the prior probabilities

vary.

To use such a representation, we must build a table that stores two values for each input,

P(image | object) and P(image | non-object), as shown below in Table 7.   There are several conse-

quences of using a decision rule derived from this generalized form instead of one directly derived

from the concise form in Table 5.  The generalized form will work just as well if our probability

estimates are accurate representations of the true probabilities.  However, problems arise if there

is some inaccuracy in the modeled probabilities.  These errors in the probability will be propa-

gated and lead to errors in our classification decision.  The question is: will our probability models

for P(image | object) and P(image | non-object) be accurate?  Unfortunately, the answer is no.

First, there will be error in our estimates themselves because they are computed from finite train-

ing data.  In particular, we would need an extremely broad sample of imagery to get an accurate

estimate of P(image | non-object).  An even greater source of error, though, is that our functional

Table 7: Ideal classifier using separate models for object and non-object probabilities

(1,1) (1,2) . . . (20,20)
P(Image | Object),

P(Image | Non-object)

0 0 . . . 0 0.00000013, 0.013

0 0 . . . 1 0.00000032, 0.014

. . . . . . . . . . . . . . .

35 45 . . . 28 0.0092, 0.00045

. . . . . . . . . . . . . . .

255 255 . . . 255 0.00007, 0.03
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form is derived through incorrect assumptions about the nature of the true distribution.  As we

will see, in Section 4.4, there are several simplifications we will make to equation (20) in order to

achieve a computationally feasible decision.  It is unavoidable that some of these simplifications

will be inaccurate or partially inaccurate.

We can improve our detection performance if we bypass the intermediate estimates of the

probability functions and instead train our detector to directly minimize the classification error.

There will be errors in our estimate of the classification function, too, but it is better to estimate

this directly rather than combining two sources of error from intermediate estimates.  We will

later describe how we train the detector to do so using the AdaBoost algorithm in Chapter 5.

The fact that our end goal is classification, not probabilistic modeling, can also guide us in

answering an important question: how do we select training data for the non-object class?  Should

we use any imagery that is not of the object or should we be more selective? Let us consider a

hypothetical situation.  In Figure 25, we plot some hypothetical probability functions, P(x |

object) and P(x | non-object), for a one-dimensional classification problem in terms of a feature, x.

We also plot the classification function derived from these probabilities.   For input values of x in

which one class is overwhelmingly favored over the other, a qualitatively accurate representation

of their probabilities is sufficient to be accurate in classification.  It is not important to represent

all the little bumps and ripples indicated by A, B, and C in Figure 25.  However, for values of x

where there is not a clear difference between P(x | object) and P(x | non-object), such as those

indicated by D, it is more important to represent the ratio of the probabilities accurately.  If we

represent the probabilities accurately in this region, the classification boundary will be as precise

as possible[15][27].  Therefore, in selecting samples for the non-object class, it is more important

to select samples that are more likely to be confused with the object; that is, those close to the

decision boundary.  (This concept of selecting samples near the decision boundary is similar to the

way support vector machines (SVMs) [15][24] work.) In Chapter 5 we will explain how we do

this using bootstrapping.  Of course, it is still necessary to have a broad sampling of the non-

object class, so we will be qualitatively correct in other parts of the input space.
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P(x | non-object)

x

P(x | object)

x

x

Classification

non-object

object

Figure 25.  Probability functions and classification function for a hypothetical
classification problem (adapted from [27])
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4.3. Wavelet Transform of Image

As we described in Section 3.5.1, we perform a wavelet transform of the image.  It terms of

representational capacity, this transformation has no consequences.  The wavelet transformation is

fully invertible, so no information is lost.  We can represent this transform mathematically as:

(21)

where W represents the wavelet transform of the image.

4.4. Simplifications to Functional Form

We make three major simplifications to equation (21) in order to get a computationally feasible

form for the decision rule.

4.4.1. Statistical Independence

As we have mentioned, computer power and memory limit us to only representing the joint

probability of small subsets of wavelet coefficients.  We do not model the statistical dependency

outside these subsets. By doing so we transform equation (21) in the following way:

(22)

where W = (w1, w2, . . ., wn) represents the wavelet transform of the image, and x and y indicate

the spatial positions of the group of coefficients with respect to a coordinate frame affixed to the

object.  (Note: In the representation above, each coefficient is shown as part of only one subset.  In

practice, we will use each coefficient as part of multiple subsets; that is we will model each coef-

ficients joint statistics with several different groups of coefficients.  Each of these subsets will cor-

respond to a different visual attribute modeling statistical dependency over different frequency

bands, orientations, or spatial extents (see Section 3.5).)  By making this simplification, we

P image object( )
P image non-object( )
-----------------------------------------------------

P W WT image( )= object( )
P W WT image( )= non-object( )
--------------------------------------------------------------------------------=

P W object( )
P W non-object( )
------------------------------------------

P w1 . . . w8 x y, , , , object( )P w9 . . . w16 x y, , , , object( ). . .

P w1 . . . w8 x y, , , , non-object( )P w9 . . . w16 x y, , , , non-object( ). . .
----------------------------------------------------------------------------------------------------------------------------------------------------------------≈

. . .P wn 7– . . . wn x y, , , , object( )

. . .P wn 7– . . . wn x y, , , , non-object( )
-----------------------------------------------------------------------------------------
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implicitly assume statistical independence between the sets of coefficients.  This assumption is the

reason we multiplied the probabilities in the overall functional form of our decision rule, equation

(16) in Section 3.6.

This statistical independence simplification limits our representational power.  In general, we

cannot represent relationships among coefficients that are not grouped together into a subset.  This

includes aspects of appearance that are similar across the full extent of the object, such as skin

color or texture on a human face.  We cannot represent how the positions of the features systemat-

ically vary when viewing perspective changes.  We cannot represent long-range symmetries

across the object, such as the horizontal symmetry of the human face and cars, where features on

one side are strongly correlated with features on the other side, such as the eyes and ears on a

human face.  We cannot represent the interaction between the lighting and the 3D geometry, i.e.,

depending on the position of the light source, some parts of the object will be brighter than others.

This relationship changes in a systematic fashion as light source position changes.

We can analyze this simplification from several other perspectives.  If we take the log of the

left side of equation (22), it becomes a sum of log probabilities:

(23)

In this form, we can interpret the classifier as a linear discriminator where the log probabilities are

weights and the features are binary-valued vectors indicating which patterns have been detected

[64].  [17] documents the limitations of linear discriminators and, in particular, linear discrimina-

tors cannot represent exclusive-or and parity type functions.  However, it is improbable that par-

ity-type functions play much of a role as cues for distinguishing objects.  They are the most

unstable functions that are mathematically possible; the smallest possible pertubation in the input

will lead to a maximum change in the output.

We can also view this equation as a “simple” or “naive” Bayes classifier [63].  It can be shown

P w1 . . . w8 x y, , , , object( ). . .P wn 7– . . . wn x y, , , , object( )

P w1 . . . w8 x y, , , , non-object( ). . .P wn 7– . . . wn x y, , , , non-object( )
--------------------------------------------------------------------------------------------------------------------------------------------------------------------log =

P w1 . . . w8 x y, , , , object( )

P w1 . . . w8 x y, , , , non-object( )
---------------------------------------------------------------------------log . . .

P wn 7– . . . wn x y, , , , object( )

P wn 7– . . . wn x y, , , , non-object( )
---------------------------------------------------------------------------------log+ +
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that such a model cannot represent k of n type problems [64].  Similar to parity functions, this type

of relationship probably does not play an important role in distinguishing objects.

Nevertheless, it has also been demonstrated that the naive Bayes classifier performs well in a

number of classification problems, even when there is significant statistical dependency among

the attributes.  In particular, it has been shown that it performs equivalent to or better than other

concept learners [64].  There is not a full theoretical understanding of why this is true.  Although

[64] shows that the classifier is optimal for certain problems in which statistical independence

does not hold such as conjunctions and disjunctions, they also show it can be optimal for other

types of problems, too.

