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Abstract

In this paper, we investigate material classification from single images obtained under unknown

viewpoint and illumination. It is demonstrated that materials can be classified using the joint distribution

of intensity values over extremely compact neighbourhoods (starting from as small as 3×3 pixels square),

and that this can outperform classification using filter banks with large support. It is also shown that

the performance of filter banks is inferior to that of image patches with equivalent neighbourhoods.

We develop novel texton based representations which are suited to modelling this joint neighbour-

hood distribution for MRFs. The representations are learnt from training images, and then used to classify

novel images (with unknown viewpoint and lighting) into texture classes. Three such representations

are proposed, and their performance is assessed and compared to that of filter banks.

The power of the method is demonstrated by classifying 2806 images of all 61 materials present in

the Columbia-Utrecht database. The classification performance surpasses that of recent state of the art

filter bank based classifiers such as Leung and Malik (IJCV 01), Cula and Dana (IJCV 04), and Varma

and Zisserman (IJCV 05). We also benchmark performance by classifying all the textures present in the

UIUC, Microsoft Textile and the San Francisco outdoor datasets.

We conclude with discussions on why features based on compact neighbourhoods can correctly

discriminate between textures with large global structure and why the performance of filter banks is not

superior to that of the source image patches from which they were derived.

Index Terms

Material classification, 3D textures, textons, image patches, filter banks.

1. INTRODUCTION

Our objective, in this paper, is the classification of materials from their appearance in single

images taken under unknown viewpoint and illumination conditions. The task is difficult as

materials typically exhibit large intra-class, and small inter-class, variability (see Figure 1) and

there aren’t any widely applicable yet mathematically rigorous models which account for such

transformations. The task is made even more challenging if no a priori knowledge about the

imaging conditions is available.

Early interest in the texture classification problem focused on the pre-attentive discrimination

of texture patterns in binary images [3], [26], [27], [38]. Later on, this evolved to the classification

of textures in grey scale images with synthetic 2D variations [20], [22], [47]. This, in turn, has

been superseded by the problem of classifying real world textures with 3D variations due to
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Fig. 1. Single image classification on the Columbia-Utrecht database is a demanding task. In the top row, there is a sea change

in appearance (due to variation in illumination and pose) even though all the images belong to the same texture class. This

illustrates large intra class variation. In the bottom row, several of the images look similar and yet belong to different texture

classes. This illustrates that the database also has small inter class variation.

changes in camera pose and illumination [6], [11], [29], [31], [44], [54]. Currently, efforts are

on extending the problem to the accurate classification of entire texture categories rather than of

specific material instances [9], [23]. Another trend investigates how regularity information can

be exploited for the analysis of near regular textures [24].

A common thread through this evolution has been the success that filter bank based methods

have had in tackling the problem. As the problem has become more difficult, such methods have

coped by building richer representations of filter responses. The use of large support filter banks

to extract texture features at multiple scales and orientations has gained wide acceptance.

However, in this paper, we question the dominant role that filter banks have come to play

in the field of texture classification. Instead of applying filter banks, we develop an alternative

image patch representation based on the joint distribution of pixel intensities in a neighbourhood.

We first investigate the advantages of this image patch representation empirically. The VZ

algorithm [54] gives one of the best 3D texture classification results on the Columbia-Utrecht

database using the Maximum Response 8 (MR8) filters with support as large as 49× 49 pixels

square. We demonstrate that substituting the new patch based representation in the VZ algorithm

leads to the following two results: (i) very good classification performance can be achieved

using extremely compact neighbourhoods (starting from as small as 3 × 3) and that (ii) for

any fixed size of the neighbourhood, image patches lead to superior classification as compared

to filter banks with the same support. The superiority of the image patch representation is

empirically demonstrated by classifying all 61 materials present in the Columbia-Utrecht database

and showing that the results outperform the VZ algorithm using the MR8 filter bank. Results

are also presented for the UIUC [30], San Francisco [29] and Microsoft Textile [42] databases.
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We then discuss theoretical reasons as to why small image patches can correctly discriminate

between textures with large global structure and also challenge the popular belief that filter bank

features are superior for classification as compared to the source image patches from which

they were derived. Finally, we present results on texture synthesis and denoising to reinforce the

fact that the new representation can be learnt accurately even in high dimensional, image patch

space. A preliminary version of this work appeared in [52].