Below we illustrate how classification can be accurate even when the assumption of statistical

independence is violated and the statistical representation is inaccurate.  Let us consider two ran-

dom variables, x and y.  Let’s say the x and y are statistically dependent for both object and non-

object:

(24)

where f(y) is a deterministic function.

The correct decision rule is:

(25)

The decision rule under the (incorrect) assumption of statistical independence is:

P x f y( )= y object,( ) 1=

P x f y( )= y non-object,( ) 1=

P x y object,( )
P x y non-object,( )
---------------------------------------------

P x y object,( )P y object( )
P x y non-object,( )P y non-object( )
-------------------------------------------------------------------------------------=

P y object( )
P y non-object( )
--------------------------------------- λ>=
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(26)

However, if we choose γ = λ2 then the two decision rules become exactly the same even though

we have completely violated the assumption of statistical independence in the 2nd decision rule.

In the above example, the assumption of statistical independence worked partially because the

joint behavior of x and y was the same for both the object and the non-object class.  In general,

this assumption will lead to errors if P(x | y, object) and P(x | y, non-object) are very different func-

tions.  This underscores the problem with naive Bayes classifiers or any classifier in general; that

is, we will have errors when we do not model important relationships, such as that between x and

y when P(x | y, object) and P(x | y, non-object) are very different functions. No classifier is

immune to this problem except the ideal model, Table 5, which is infeasible.  In a naive Bayes

classifier, the relationships that are not modeled are very explicit.  In other models, they may be

more hidden (although if we can write such a classifier as a sum or product, we can easily put it in

a form equivalent to a naive Bayes classifier).  Thus, with any kind of classifier, it is most impor-

tant to represent the relationships that distinguish the two classes.  If we miss important relation-

ships, we may have classification errors.

4.4.2. Quantization of Wavelet Coefficients

  In quantizing the wavelet coefficients each subset of wavelet coefficients is replaced by a dis-

crete variable, pattern, that takes on 6,561 possible values.  Below we factor equation (22) in

terms of the 17 attributes we defined in Section 3.5.3 and write the attributes in terms of this dis-

crete valued variable:

P x y object,( )
P x y non-object,( )
---------------------------------------------

P x object( )P y object( )
P x non-object( )P y non-object( )
-------------------------------------------------------------------------------≈ =

P y object( )
P y non-object( )
--------------------------------------- 

 2

γ>=



46

(27)

4.4.3. Reduced Resolution in Pattern Position

We also reduce the resolution of x, y.  For level 3 patterns, resolution is reduced by a total factor

of 16 (4 in each direction).  For level 2, it also reduced by 16.  For level 1 it is reduced by a factor

of 64 (8 in each direction).  We represent this reduction by the functions, ik(x) and jk(y).

(28)

4.5.   Conclusion

The derivation of our functional form from an ideal form gives us another perspective on our

modeling choices.  We see that the main modeling deficiencies are from not modeling the rela-

tionships of all wavelet coefficients, by quantizing the values of the wavelet coefficients, and by

representing position of the wavelet coefficients at coarse resolution.  Therefore, assuming we

have adequate training data and an accurate estimate of the classification function, we can

attribute any deficiency in performance to these simplifications.

Pk patternk x y,( ) x y, , object( )

Pk patternk x y,( ) x y, , non-object( )
------------------------------------------------------------------------------------------

x y region∈,
∏

k

17

∏ λ>

Pk patternk x y,( ) ik x( ) jk y( ), , object( )

Pk patternk x y,( ) ik x( ) jk y( ), , non-object( )
-------------------------------------------------------------------------------------------------------------

x y region∈,
∏

k

17

∏ λ>



47

Chapter 5. Training Detectors

So far we have only chosen the form of the decision rule; that is, we have specified the number

of histograms, the size of each histogram and the variables over which we compute each histo-

gram.  We have not specified the actual values within each histogram, Pk(patternk(x,y), i(x), j(y) |

object) and Pk(patternk(x,y), i(x), j(y) | non-object) that are used in the decision rule.  We compute

these statistical values from various sets of images.   This process of gathering statistics is usually

referred to as training.  Specifically, we use a set of images of the object to generate samples for

training Pk(patternk(x,y), i(x), j(y) | object) and we use images that do not contain the object to

train Pk(patternk(x,y), i(x), j(y) | non-object).  In this chapter, we begin with a discussion of our

training images for faces and cars in Section 5.1.  In Section 5.2 we discuss the training images

we use for the non-object class.   Then in section 5.3, we describe a basic training algorithm in

which we estimate each histogram separately then in Section 5.4 we describe an alternative train-

ing procedure which minimizes the classification error on the training set using the AdaBoost

algorithm.

5.1. Images of the Object

In this section we describe the training examples we use for training Pk(patternk(x,y), i(x), j(y)

| object).  We describe where we collected our images, how we align and normalize each training

image, how we correct for lighting, and how we generate synthetic variations from each original

image.

5.1.1. Collection of Original Images

We gathered face images from a number of sources including the following image collections:

FERET1, NIST mug shot database2, Harvard’s face database3, and CMU’s face collection4.  We

also used many images we found at a variety of sites on the World Wide Web.  Overall, we gath-

1. Provided by Jonathon Phillips
2. See http://www.nist.gov/srd/nistsd18.htm.
3. Provided by Woodward Yang
4. Provided by Henry Rowley and Shumeet Baluja
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ered about 2,000 images of frontal faces and 2,000 images of profile faces.

We collected car images using our own camera and from the World Wide Web, mostly from car

sales sites and car enthusiast sites.  The latter sites were a good source of photographs of older

cars.  Overall, we gathered between 250 and 500 images per viewpoint with a total of over 2,000

images.

5.1.2. Size Normalization and Spatial Alignment

To reduce the amount of variation among each set of training images, we aligned all the train-

ing images with respect to a prototype image.  We aligned the images using a set of pre-defined

feature points that we hand-labeled for each image.  Using these feature points, we applied the

translation, scaling, and rotation [7] that brought each image into alignment with the prototype.

Below we give the sizes and examples of the images we used for training each detector.  Notice

that each of these images contains some of the background.  We do so because the silhouette of

the object against the background is a strong cue for detection for many of these objects, particu-

larly for faces in profile.  In Section 5.1.4 we will discuss how we alter the background to generate

multiple samples from the same original image.

Figure 26. Face frontal viewpoint.  Size = 56x48

Figure 27. Face side viewpoint.  Size = 64x64

Figure 32. Car viewpoint #5.  Size = 48x80
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5.1.3. Intensity Normalization

For faces, to also reduce the variation within each set of training images, we normalized the

Figure 28. Car viewpoint #1.  Size = 56x72

Figure 29. Car viewpoint #2.  Size = 48x80

Figure 30. Car viewpoint #3.  Size = 56x72

Figure 31. Car viewpoint #4.  Size = 40x88

Figure 33. Car viewpoint #6.  Size = 40x104

Figure 34. Car viewpoint #7.  Size = 40x96

Figure 35. Car viewpoint #8.  Size = 32x96
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intensity of each image.  We normalized the left and right sides of each training image separately.

For each side we scale all the intensity values by a specified scalars, γleft and γright:

(29)

However, when we sample an attribute that extends across both sides of the object, we normalize

the entire sample using the value of γ of the center pixel.  We choose these correction factors by

hand for each training image.  However, for cars we did not normalize the training images.

We normalize the two sides of the face in the training images to compensate for situations in

which the object is illuminated unevenly.  For example, a face could be brightly illuminated on

one side and in shadow on the other as shown below in Figure 36.

When we detect the object, for both faces and cars, we evaluate each side of each candidate

over a set of 5 discrete values for γ.  We then choose the best response from each side and sum

them to give the total response for the candidate.

5.1.4. Synthetic Variation

We will improve the accuracy of our object detectors by using more training data.  In particular

the accuracy of our histogram estimates will increase as we use more training examples (see equa-

tion (7) in Section 3.2).

To expand our training set, we generated synthetic variations of each original training image.

Depending on the object, we generated between 1600-6400 synthetic variations through small

variations in position, orientation, size, aspect ratio, background scenery, lighting intensity, and

I' x y,( ) γ leftI x y,( )= if y yo<

I' x y,( ) γ rightI x y,( )= if y yo≥

Figure 36.  Examples of uneven illumination
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frequency content.  Overall, this gave us at least 1,000,000 training examples for each object.  In

order to substitute different background scenery, we segmented the objects from the background

in the training images.  We segmented these images by hand and by automatic methods when pos-

sible.  Also, in the synthetic variations, we modified frequency content by using low pass filters

with various responses.  Below we show several of the forms of synthetic variation we used on

each original image:

5.2. Non-Object Images

We collected these images from photography collections1 and from the World Wide Web, par-

ticularly the Washington University archive2.  We tried to get a balance of indoor and outdoor

scenes, urban, industrial, and rural scenes.  Overall, we used over 2,000 such images.

To select non-object samples that resemble the object, we used bootstrapping [18][14].  Boot-

strapping is a two-stage process.  We first trained a preliminary detector using image samples

drawn randomly from the non-object image collection.  We then ran this preliminary detection

over the entire collection of non-object images.  We then selected samples from each of these

images where the detector gave a high response and we combined these samples with the original

random samples.  For some detectors we repeated this process several times gathering more and

1. Provided by John Krumm and Henry Rowley
2. http://www.wuarchive.wustl.edu

Figure 37.  Synthetic rotational variation

Figure 38.  Synthetic variation in aspect ratio and zoom

Figure 39. Synthetic variation in frequency content (low-pass filtering)
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more non-object samples.  We then used the final combined set of samples for training the final

detector.

5.3. Training Method (I) - Probabilistic Approximation

A set of 34 histograms makes up our decision rule: Pk(patternk(x,y), i(x), j(y) | object) and

Pk(patternk(x,y), i(x), j(y) | non-object) for k = 1 . .  17.   To train our car detectors we estimated

each histogram separately.   To estimate each histogram we simply counted how often each pat-

tern occurs at each position in the appropriate set of training examples.  To estimate Pk(pat-

ternk(x,y), i(x), j(y) | object) we use images of the object, and to estimate Pk(patternk(x,y), i(x), j(y)

| non-object) we use images that do not contain the object.  Occasionally, a pattern and position

combination may not occur together in a training set.  The corresponding bin in the histogram will

have zero count denoting zero probability.  However, it may not be desirable to actually assign

zero probability to this bin during testing, since its probably of occurrence usually will not be

zero.  To correct for this situation, we use Laplace correction[8], where we add one to each bin in

the histogram.

5.4. Training Method (II) - Minimization of Classification Error using AdaBoost

Training each histogram separately as described in Section 5.3, however, is not optimal for

classification.  To achieve better results, we should explicitly train our classifier to minimize clas-

sification error, as described in Chapter 4.   In this section, we describe how we estimate these his-

tograms to minimize classification error using the AdaBoost algorithm.  In particular, we trained

both the frontal and profile detectors using this approach.

AdaBoost [70][71][72][73]is a method for training a classifier to have low classification error

on the training set.  Similarly, other methods [74] may work for this purpose as well. AdaBoost

can be applied to almost any classification algorithm.  It works by training multiple instances of

the classifier.  Let’s call each of these classifiers ht(x).   AdaBoost then takes a weighted sum of

these classifiers as the final classifier:
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(30)

AdaBoost trains each of the classifiers, ht(x), by assigning different weighting to the training

examples.  For the first classifier, ht(x), all training examples are given equal weight.  For all sub-

sequent classifiers, ht(x), t > 1, AdaBoost assigns more weight to training examples that have

been incorrectly classified by the previous classifier, ht-1(x).  Conversely, it decreases the weight

for training examples that were correctly classified.

In using AdaBoost to train our detector we continue to collect each histogram by counting, but,

we increment each bin based on the weight assigned to the current training example.  We scale

and round the training image weights to integers for this purpose.

Following the development of [72], the algorithm works as follows.  Assume that we have a

sequence of m training examples {(xi, yi)}, where xi is the input and yi = {-1, +1} is the desired

class label.  Initialize the weights for each training example as D1(i) = 1/m.

For t = 1. .T:

1.  Train ht(x) using Dt(i)

2.  Compute αt (we discuss how to compute it below)

3.  Update:

(31)

where Zt is a normalization factor so that Dt+1 will be a distribution:

H x( ) sign αtht x( )

t 1=

T

∑
 
 
 

=

Dt 1+ i( )
Dt i( ) αtyi– ht xi( )( )exp

Z t

----------------------------------------------------=
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The final classifier is then given by equation (30) above.

This algorithm achieves the following bound on the training error:

(32)

To understand the power of this bound, let us consider a simple classifier with output {-1, +1}

instead of a continuous value, as in our classifier.  Then

(33)

where ui= yiht(xi).

We can then choose α as to minimize the right side of this equation:

(34)

Plugging this choice back into Z gives:

(35)

Since this is guaranteed to be less than one, we can see how the classification error can be

driven towards zero after a few iterations.

Dt 1+ i( )

i 1=

m

∑ 1=

Pr H xi( ) yi≠( ) Z t

t 1=
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Z t Dt i( )
1 ui+

2
-------------e

αt– 1 ui–

2
-------------e

αt
+ 

 
i

∑=

αt
1
2
---

1 rt+

1 rt–
------------- 

 ln= rt Dt i( )ui
i

∑=

Z t 1 rt
2

–=



55

In our case, the classifier, ht(x), outputs a continuous value.  Therefore, we cannot determine αt

analytically to minimize Zt as we have done in equation (34).  Instead, we minimize Zt numeri-

cally in terms of αt, since Zt is strictly quadratic (see [72] for proof).  In this form it is more diffi-

cult to put a bound on the error rate of the classifier. However, we would expect the same behavior

to hold.  For instance, [72] gives an upper bound on the error when the output of the classifier is

continuous but bounded.

In using AdaBoost to train our detector we continue to collect each histogram by counting, but,

we increment each bin based on the weight assigned to the current training example.  We scale

and round the training image weights to integers for this purpose.  However, we train each histo-

gram multiple times for multiple iterations of the algorithm.  For each training example we incre-

ment the appropriate bins by the weight assigned to the training example.

It should also be noted that forming the final classifier in equation (30) does not actually

increase the complexity of the classifier.  Each classifier is of the form

(36)

In this form, we only need to store one value for each discrete combination of po, io, and jo to rep-

resent the quantity:

(37)

Since the composite classifier is:

(38)

ht zi( )
Pk t, patternk x y,( ) i x( ) j y( ), , object( )

Pk t, patternk x y,( ) i x( ) j y( ), , non-object( )
------------------------------------------------------------------------------------------------------------log

x y, region∈
∑

k 1=

17

∑=

Pk t, patternk x y,( ) po= i x( ) io= j y( ) jo=, , object( )

Pk t, patternk x y,( ) po= i x( ) io= j y( ) jo=, , non-object( )
------------------------------------------------------------------------------------------------------------------------------------------------log

H x( ) sign αt

Pk t, patternk x y,( ) i x( ) j y( ), , object( )

Pk t, patternk x y,( ) i x( ) j y( ), , non-object( )
------------------------------------------------------------------------------------------------------------log

x y, region∈
∑

k 1=

17

∑
t 1=

T

∑
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we also can store one value for each discrete combination of po, io, and jo given by:

(39)

An unresolved issue in using AdaBoost is when to stop the iteration.  Since weighting favors

the most difficult samples, those close to the decision boundary, we may become susceptible to

overfitting.  Our approach was to monitor the performance of the algorithm, empirically using a

cross-validation set and to stop the algorithm when performance stopped improving.