2. BACKGROUND

Texture research is generally divided into five canonical problem areas: (1) synthesis; (2)

classification; (3) segmentation; (4) compression; and (5) shape from texture. The first four

areas have come to be heavily influenced by the use of wavelets and filter banks, with wavelets

being particularly effective at compression, while filter banks have lead the way in classification,

segmentation and synthesis.

The success in these areas was largely due to learning a fuller statistical representation of

filter bank responses. It was fuller in three respects: first, the filter response distribution was

learnt (as opposed to recording just the low order moments of the distribution); second, the

joint distribution, or co-occurrence, of filter responses was learnt (as opposed to independent

distributions for each filter); and third, simply more filters were used than before to measure

texture features at many scales and orientations.

These filter response distributions were learnt from training images and represented by clusters

or histograms. The distributions could then be used for classification, segmentation or synthesis.

For instance, classification could be achieved by comparing the distribution of a novel texture

image to the model distributions learnt from the texture classes. Similarly, synthesis could be

achieved by constructing a texture having the same distribution as the target texture. As such,

the use of filter banks has become ubiquitous and unquestioned.

However, even though there has been ample empirical evidence to suggest that filter banks

and wavelets can lead to good performance, not much rigorous theoretical justification has been

provided as to their optimality or, even for that matter, their necessity for texture classification,

synthesis or segmentation. In fact, the supremacy of filter banks for texture synthesis was brought

into question by the approach of Efros and Leung [15]. They demonstrated that superior synthesis

results could be obtained using local pixel neighbourhoods directly, without resorting to large
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scale filter banks. In a related development, Zalesny and Van Gool [58] also eschewed filter

banks in favour of a Markov random field (MRF) model. More recently, and following the same

trend, [56] showed that small patches can provide an alternative to filter banks for texture edge

detection and segmentation.

Both [15], [58] put MRFs firmly back on the map as far as texture synthesis was concerned.

Efros and Leung gave a computational method for generating a texture with similar MRF statistics

to the original sample, but without explicitly learning or even representing these distributions.

Zalesny and Van Gool, using a subset of all available cliques present in a neighbourhood,

showed that it was possible to learn and sample from a parametric MRF model given enough

computational power.

In this paper, it is demonstrated that the second of the canonical problems, texture classifica-

tion, can also be tackled effectively by employing only local neighbourhood distributions, with

representations inspired by MRF models.

2.1. The Columbia-Utrecht database

In this section, we describe the Columbia-Utrecht (CUReT) database [12] and its level of

difficulty for single image classification. The database contains images of 61 materials and

includes many surfaces that we might commonly see in our environment. It has textures that are

rough, those which have specularities, exhibit anisotropy, are man-made and many others. The

variety of textures present in the database is shown in Figure 2.

Each of the materials in the database has been imaged under 205 different viewing and

illumination conditions. The effects of specularities, inter-reflections, shadowing and other surface

normal variations are plainly evident and can be seen in Figure 1 where their impact is highlighted

due to varying imaging conditions. This makes the database far more challenging for a classifier

than the often used Brodatz collection where all such effects are absent.

While the CUReT database has now become a benchmark and is widely used to assess

classification performance, it also has some limitations. These are mainly to do with the way the

images have been photographed and the choice of textures. For the former, there is no significant

scale change for most of the materials and very limited in-plane rotation. With regard to choice

of texture, the most serious drawback is that multiple instances of the same texture are present for

only a few of the materials, so intra-class variation cannot be thoroughly investigated. Hence,
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Fig. 2. One image of each of the materials present in the Columbia-Utrecht (CUReT) database. Note that all images are

converted to grey scale in our classification scheme and no use of colour information is made whatsoever.

it is difficult to make generalisations. Nevertheless, it is still one of the largest and toughest

databases for a texture classifier to deal with.

All 61 materials present in the database are included in the experimental setup used in

Sections 4 and 5. For each material, there are 118 images where the azimuthal viewing angle is

less than 60 degrees. Out of these, 92 images are chosen for which a sufficiently large region of

texture is visible across all materials. The remaining images are not included as they do not have

large enough foreground texture regions where large support filter banks can be applied. A central

200 × 200 region is cropped from each of the selected images and the remaining background

discarded. The selected regions are converted to grey scale and then intensity normalised to

have zero mean and unit standard deviation. Thus, no colour information is used in any of the

experiments and we make ourselves invariant to affine changes in the illuminant intensity. The

cropped CUReT database has a total of 61 × 92 = 5612 images. Out of these, 46 images per

class are randomly chosen for training and the remaining 46 per class are chosen for testing.