αt

Pk t, patternk x y,( ) po= i x( ) io= j y( ) jo=, , object( )

Pk t, patternk x y,( ) po= i x( ) io= j y( ) jo=, , non-object( )
------------------------------------------------------------------------------------------------------------------------------------------------log

t 1=

T

∑
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Chapter 6. Implementation of the Detectors

In this chapter we describe how we implement our detectors.  Our main concern is speed of

execution.  We would like detection to be as fast as possible.  Our strategy is to re-use multi-reso-

lution information wherever possible and to use a coarse-to-fine search strategy and various other

heuristics to prune out unpromising object candidates.

6.1. Exhaustive Search

 As explained in Chapter 2, each detector is specialized for a specific orientation, size, align-

ment, and intensity of the object.  However, an object can occur at any position, size, orientation,

and intensity in the image.  Our approach is to use an exhaustive search along all these dimensions

to find objects in the image.  First, to be able to detect the object at any position in the image, we

have to re-apply all the detectors at regularly spaced intervals in the image.  At each of these sam-

pling sites we evaluate the candidate at five different intensity corrections and select the one that

gives the best response.  Then, to detect the object at any size, we have to repeat this process for

magnified and contracted versions of the original image.  We search at scales of magnification that

decrease by a multiplicative factor of .  As we explain below, we chose an integer

root of 2 so we could reuse information at each octave in this search through scale.  We then com-

bine the results of running all these detectors.  If there are multiple detections at the same or adja-

cent locations and/or scales, the algorithm chooses the strongest detection.

Since it will be very time-consuming to evaluate the image in such an exhaustive fashion, we

experimented with several methods for decreasing computation time, as we will describe later in

this chapter.

6.2. Searching for Objects at One Size

 In Figure 40 we outline the processing steps in searching for faces over one scaled version of

the original image, i.e., faces of one size.   First, we compute the wavelet transform of the entire

image.  We compute an overcomplete transform for each level of the wavelet transform.  We indi-

24 1.189=
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cate the phases of the overcomplete transform as (even, even), (even, odd), (odd, even), and (odd,

odd). We then compute attribute values from the wavelet coefficients at every location in the

image.  When then classify the image on a region by region basis, considering every possible

overlapping candidate region.  For each candidate region, we look up the probability of each

attribute value.  Each of these probabilities is a joint function of the attribute value and the posi-

tion of the attribute sample within the candidate region.  Rather than compute the output for each

region using equation (15) in Chapter 3, we compute its logarithm.  This transforms all the multi-

plications into additions:
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(40)

We then threshold on this value.  Finally for each real face in the image there will be a cluster of

candidate regions that all have a classification value over threshold.  Below in Figure 41 we show

the raw output from one image over 4 scales.  (The value shown at each pixel corresponds to the

output associated with a region centered at that position).  Notice that the algorithm gives a high

response to a cluster of candidate regions across position and scale.  These clusters will usually

correspond to one actual face in the image.  We use the following strategy to merge detections that

are nearby in position and scale.  Once we have determined all the candidate regions that are

above the detection threshold, we find the candidate region that gives the highest response.  This

candidate region is the first to be labelled as the object.  We then remove from consideration all

candidate regions that are within a radius in position and scale from this detection.  For positional

Pk patternk x y,( ) i x( ) j y( ), , object( )

Pk patternk x y,( ) i x( ) j y( ), , non-object( )
--------------------------------------------------------------------------------------------------------log

x y, region∈
∑

k 1=

17

∑

Figure 41.  Region based response as a function of scale of magnification and position.
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radius we use one half the width of the object.  For size we remove all candidates within this posi-

tional radius that vary from half to twice the detection’s size.  We then continue to search among

the remaining candidate regions and find the one with next largest response and remove all candi-

dates within the positional and scale radius of this detection.  We continue this process until all

candidate regions have been classified as an object or discarded.

The main computational bottleneck in detection is retrieving the probability values from the

histograms.  As mentioned above, we only have to compute the attribute values once for the entire

image.  However, for each sample site within each candidate object location we have to look up a

probability indexed jointly by the attribute value and the position within the region.  This way

each sampling site is evaluated multiple times for its probability since it will be used as part of

many candidate regions.  Moreover, the tables we index into to retrieve these probabilities are

quite large, with as many as 1.6 million entries.  By working with data structures this large we are

penalized in terms of memory performance.  In particular, data structures this large will not fit into

primary or secondary memory cache on most standard computers of today.  When we make

accesses into this data structure, the majority of them will be to main memory.  Since main mem-

ory access can be as long as 100 clock cycles[80], these operations will lead to significant perfor-

mance degradation.

6.3. Re-using Multi-resolution Information

In searching for the object, we use multi-resolution in two ways.  First, we evaluate the input

images over a number of scales of magnification to search for the object at different sizes.  Then

we evaluate each of these at three scales of resolution corresponding to the three levels in the

wavelet transform.  Rather than make all these evaluations separately, we can re-use many of

them.  Let us consider how this can be done.  Let us consider the first four magnification scales at

which we evaluate the image: 1.0, 1.189, 1.414 = 1.1892, 1.681=1.1893.  For each of these we

compute a three-level wavelet transform.  We then compute our attribute values from the wavelet

coefficients, and then look-up probabilities for the attribute values.  We can then re-use much of

this information when we evaluate the image at the 5th scale of magnification, 2.0.  Currently we

only re-use the level 3 LL subband as the input image.  Conceivable we could also re-use the

transform coefficients and the attribute values.  The main obstacle to doing so is the amount of
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memory that would be involved.

6.4. Heuristic Speed-ups

We experimented with several heuristics to speed up processing time.  The most successful was

a coarse-to-fine strategy to prune out unpromising candidates.  We also experimented with color

and adjacent heuristics.

6.4.1. Coarse to Fine Search Strategy

We divide the attributes into three sets:  ones based on level 1 coefficients, ones based on level

2 coefficients, and ones based on level 3 coefficients.  The first set we evaluate over the image at 1/

16 of the normal resolution.  We then threshold the partial output of the detector based on these

attributes.  We only continue searching those candidates whose probability is above this threshold.

We repeat this process after we process the image using the level 2 attributes.   The danger in this

approach is that we may discard candidates that we would be correctly detected as faces if we

fully evaluated them.   For this reason we set the heuristic thresholds conservatively based on per-

formance on a cross-evaluation set. Through this strategy we reduce our computational require-

ments by 1 to 2 orders of magnitude with little loss in accuracy.

6.4.2. Adjacent Heuristic

We also noted that we search at successive scales, that if we our response was low at one scale

it will be low at the adjacent scale.  We have experimented with thresholds on the value at the

adjacent scale to prune out candidates at the current scale.

6.4.3. Color Heuristics

We also experimented with a color preprocessor to prune out unpromising candidates.  We

used an 8x8x8 histograms to represent the color distribution of skin-color and  non-skin color.

This also improved performance speed by a factor of 2 or 4 when combined with the other heuris-

tic.  It also helped discard a few candidates that would have otherwise been false detections.  The

main problem with color is that even with the color threshold set low, many actual faces get

removed on images which have poor color balancing.
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6.5. Performance Time

For faces we can evaluate a 240x256 image in about 90 seconds on average using a Pentium II

at 450MHz.

For cars we can evaluate a 240x256 image in about 450 seconds on average using a Pentium II

at 450MHz.
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Chapter 7. Face Detection Performance

In this chapter we describe our results in face detection in Section 7.1, provide analysis of how

the different parts of the face influence detection in Section 7.2, and assess statistical dependency

across the extent of the face in Section 7.3.

7.1. Results in Face Detection

The distinguishing characteristic of our face detector is that it works for both frontal and out-

of-plane rotational views.  To date, several researchers [14][18][19][20][38] have had success

developing algorithms that work for frontal views of faces, but none, to our knowledge, have had

success with profile (side) views except [87] (below we will compare our performance with [87]).

We believe there are several reasons why profile view faces are more difficult to detect than

frontal views.  First, the salient features on the face (eyes, nose, and mouth) are not as prominent

when viewed from the side as they are when they are viewed frontally.  Also, for frontal views

these features are interior to the object, whereas on a profile one of the strongest features is the sil-

houette with the background.  Since the background can be almost any visual pattern, a profile

detector must accommodate much more variation in the silhouette’s appearance than a frontal

detector does for interior features.

We compared the performance of our detectors with that reported by Rowley and Kanade [87]

on a test set of profile views selected from a set of proprietary images Kodak provided to Carnegie

Mellon University.  These images consists of typical amateur photographs with some of the typi-

cal problems of such images, including poor lighting, contrast and focus.  This test set consisted

of 17 images with 46 faces, of which 36 are in profile view (between 3/4 view and full profile
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view):

We also collected a larger test set for benchmarking face detection performance for out-of-

plane rotation.  This test set consists of 208 images with 441 faces  that vary in pose from full

frontal to side view. Of these images approximately 347 are profile view (between 3/4 view and

full profile view). We gathered these images from a variety of sites on the World Wide Web,

mainly news sites such as Yahoo and the New York Times.  Most of these images were taken by

professional photographers and of better quality than the Kodak images in terms of composition,

contrast, and focus.  Otherwise, they are unconstrained in terms of content, background scenery,

and lighting.  Below in Table 9 we show the performance at different values of the threshold γ

controlling the sensitivity of the detectors.  By changing γ we linearly scale the detection thresh-

olds of both the profile and frontal detectors. We also compare the performance of the detectors

trained with AdaBoost and without AdaBoost.  Below in Figure 42 we show some typical results

on this image set evaluated at γ = 1.0 using detectors trained with AdaBoost.

In terms of frontal face detection, the accuracy of our detector compares favorably with those

Table 8: Face Detection results on Kodak data set

Rowley & Kanade [87] Schneiderman and Kanade (using AdaBoost)

Detection
False

Detections
γ Detection

(all faces)
Detection

(profiles only)
False

Detections

58.7% 1347 0.5 80.4% 86.1% 105

41.3% 617 1.0 70.0% 69.4% 7

32.6% 136 1.5 63.0% 61.1% 1

Table 9: Face Detection Results on Schneiderman & Kanade Test Set

With AdaBoost Without AdaBoost

γ Detections
(all faces)

Detection
(profiles)

False
Detections

Detection
(all faces)

False
Detections

0.0 92.7% 92.8% 700 82% 137

1.5 85.5% 86.4% 91 74% 27

2.5 75.2% 78.6% 12 60% 3
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of other researchers.   In these experiments, we also noticed some differences in performance

between the detector described in this thesis and an improved version of the detector we described

in [76].  Both of these detectors use similar probabilistic structures but differ mainly in that the

detector in [76] uses visual attributes based on localized eigenvectors rather than wavelet coeffi-

cients.  The wavelet based detector described in this thesis performs much better for profile view

faces.  However, the eigenvector based detector [76] seems to be perform slightly better on frontal

faces.  Below in Table 10 we compare our face detectors (wavelet-based and eigenvector-based

[76]) with those results reported by others on the combined frontal face test set combining the test

images from Sung and Poggio [18] and Rowley, Baluja, and Kanade [14].

Table 10: Frontal Face Detection on Sung & Poggio and Rowley [18] & Baluja & Kanade

Combined Test Set [14]

Detection
Rate

False
Detections

Schneiderman and Kanade* (wavelet) 94.4%
(95.8%)

65

Roth, Yang, Ahuja *[38] (94.8%) 78

Schneiderman and Kanade (eigenvector)* [76] 90.2%
(91.8%)

110

Rowley, Baluja, and Kanade [14] 86.0% 31

Figure 42. Face detection results
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* Indicates that 5 images of line drawn faces were excluded leaving 125 images with 483 labeled

faces.  However, there are at least 10 additional human faces that are not labeled in the ground

truth for this test set.  The numbers not in parentheses indicate results on just the 483 labeled

faces.  To be consistent with [38], we also indicate, in parentheses, the ratio between the total

number of faces found by computer and 483 (the number labelled by hand).

7.2. Positional Decomposition of Face Detection

Since the detectors use all portions of the face, we wondered which regions tended to be most

influential in detecting faces.  For example, we wanted to know if the eyes, nose, and, mouth are

really the most influential parts?  To get a sense of how much the various parts of a face contrib-

uted to the overall detection score, we decomposed the contribution as a function of position on

several faces; that is, for each face we plot an “influence image” that indicates the amount of influ-

ence at each position on the face.  Brighter areas indicate strong positive influence, gray regions

indicate neutral influence and darker areas indicate negative influence.  As we would expect, areas

that are occluded usually contributed a negative influence.  In terms of positive influence, there

did not seem to be a region that was consistently more influential than the others.  In particular,

the regions of positive influence were not sharply localized but tended to be spread out. In Figure

43 we show the corresponding “influence images” for several frontal faces and in Figure 44 we

show the corresponding “influence images” for several profile faces.

7.3. Analysis of Pair-wise Statistical Dependency

We also evaluated pair-wise statistical dependency among wavelet coefficients for both frontal

and right profile view.  We evaluated pair-wise dependency using the following measure

[64][85][86]:
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(41)

where ci and cj represent two wavelet coefficient that are discretized to take on m values, vk.

Below we show some “dependency images” for individual coefficients.  These images show

the measure of pair-wise statistical dependency between a single coefficient and the rest of the

coefficients.  The statistical dependency is strongest between the coefficient and itself; thus the

coefficient is indicated by the brightest spot in the wavelet transform.  As we can see the extent of

Figure 43.  Frontal faces and their corresponding “influence images”
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statistical dependency varies from coefficient to coefficient.  The strongest dependencies tend to

be inter-frequency over spatially registered positions.  Also we notice that statistical dependency

is not always localized and can exist over disjoint regions.  In particular, we notice some statistical

dependencies between the eye regions:

Figure 44.  Profile images and their corresponding “influence” images
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Figure 45.  Statistical dependency for frontal faces.  Each image gives a measure of the pair-
wise statistical dependency between one coefficient and all the other coefficients in the
wavelet transform.

Figure 46.  Statistical dependency for profile faces.  Each image gives a measure of the pair-
wise statistical dependency between one coefficient and all the other coefficients in the
wavelet transform.

Figure 47. Statistical dependency for “non-object” images.  Each image gives a measure
of the pair-wise statistical dependency between one coefficient and all the other coeffi-

cients in the wavelet transform



72

Chapter 8. Car Detection Performance

In this chapter we describe our results in car detection in Section 8.1, provide analysis of how

the different parts of the car influence detection in Section 8.2, and assess statistical dependency

across the extent of the car in Section 8.3.

8.1. Results in Car Detection

To test the accuracy of the car detector, we collected a set of 104 images that contain 213 cars

which span a wide variety of models, sizes, orientations, background scenery, lighting conditions

and some partial occlusion.  We gathered these images using several cameras and from sites on

the World Wide Web.  Overall our performance was as follows:

where γ controls the sensitivity of the detectors; that is, by scaling γ we linearly scale the detection

thresholds of all eight car detectors.  Below we show some typical results on this image set evalu-

ated at γ = 1.0:

Table 11: Car Detection Results

γ Detections Misses
False

Detections

1.05 177 (83%) 36 (17%) 7

1.0 183 (86%) 30 (14%) 10

0.9 197 (92%) 16 (8%) 71
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8.2. Positional Decomposition of Car Detection

Since the detectors use all portions of the car, we wondered which regions tended to be most

influential. To get a sense of how much the various parts of a car contributed to the overall detec-

tion score, we decomposed the contribution as a function of position on several car; that is, for

each car we plot an “influence image” that indicates the amount of influence at each position on

the car.  Brighter areas indicate strong positive influence, gray regions indicate neutral influence

and darker areas indicate negative influence Below in Figure 48 we give some examples.

Figure 48. “Influence images” for various car inputs
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8.3. Analysis of Pair-wise Statistical Dependency

We also evaluated pair-wise statistical dependency among wavelet coefficients for both frontal

and right profile view.  We evaluated pair-wise dependency using the following measure

[64][85][86]:

(42)

where ci and cj represent two wavelet coefficient that are discretized to take on m values, vk.