The cropped CUReT database can be downloaded from [1].

3. A REVIEW OF THE VZ CLASSIFIER

The classification problem being tackled is the following: given an image consisting of a

single texture obtained under unknown illumination and viewpoint, categorise it as belonging to

one of a set of pre-learnt texture classes. Leung and Malik’s influential paper [31] established
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much of the framework for this area – filter response textons, nearest neighbour classification

using the χ2 statistic, testing on the CUReT database, etc. Later algorithms such as the BFH

classifier [11] and the VZ classifier [54] have built on this paper and extended it to classify single

images without compromising accuracy. In turn, [6], [9], [23] have achieved even superior results

by keeping the MR8 filter bank representation of the VZ algorithm but replacing the nearest

neighbour classifier with SVMs or Gaussian-Bayes classifiers.

The VZ classifier [54] is divided into two stages: a learning stage where texture models

are learnt from training examples by building statistical descriptions of filter responses, and a

classification stage where novel images are classified by comparing their distributions to the

learnt models.

In the learning stage, training images are convolved with a chosen filter bank to generate

filter responses. These filter responses are then aggregated over images from a texture class and

clustered. The resultant cluster centres form a dictionary of exemplar filter responses which are

called textons. Given a texton dictionary, a model is learnt for a particular training image by

labelling each of the image pixels with the texton that lies closest to it in filter response space.

The model is the normalised frequency histogram of pixel texton labellings, i.e. an S-vector of

texton probabilities for the image, where S is the size of the texton dictionary. Each texture class

is represented by a number of models corresponding to training images of that class.

In the classification stage, the set of learnt models is used to classify a novel (test) image into

one of the 61 textures classes. This proceeds as follows: the filter responses of the test image are

generated and the pixels labelled with textons from the texton dictionary. Next, the normalised

frequency histogram of texton labellings is computed to define an S-vector for the image. A

nearest neighbour classifier is then used to assign the texture class of the nearest model to the

test image. The distance between two normalised frequency histograms is measured using the

χ2 statistic, where χ2(x,y) = 1
2

∑
i

(xi−yi)
2

xi+yi
.

The performance of six filter banks was contrasted in [50]. These include 4 filter banks based

on the Maximum Response filter set (BFS, MR8, MR4 and MRS4), the filter bank of Schmid

(S) [43] and the filter bank of Leung and Malik (LM) [31] which was also used by Cula and

Dana [11]. It was demonstrated that the rotationally invariant, multi-scale, Maximum Response

MR8 filter bank (described below) yields better results than any of the other filters. Hence, in

this paper, we present comparisons with the MR8 filter bank.
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3.1. Filter bank

The MR8 filter bank consists of 38 filters but only 8 filter responses. The filters include

a Gaussian and a Laplacian of a Gaussian (LOG) filter both at scale σ = 10, an edge (first

derivative) filter at 6 orientations and 3 scales and a bar (second derivative) filter also at 6

orientations and the same 3 scales (σx,σy)={(1,3), (2,6), (4,12)}. The response of the isotropic

filters (Gaussian and LOG) are used directly. However, in a manner somewhat similar to [41],

the responses of the oriented filters (bar and edge) are “collapsed” at each scale by using only

the maximum filter responses across all orientations. This gives 8 filter responses in total and

ensures that the filter responses are rotationally invariant. The MR4 filter bank only employs

the (σx, σy) = (4, 12) scale. Another 4 dimensional variant, MRS4, achieves rotation and scale

invariance by selecting the maximum response over both orientation and scale [50]. Matlab code

for generating these filters, as well as the LM and S sets, is available from [2].

3.2. Pre-processing

The following pre-processing steps are applied before going ahead with any learning or

classification. First, every filter in the filter bank is made mean zero. It is also L1 normalised so

that the responses of all filters lie roughly in the same range. In more detail, every filter Fi is

divided by ‖Fi‖1 so that the filter has unit L1 norm. This helps vector quantisation, when using

Euclidean distances, as the scaling for each of the filter response axes becomes the same [37].