Below we show some “dependency images” for individual coefficients.  These images show the

measure of statistical dependency between a single coefficient and the rest of the coefficients.  The

statistical dependency is strongest between the coefficient and itself; thus the coefficient is indi-

cated by the brightest spot in the wavelet transform.  As we can see the extent of statistical depen-

dency varies from coefficient to coefficient.  The strongest dependencies tend to be inter-

frequency over spatially registered positions.  Also we notice that statistical dependency is not

always localized and can exist over disjoint regions. In Figures 49 - 51 we give some examples.
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Figure 49.  Statistical dependency for car (car viewpoint #8).  Each image gives a mea-
sure of the pair-wise statistical dependency between one coefficient and all the other

coefficients in the transform
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Figure 50. Statistical dependency for car (car viewpoint #5).  Each image gives a mea-
sure of the pair-wise statistical dependency between one coefficient and all the other

coefficients in the transform

Figure 51.Statistical dependency for car (car viewpoint #1).  Each image gives a measure
of the pair-wise statistical dependency between one coefficient and all the other coeffi-

cients in the transform
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Chapter 9. Review of Other Statistical

Detection Methods

In this chapter in Section 9.1 we describe some of the major theoretical differences between

our method of object detection and other methods of object detection and in Sections 9.2 and 9.3

we summarize several methods that have been applied to face and car detection.  In this discussion

we emphasize the particular modeling choices in each of these methods.

9.1. Comparison of Our Approach to Previous Detection / Recognition Methods

Below we summarize the main difference between our approach and other previous

approaches to object detection / recognition

9.1.1. Local Appearance Versus Global Appearance

Much work in object recognition treats the appearance of the object in terms of full-sized rigid

templates including the work of [5],[6], [30], [44], [29]. These methods represent the appearance

of the entire object as one entity rather than decomposing the object into smaller parts. There are

several disadvantages to this type of model.  First, the global methods that involve dimensionality

reduction [5],[6], [30] will end up emphasizing the coarse attributes of object appearance rather

than the distinctive nature of the smaller parts such as the eyes, nose, and mouth on a face. Second

the matching of large template is known to be sensitive to small differences in scale, position, and

orientation.  Finally the matching of large regions can also be strongly influenced by "irrelevant"

pixels.  On many objects, such as a car, there will be large indistinctive areas such as the hood and

windshield that are punctuated by relatively smaller areas of distinctive detailing such as the grill

and headlights.  In matching a large region, the majority of the pixels will come from the untex-

tured parts and dominate selection of the match (using any norm that weighs each pixel equally

such as L1 or L2).

9.1.2. Sampling of Local Appearance

Most methods that use an local appearance representation [26], [4], [40], [78], [79] use a mini-
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mal set of hand-picked features, such as the eyes, nose, mouth on a face or a minimal set deter-

mined by an automatic method [39], [81], [82], [83].   In contrast, methods such as [9][20] sample

the object everywhere.  We take this a step further by sampling with overlap and sampling multi-

ple attributes at each location.  Our strategy in doing so is use as much information as possible in

making our detection decision.  As with any type of decision problem, by using more information

we improve our probability of making correct detections.  For example, in face detection we can

rule out many candidate faces on the basis of inappropriate texture or features in areas we expect

a nearly uniform texture such as on the cheeks of a human face.

9.1.3. Representation of Geometric Relationships

As we mentioned earlier, an important cue for detection is the geometric relationships of the

various local appearance patches.  Some approaches do not model the geometry among local

areas [84][9].  Other methods represent geometry rigidly [14], [19], [81], [82], [83], [38] and may

be brittle to small variation in the part positions.  Other methods use graph based matching tech-

niques where nodes represent features and edges represent distances between feature pairs

[78][79].   With this approach computational complexity grows polynomially with the number of

features.   Others depend on a coordinate system defined by two or three features [26][32] and

may be sensitive to any errors in these feature positions.  Our approach using multidimensional

histograms allows for flexibility in feature position with respect to a stable coordinate system and

linear cost in the number of features and positional resolution.  We allow for flexibility in feature

position by representing position, x, y, at a coarse resolution in the histogram, P(pattern, x, y) or

we can smooth the positional component of the histogram by convolving it with a Gaussian in x,y

as we did in [76].  Also, by using a histogram we can process the image in a fixed repetitive fash-

ion.  In contrast, methods that use a set of hand-picked features step through the image in irregular

increments and incur additional computational cost by doing so [80].

9.1.4. Representation of Local Appearance using Wavelets

Haar wavelets [81], [82], [83], Gaussian pyramid representation [84] and Gabor wavelets [78],

[79] are all multi-resolution based representations that have been used in object recognition/detec-

tion.  Haar wavelets are an orthogonal basis that achieves a piece-wise constant approximation to

the image.  We use 5/3 linear phase wavelet based representation which may have some advan-
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tages of the Haar wavelets in terms of smoothness and sparseness.  Also unlike the Gaussian pyr-

amid representation [84] and Gabor wavelets [78], [79] our wavelet representation has no

redundancy; that is the transform is the same size as the original image.  Also, our representation

is unique in decomposing appearance along the dimensions of space, frequency, and orientation.

9.1.5. Representation of Statistics/Discriminant Functions

Research in object recognition has spanned a number of discriminant functions statistical mod-

els.  [18] and [14] use artificial neural networks (multilayer perceptrons) as part of their discrimi-

nant functions.  This discriminant function is attractive in that it can achieve complicated

boundaries in input space.  There are several disadvantages also.  The method for estimating such

a model from data does not have a closed form solution.  All solution methods involve iterative

search and the most popular method (backpropagation) is simply gradient descent.  These meth-

ods can become trapped in local minima.  Mixture models [18][40] are also attractive because

they can achieve complicated boundaries in input space but are also susceptible to local minima.

Quadratic discriminant functions [19]. [81], [82], [83] achieve partition of input space into conic

sections.

In previous work in computer vision, histograms have only be used for representing the statis-

tics of appearance.  [54] uses a histogram to represent color statistics and [9] uses a histogram to

compute statistics of Gaussian derivatives.  One of the main contributions of this research is to use

histograms to jointly represent the statistics of visual attributes and position on the object as orig-

inally published in [76].  Others have since used a similar representation [10].

9.1.6. Estimation of Statistics

Since classification accuracy is more important than accuracy of probabilistic models that form

the classifier, better performance can be achieved by training the detector to minimize classifica-

tion error.  To do so, we use the AdaBoost algorithm [70], [72] to explicitly reduce classification

error.  This algorithm works under a very similar principle to support vector machines [15] as

used by [19] [81], [82], [83] by giving more weight to the training examples that are closet to the

decision boundary between the two classes.
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9.2. Summary of Previous Methods for Face Detection

9.2.1. Sung and Poggio [18]

Sung and Poggio developed one of the first methods for frontal face detection.  They use a

19x19 region as their standard size input region.  They normalize the intensities within this region

by first subtracting the best fit intensity plane and then performing histogram normalization.

Their model consists of two parts: a mixture of Gaussians model and a multilayer perceptron

network.  In the Gaussian part of the model, the face and non-face classes are each represented as

a mixture of 6 Gaussians.  In the mixture formulation, each Gaussian receives equal weighting.

The centers, µι, and covariances, Σι, of these Gaussians are estimated using a modified k-means

algorithm on labeled training samples.

This representation could be viewed as forming class-conditional distributions are given by the

mixtures

(43)

However, instead of using these for classification (as in a likelihood ratio test), they input each of

the Mahalanobis distances,

into a multilayer perceptron which generates an output from 0 to 1.  They approximate the Mahal-

anobis distance by computing the true Mahalanobis distance along the 75 principal dimensions of

the space and adding it to the Euclidean distance along the remaining dimensions (remember the

entire input space is 19x19).

The addition of the multilayer perceptron neural network makes the algorithm difficult to ana-
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lyze.  The multilayer perceptron does not increase the representational power over equation (43)

since the Mahalanobis distances are a sufficient statistic.  The main advantage would be that by

training the neural network, they would be minimizing classification error rather than basing their

detector on probability estimating.

9.2.2. Rowley, Baluja, and Kanade [14]

Soon after Sung and Poggio’s algorithm, Rowley, Baluja, and Kanade developed a slightly

more accurate method for frontal face detection.  The method of Rowley, Baluja, and Kanade uses

a 20x20 input region that is presented to a multilayer perceptron neural network system for classi-

fication.  They have performed experiments with both single neural networks and modular sys-

tems consisting of several neural networks.

In all their algorithms, each 20x20 input region is pre-processed to correct for differences in

lighting conditions using the same method as Sung and Poggio [18]:  a linear function of intensity

is fit to the region and subtracted out, then histogram normalization is performed.

The neural network topology they used in all their experiments consisted of one layer of hid-

den units where each hidden has a receptive field of either 5x5, 10x10, or 20x5. The used two

variations on this topology: one with 52 hidden units and the other with 78 hidden units.

In their experiments with modular systems, they separately trained two or three of the above

networks and then applied various methods for merging their results, including training another

multilayer perceptron or an individual perceptron to act as an arbitrator.

They experimented with various heuristics to the output of the neural network, including merg-

ing nearby detections, discarding isolated detections, and not allowing overlapping faces.

Its somewhat difficult to analyze the behavior of a multilayer perceptron.  We can infer that this

particular network topology emphasizes local features over global ones, since the hidden units

have only local support.  Statistical dependencies that span a larger region than any of the recep-

tive fields are only modeled weakly through normalization and network arbitration.
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9.2.3. Osuna, Freund, and Girosi [19]

Osuna, Freund, and Girosi use a 19x19 input region, x, for detecting faces.  They apply the fol-

lowing discriminant function to the input image, x (see [24] or [25] for definition of “2nd-degree

polynomial kernel function”):

(44)

Where SV, indicates support vector.

This function can be rewritten as a quadratic discriminant function:

(45)

where a0 is a scalar, a1 is a vector, and A2 is a symmetric semi-positive definite matrix. These

parameters can be directly computed from ci, yi, and c0 given above.

The quantities, ci and yi are determined through training.  Their method of training is explicitly

designed to minimize generalization error.

One way we can compare this model to the general model of the posterior probability function

is through the concept of Taylor approximation.  We can think of a quadratic discriminant func-

tion loosely as being a Taylor series approximation to the posterior probability function truncated

at its 2nd order term.  Likewise, we can think of a perceptron as being a Taylor series approxima-

tion to the posterior probability function truncated at first order.

9.2.4. Moghaddam and Pentland [12]

Moghaddam and Pentland have developed a face detection algorithm as part of a bigger system

that includes face recognition and face tracking.  For face detection, they appear to use a standard

sized input region.  They normalize the intensity of the region by scaling the image to have zero

mean and unit variance.
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Moghaddam and Pentland base their method of detection on the value of the class conditional

probability function, .  Their model of the class conditional density is decom-

posed into two independent distributions:

The first distribution, , is computed on a projection of the image region onto

a 10 dimensional subspace, given by the columns of F.  The subspace, F, consists of the principal

components of the face data set.  They model this distribution as a mixture of Gaussians:

where

All the parameters in this distribution -- the weighting coefficients, the means, the covariances are

estimated using the maximum likelihood principle and solved using the E-M algorithm, which

finds a locally optimal solution.

The 2nd distribution, , computes the distributions of the projection of

the image region onto the space orthogonal to the 10 principal components.  This distribution is

modeled as a Gaussian with zero mean and scaled identity matrix for the covariance:
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where

where the λi’s are the eigenvalues of the distribution.

9.2.5. Colmenarez and Huang [20]

Colmenarez and Huang have developed a method for face detection.  They use a Markov field

model to capture the statistical behavior of the face and non-faces classes over a 11x11 input

region.  Their decision rule is based on thresholding the likelihood ratio:

(46)

They model both the face and non-face class-conditional probabilities using a first order

Markov field model over the 11x11 input region.  The relationship between this Markov field

model and the general form of the class-conditional probability function, is

fairly straightforward.  Consider re-ordering the image region into a 1 dimensional array of n pix-

els.  The general expression for class conditional probability of the image region can then be re-

written using the chain rule:
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(47)

where region(i) is the pixel intensity for the ith pixel in the region and case n = 121 for Col-

menarez and Huang’s representation.

In applying the Markov assumption, it is assumed that a pixel is only statistically dependent on

the k pixels that immediately precede it in the ordering of the 1-dimensional array:

(48)

Colmenarez and Huang assume a 1st order Markov process, k = 1:

(49)

The class conditional density is then approximated by making this substitution for all terms on the

right hand side of equation (47):
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.
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P region j( ) region j 1–( ) object,( )
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(50)

Colmenarez and Huang consider all possible orderings of the pixels in mapping the 11x11

region into a 1 dimensional array.  They select the mapping that optimizes the Kullback diver-

gence of the face class with respect to the non-face class.  To compute the Kullback divergence,

training examples are used.  They do not state why they use the  Kullback divergence.

In building the overall model, they construct intermediate models for the 1st order conditional

probabilities:

(51)

for all pixels pairs.  They directly estimate the two terms on the right hand side of the equation.

Each of these terms is a discrete valued function where each intensity value is quantized into 3

levels.

9.2.6. Burl and Perona [26]

Burl and Perona have developed a method for face detection.  Burl and Perona’s method

emphasizes the spatial distribution of features.  They detect 5 types of features on the face: the left

eye, right eye, nose/lip junction, left nostril, and right nostril.  They assume that the feature detec-

tors for each feature are fallible.  They may not respond to the actual feature, and they may give

false responses elsewhere.  Since they assume only one face is present in each image, they assume

that at most one feature response is correct for each type of detector and all other responses to that

detector are false alarms.

To locate each face, they consider all possible “hypotheses”.  In each hypothesis, Hi, only one

(or none) of the responses for each detector is selected.  Of all these hypotheses, they select the

P region n( ) region n 1–( ) . . . region 1( ) object, , ,( ) ≈
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one that gives the maximum posterior probability:

(52)

where W represents the locations for all feature responses for all detectors.

Since P(W) is the same for all hypotheses, they maximize a “goodness” function:

(53)

Their prior probability, Pr(Hi) depends only on how many (and which) of the 5 features are in

the hypothesis. Pr(Hi) will differ between two hypotheses only if one hypothesis includes a fea-

ture type (e.g. eye) that is absent in the other hypothesis.  The difference depends primarily on a

parameter, γj, which represents prior knowledge about the accuracy of each feature detector, j.

To model P(W|H) for each hypothesis, the data is partitioned into 2 sets: W(H) - the features

responses hypothesized to correspond to the true features and W(H‘) - the remaining feature

responses (false alarms).  These two sets of feature responses are modeled by two statistically

independent distributions:

(54)

They further assume that the false alarms are statistically independent:

(55)

where q(w) is the probability of an individual false alarm.

To simplify the goodness functions, it is divided by a constant given by Π q(w):
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(56)

By substituting (55) into (54) and substituting the result into (56), each goodness function

becomes a function of only the feature responses in the hypothesis, W(H):

(57)

Berl and Perona attempt to compensate for differences in translation, scale and rotation of the

feature positions by defining a normalized coordinate system for each hypothesis.  The location of

the response of the first feature, the left eye, becomes the origin of the new coordinate system and

the 2nd feature point, the right eye, is defined to be (1, 0).  The coordinates of all other features

can then be computed with respect to these two points.  To allow for the possibility of missing fea-

tures, they also compute coordinate systems defined by other pairs of feature points.  Although

this method removes the differences in translation, scale, and rotation with respect to the detected

features, it is not stated how the feature detectors themselves are made invariant to scale and rota-

tion.  In making this normalization, the goodness function becomes:

(58)

where S describes the coordinates of the features in the normalized coordinate frame.