Note that dividing by ‖Fi‖1 also scale normalises [35] the Gaussians (and their derivatives) used

in the filter bank.

Second, following [37] and motivated by Weber’s law, the filter response at each pixel x is

Fig. 3. The MR8 filter bank consists of 2 anisotropic filters (an edge and a bar filter, at 6 orientations and 3 scales), and 2

rotationally symmetric ones (a Gaussian and a Laplacian of Gaussian). However only 8 filter responses are recorded by taking,

at each scale, the maximal response of the anisotropic filters across all orientations.
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(contrast) normalised as

F(x)← F(x) [log (1 + L(x)/0.03)] /L(x) (1)

where L(x) = ‖F(x)‖2 is the magnitude of the filter response vector at that pixel. This was

empirically determined to lead to better classification results.

3.3. Implementation details

To learn the texton dictionary, filter responses of 13 randomly selected images per texture

class (taken from the set of training images) are aggregated and clustered via the K-Means

algorithm [14]. K = 10 textons are learnt from each of the 61 texture classes present in

the CUReT database resulting in a dictionary comprising 61 × 10 = 610 textons. In previous

work [54], we had explored the idea of learning universal texton dictionaries from a subset of the

61 texture classes. While the performance using such dictionaries was adequate, the performance

obtained by learning textons from all classes was better. In addition, it was not found necessary to

prune the texton dictionary or merge textons as in [31]. On the contrary, larger texton dictionaries

tended to give better performance (see [53], [54] for details).

Under this setup, the VZ classifier using the MR8 filter bank achieves an accuracy rate of

96.93% while classifying all 2806 test images into 61 classes using 46 models per texture. This

will henceforth be referred to as VZ Benchmark. The best results for MR8 are 97.43% obtained

when a dictionary of 2440 textons is used, with 40 textons being learnt per class.

4. THE IMAGE PATCH BASED CLASSIFIERS

In this section, we investigate the effect of replacing filter responses with the source image

patches from which they were derived. The rationale for doing so comes from the observation

that convolution to generate filter responses can be rewritten as an inner product between image

patch vectors and the filter bank matrix. Thus, a filter response is essentially a lower dimensional

projection of an image patch onto a linear subspace spanned by the vector representation of the

individual filters (obtained by row reordering each filter mask).

The VZ algorithm is now modified so that filter responses are replaced by their source image

patches. Thus, the new classifier is identical to the VZ algorithm except that, at the filtering stage,

instead of using a filter bank to generate filter responses at a point, the raw pixel intensities of an
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Fig. 4. Image patch textons learnt from the CUReT database using neighbourhoods of size 7 × 7.

N ×N square neighbourhood around that point are taken and row reordered to form a vector in

an N2 dimensional feature space. All pre and post processing steps are retained (images are made

zero mean and unit variance while patch vectors are contrast normalised using Weber’s law) and

no other changes are made to the classifier. Hence, in the first stage of learning, all the image

patches from the selected training images in a texture class are aggregated and clustered. The set

of cluster centres from all the classes comprises the texton dictionary. The textons now represent

exemplar image patches rather than exemplar filter responses (see Figure 4). However, the model

corresponding to a training image continues to be the histogram of texton frequencies, and novel

image classification is still achieved by nearest neighbour matching using the χ2 statistic. This

classifier will be referred to as the Joint classifier. Figure 5 highlights the main difference in

approach between the Joint classifier and the MR8 based VZ classifier.

We also design two variants of the Joint classifier – the Neighbourhood classifier and the MRF

classifier. Both of these are motivated by the recognition that textures can often be considered

realisations of a Markov random field. In an MRF framework [18], [33], the probability of the

central pixel depends only on its neighbourhood. Formally,

p(I(xc)|I(x),∀x 6= xc) = p(I(xc)|I(x),∀x ∈ N (xc)) (2)

where xc is a site in the 2D integer lattice on which the image I has been defined and N (xc) is

the neighbourhood of that site. In our case, N is defined to be the N×N square neighbourhood
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Fig. 5. The only difference between the Joint and the VZ MR8 representations is that the source image patches are used

directly in the Joint representation as opposed to the derived filter responses in VZ MR8.

(excluding the central pixel). Thus, although the value of the central pixel is significant, its

distribution is conditioned on its neighbours alone. The Neighbourhood and MRF classifiers are

designed to test how significant this conditional probability distribution is for classification.

For the Neighbourhood classifier, the central pixel is discarded and only the neighbourhood

is used for classification. Thus, the Neighbourhood classifier is essentially the Joint classifier

retrained on feature vectors drawn only from the set of N : i.e. the set of N ×N image patches

with the central pixel left out. For example, in the case of a 3 × 3 image patch, only the 8

neighbours of every central pixel are used to form feature vectors and textons.

For the MRF classifier we go to the other extreme and, instead of ignoring the central

pixel, explicitly model p(I(xc), I(N (xc))), i.e. the joint distribution of the central pixels and

its neighbours. Up to now, textons have been used to implicitly represent this joint PDF. The

representation is implicit because, once the texton frequency histogram has been formed, neither

the probability of the central pixel nor the probability of the neighbourhood can be recovered

straightforwardly by summing (marginalising) over the appropriate textons. Thus, the texton

representation is modified slightly so as to make explicit the central pixel’s PDF within the joint

and to represent it at a finer resolution than its neighbours (in the Neighbourhood classifier, the

central pixel PDF was discarded by representing it at a much coarser resolution using one bin).

To learn the PDF representing the MRF model for a given training image, the neighbours’ PDF

is first represented by textons as was done for the Neighbourhood classifier – i.e. all pixels but the

central are used to form feature vectors in an N2− 1 dimensional space which are then labelled
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Fig. 6. MRF texture models as compared to those learnt using the Joint representation. The only point of difference is that the

central pixel PDF is made explicit and stored at a higher resolution. The Neighbourhood representation can be obtained from

the MRF representation by ignoring the central pixel.

using the same dictionary of 610 textons. Then, for each of the SN textons in turn (SN = 610

is the size of the neighbourhood texton dictionary), a one dimensional distribution of the central

pixels’ intensity is learnt and represented by an SC bin histogram. Thus the representation of

the joint PDF is now an SN × SC matrix. Each row is the PDF of the central pixel for a given

neighbourhood intensity configuration as represented by a specific texton. Figure 6 highlights

the differences between MRF models and models learnt using the Joint representation. Using

this matrix, a novel image is classified by comparing its MRF distribution to the learnt model

MRF distributions by computing the χ2 statistic over all elements of the SN × SC matrix.

N × N
Joint Neighbourhood MRF with

Classifier (%) Classifier (%) 90 bins (%)

3 × 3 95.33 94.90 95.87

5 × 5 95.62 95.97 97.22

7 × 7 96.19 96.08 97.47

(a) (b) (c)

TABLE I. Comparison of classification results of all 61 textures in the CUReT database for different N × N neighbourhood

(patch) sizes: (a) all the pixels in an image patch are used to form vectors in an N2 feature space; (b) all but the central pixel

are used (i.e. an N2
− 1 space); (c) the MRF classifier where 90 bins are used to represent the joint neighbourhood and central

pixel PDF. A dictionary of 610 textons learnt from all 61 textures is used throughout. Notice that the performance using these

small patches is as good as that achieved by the multi orientation, multi scale, MR8 filter bank with 49 × 49 support (96.93%

using 610 textons and 97.43% using 2440 textons).

DRAFT June 25, 2008



VARMA AND ZISSERMAN: A STATISTICAL APPROACH TO MATERIAL CLASSIFICATION USING IMAGE PATCH EXEMPLARS13

Table I presents a comparison of the performance of the Joint, Neighbourhood and MRF

classifiers when tested on the CUReT database (see Section 2.1 for experimental setup details).