In this form, equation (58), we can draw some comparisons to our method of representation.

We can think of the goodness function as being proportional to the posterior probability of the

object conditioned on the normalized feature locations, S:

(59)

The class conditional distribution of the features given the object, P(S|object), can be re-written

decomposing position from appearance using the probability chain rule:
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(60)

The first term on the right of (60) embodies their description of shape and is modeled by a Gauss-

ian:

(61)

where µ and Σ are estimated from the training data.

The second probability on the right of (60) gives the probability of locating the actual features.

This is given by their notion of prior probability Pr(H) and is not computed from the training data:

(62)

  The term in the denominator of (58) represents the unconditional distribution of the features.

They represent the features as independently distributed with Gaussian distribution centered at the

center of the image with variance σ2 (no training data was used to estimate this distribution):

(63)

They report performances 80% and 94% recognition on various test sets they compiled.  And they

report 63% recognition on their training set.

9.2.7. Roth, Yang, Ahuja [38]

This work describes a method for frontal face detection on 20x20 regions.  For every possible

pixel value at every possible location within this region they assign a weight, giving a total of

20x20x256 weights.  They use an iterative training procedure using the Winnow update rule to

determine these weights.  Once they have determined the weights they can classify any region by

looking up and summing the weights corresponding to each pixel value:
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P s1 . . . s5, , w1 . . . w5, , object,( ) R S( ) N µ Σ,( )≈=

P w1 . . . w5, , object( ) Pr H i( )≈

P S( ) Q S( )= N 0 σ2,( )∏≈
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(64)

If this sum exceeds a threshold the region is classified as a face.

This method performs quite well on the Sung & Poggio and Rowley, Baluja, Kanade Test set.

They report 94.8% detection with 78 false detections.  It is somewhat surprising that this method

works so accurately since the features essentially have no spatial extent.  They are just individual

pixels.

9.3. Summary of Previous Methods for Car Detection

9.3.1. Rajagopalan, Burlina, Chellappa [44]

This paper describes a method for car detection from aerial images.  They use a distance based

classification metric on 16x16 regions.  They cluster their training images into several classes of

cars and several classes of non-cars.  For each 16x16 input region, they compute the distance to

each class.  If the input is closest to a car cluster and under some threshold they classify it as a car.

The distance threshold they use could be thought of as a Mahalanobis-like distance metric, except

instead of normalizing distance by just 2nd order statistical moments, as in Mahalanobis distance,

they use some higher order moments also.  They have reported some success in detecting cars

from this vantage.

9.3.2. Papageorgiou, Poggio [83]

In this method the Haar wavelet transform is taken of each input region.  The wavelet coeffi-

cients from two of the middle frequency bands (3,030) wavelet coefficients are used as input to a

quadratic classifier.  The coefficients in the quadratic classifier are learned by using the Support

Vector Machine training method. They report some success in detecting straight-on frontal and

straight-on rear views.

w I x y,( ) x y, ,( )
x y, 20x20∈

∑
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Chapter 10. Conclusion

In this thesis we have advanced the state of the art in 3D object detection in the following ways.

We have developed the first algorithm that can reliably detect faces that vary in viewpoint from

frontal to side view.  Previously only frontal face detection had been demonstrated reliably.  We

have also demonstrated the first method for car detection that works robustly over a range of view

points.

Several concepts contribute to the effectiveness of these methods:

• Joint statistics of appearance and position -   Much research in “parts-based” approaches to

object recognition overlook the importance of representing the geometric arrangement of the

parts.  In our experiments, we have found  performance improves drastically when we model the

statistics of appearance and position jointly.

• Powerful representation of appearance - In our experiments we have observed that increased

representation power improves the accuracy of the object detector.  For example, we originally

developed a weaker representation based on a subset of localized eigenvectors [76].  Although

this representation worked well for frontal face detection, it was not fully satisfactory for profile

detection.  We also noticed that when we reconstructed profile images from this representation,

many of the small features that form of the silhouette of the face were lost.  We then redesigned

our representation using the wavelet-based representation described in this thesis.  With this new

representation, our visual representation of these features was better leading to improved detec-

tion performance for profile views of faces.

• Representation of the non-object - We also observed that performance depended on how we

represented the non-object class.  We noticed that having some model was an improvement over

having no model, even if our model was based on randomly sampled non-object images.  Perfor-

mance improved further by using bootstrapping to select non-object samples and improved still

further by using AdaBoost to weight them.
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• Visual cues based on local relationships - We have shown that by using a combination of

visual cues with selective localization in space, frequency and orientation we can achieve accurate

detection of faces and cars.

• Coarse-to-fine heuristics - By using coarse to fine heuristics, we have demonstrated that we

can use a large model with many visual cues in a computationally feasible way.

There are several research areas we see as a natural continuation of this work:

• Representation - Representation remains the most important issue in object detection.  Per-

haps, some day researchers will develop specific statistic models for visual appearance in the

same way Gaussian and Poisson models were developed to model specific physical phenomena.

Of course, to do so, we would need a way to cope with the high dimensional nature of images.

One approach would be to look at the pair-wise statistics among wavelet coefficients as we have

suggested in Chapters 7 and 8.  Another approach would be to use our knowledge of the physics

of image formation.  Good models for the effects of illumination, reflection, geometry, and mate-

rial type on appearance exist.  These models have been used to synthesize images that look fairly

realistic.  It may be possible to use such models to characterize the statistics of appearance.  In

particular, it may be easier to characterize the statistical variation of the “input” to the image for-

mation process -- the illumination, the geometry of the scene, and the surface characteristics --

than to characterize the image variation directly.  We could then analyze how these imaging mod-

els transform these stochastic inputs and thereby indirectly arrive at a statistical characterization

of appearance.

• Intensity/Lighting correction - In our work, performance improved when we were able to cor-

rect for differences in illumination.  Most of the existing methods for intensity correction use sim-

ple methods such as histogram equalization or transforming the intensities to have zero mean and

unit variance.  We believe that better performance can be achieved by explicitly accounting for the

appearance of the object we are trying to enhance.  One approach would be to use a probabilistic

model of the object’s appearance to choose the correction.  Let us assume we have some lighting

correction model:
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(65)

where the parameter, θ, controls the lighting correction.  Given that we have models for P(image |

object) and P(image | non-object), we could choose the value of θ that gives the highest response

and therefore is corrected so it most looks like a member of its class:

(66)

We have conducted some preliminary experimentation with this approach but have not had much

success.

• Sample selection and weighting - In our experiments, performance improved when we used

bootstrapping to select samples and boosting to weight samples.  Perhaps there is a principled way

of combining these two methods to achieve better performance.

• Coding of appearance - We have used scalar quantization to discretize each wavelet coeffi-

cient separately.  Methods of vector quantization whereby a whole group of coefficients is quan-

tized together may improve performance.  We noticed such an improvement in an earlier method

based on eigenvector responses [76].

There are also several research problems that we see as a natural continuation of this work:

• Detection of other rigid objects - We would like to test the generality of this algorithm by

applying it to other rigid objects such as boats, airplanes, animals, pedestrians, etc.

• Detection of more challenging objects - There are more challenging objects we would like to

detect such as buildings, trees, and text in video.  These objects have some structural regularity

but less so than faces or cars.  We believe it is possible to detect such objects accurately with cur-

rent computing power, but new representations will have to be developed to do so.

image' C image θ,( )=

θ̂ maxθarg
P C image θ,( ) object( )

P C image θ,( ) non-object( )
-------------------------------------------------------------------- 

 =
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• Other classifications - There are many other classification problems that are probably solv-

able such as discriminating between indoor and outdoor scenes, urban and rural scenes, etc.  It

should also be possible to classify people based on activity (talking, smiling, walking) and their

characteristics (age, gender, hair color, facial hair, glasses, etc.).  It may even be possible to

robustly identify people by computer.  Many research efforts are making progress in this area.
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