Image patches of size 3×3, 5×5 and 7×7 are tried while using a dictionary of 610 textons. For

the Joint classifier, it is remarkable to note that classification results of over 95% are achieved

using patches as small as 3 × 3. In fact, the classification result for the 3 × 3 neighbourhood

is actually better than the results obtained by using the MR4 (91.70%), MRS4 (94.23%), LM

(94.65%) or S (95.22%) filter banks. This is strong evidence that there is sufficient information

in the joint distribution of the nine intensity values (the central pixel and its eight neighbours) to

discriminate between the texture classes. For the Neighbourhood classifier, as shown in column

(b), there is almost no significant variation in classification performance as compared to using

all the pixels in an image patch. Classification rates for N = 5 are slightly better when the

central pixel is left out and marginally poorer for the cases of N = 3 and N = 7. Thus, the

joint distribution of the neighbours is largely sufficient for classification. Column (c) presents a

comparison of the performance of the Joint and Neighbourhood classifiers to the MRF classifier

when a resolution of 90 bins is used to store the central pixels’ PDF. As can be seen, the MRF

classifier does better than both the Joint and Neighbourhood classifiers. What is also interesting

is that the performance of the MRF classifier using 7×7 patches (97.47%) is at least as good as

the best performance achieved by the multi-scale MR8 filter bank with support 49×49 (97.43%

using 2440 textons).

This result showing that image patches can outperform filters raises the important question of

whether filter banks are actually providing beneficial information for classification, for example

perhaps by increasing the signal to noise ratio, or by extracting useful features. We first address

this issue experimentally, by determining the classification performance of filter banks across

many different parameter settings and seeing if performance is ever superior to equivalent patches.

In order to do so, the performance of the VZ classifier using the MR8 filter bank (VZ

MR8) is compared to that of the Joint, Neighbourhood and MRF classifiers as the size of

the neighbourhood is varied. In each experiment, the MR8 filter bank is scaled down so that the

support of the largest filters is the same as the neighbourhood size. Once again, we emphasise

that the MR8 filter bank is chosen as its performance is better than all the other filter banks

studied. Figure 7 plots the classification results. It is apparent that for any given size of the

neighbourhood, the performance of VZ MR8 using 610 textons is worse than that of the Joint
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Fig. 7. Classification results as a function of neighbourhood size: The MRF Best curve shows results obtained for the best

combination of texton dictionary and number of bins for a particular neighbourhood size. For neighbourhoods up to 11 × 11,

dictionaries of up to 3050 textons and up to 200 bins are tried. For 13 × 13 and larger neighbourhoods, the maximum size

of the texton dictionary is restricted to 1220 because of computational expense. Similarly, the VZ MR8 Best curve shows the

best results obtained by varying the size of the texton dictionary. However, in this case, dictionaries of up to 3050 textons are

tried for all neighbourhoods. The best result achieved by the MRF classifiers is 98.03% using a 7 × 7 neighbourhood with

2440 textons and 90 bins. The best result for MR8 is 97.64% for a 25× 25 neighbourhood and 2440 textons. The performance

of the VZ algorithm using the MR8 filter bank (VZ MR8) is always worse than any other comparable classifier at the same

neighbourhood size. VZ MR8 Best is inferior to the MRF curves, while VZ MR8 with 610 textons is inferior to the Joint and

Neighbourhood classifiers also with 610 textons.

or even the Neighbourhood classifiers also using 610 textons. Similarly, VZ MR8 Best is always

inferior not just to MRF Best but also to MRF. To assess statistical significance, we repeat the

experiment for VZ MR8 610 and Joint 610 over a thousand random partitionings of the training

and test set. The results are given in Table II and show that for each neighbourhood size, and in

each of the thousand random partitioning, the Joint classifier outperforms VZ MR8. The results

are statistically significant since the p-value was always zero. This would suggest that using all

the information present in an image patch is more beneficial for classification than relying on

lower dimensional responses of a pre-selected filter bank. A classifier which is able to learn
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9 × 9(%) 11 × 11(%) 13 × 13(%) 15 × 15(%) 17 × 17(%) 19 × 19(%)

VZ MR8 610 95.06 ± 0.41 95.57 ± 0.38 95.92 ± 0.37 96.16 ± 0.37 96.30 ± 0.37 96.37 ± 0.36

Joint 610 96.38 ± 0.35 96.58 ± 0.34 96.63 ± 0.35 96.89 ± 0.33 97.11 ± 0.32 97.17 ± 0.32

TABLE II. Statistical significance: The mean and standard deviation for the VZ MR8 classifier with 610 textons and Joint

classifier also with 610 textons are reported as a function of the neighbourhood size. In each case, results are reported over a

thousand random partitionings of the training and test set. The performance of the Joint classifier is better than that of VZ MR8

for every one of the thousand splits for each neighbourhood size. This resulted in the p-value being zero in each case indicating

that the results are statistically significant.

from all the pixel values is superior.

These results demonstrate that a classification scheme based on MRF local neighbourhood

distributions can achieve very high classification rates and can outperform methods which adopt

large scale filter banks to extract features and reduce dimensionality. Before turning to discuss

theoretical reasons as to why this might be the case, we first explore how issues such as rotation

and scale impact the image patch classifiers.

5. SCALE, ROTATION AND OTHER DATASETS

Three main criticisms can be levelled at the classifiers developed in the previous section.

First, it could be argued that the lack of significant scale change in the CUReT textures might

be the reason why image patch based classification outperforms the multi-scale MR8 filter bank.

Second, the image patch representation has a major disadvantage in that it is not rotationally

invariant. Third, the reason why small image patches do so well could be because of some

quirk of the CUReT dataset and that classification using small patches will not generalise to

other databases. In this section, each of these three issues is addressed experimentally and it is

shown that the image patch representation is as robust to scale changes as MR8, can be made

rotationally invariant and generalises well to other datasets.

5.1. The effect of scale changes

To test the hypothesis that the image patch representation will not do as well as the filter

bank representation in the presence of scale changes, four texture classes were selected from

the CUReT database (material numbers 2, 11, 12 and 14) for which additional scaled data is

available (as material numbers 29, 30, 31 and 32). The materials are shown in Figure 8.
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Fig. 8. The top row shows one image each from material numbers 2, 11, 12 and 14 from the CUReT database. The middle

row shows the same textures scaled synthetically by a factor of two while the bottom row shows the textures scaled naturally

(as material numbers 29, 30, 31 and 32).

Two experiments were performed. In the first, models were learnt only from the training

images of the original textures while the test images of both the original and scaled textures

were classified. In the second experiment, both test sets were classified once more but this time

models were learnt from the original as well as the scaled textures. Table III shows the results

of the experiments. It also tabulates the results when the experiments are repeated but this time

with the images being scaled synthetically by a factor of two.

In the naturally scaled case, when classifying both texture types using models learnt only

from the original textures, the MRF classifier achieves 93.48% while VZ MR8 (which contains

filters at three scales) reaches only 81.25%. This shows that the MRF classifier is not being

Naturally Scaled Synthetically Scaled ×2

Original Original + Original Original +

(%) Scaled (%) (%) Scaled (%)

MRF 93.48 100 65.22 99.73

MR8 81.25 99.46 62.77 99.73

TABLE III. Comparison of classification results of the MRF and VZ MR8 classifiers for scaled data. Models are learnt either

from the original textures only or the original + scaled textures while classifying both texture types. In each case, the performance

of the MRF classifier is at least as good as that using the multi-scale MR8 filter bank.
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adversely affected by the scale variations. When images from the scaled textures are included

in the training set as well, the accuracy rates go up 100% and 99.46% respectively. A similar

trend is seen in the case when the scaled textures are generated synthetically. Both these results

show that image patches cope as well with scale changes as the MR8 filter bank. We return to

this issue in Section 5.3.3 when classifying the images in the UIUC database.

5.2. Incorporating rotational invariance

The fact that the image patch representation developed so far is not rotationally invariant

can be a serious limitation. However, it is straight forward to incorporate invariance into the

representation. There are several possibilities: (i) find the dominant orientation of the patch

(as is done in the MR filters), and measure the neighbourhood relative to this orientation; (ii)

marginalise the intensities weighted by the orientation distribution over angle; (iii) add rotated

patches to the training set so as to make the learnt decision boundaries rotation invariant [46];

etc. In this paper, we implement option (i), and instead of using an N × N square patch, the

neighbourhood is redefined to be circular with a given radius. Table IV lists the results for

the Neighbourhood and MRF classifiers using circular neighbourhoods with radius 3 pixels

(corresponding to a 7× 7 patch) and 4 pixels (9× 9 patch).

Neighbourhood Classifier MRF Classifier

Rotationally Not Rotationally Not

Invariant (%) Invariant (%) Invariant (%) Invariant (%)

7 × 7 96.36 96.08 97.07 97.47

9 × 9 96.47 96.36 97.25 97.75

TABLE IV. Comparison of classification results of the Neighbourhood and MRF classifiers using the standard and the rotationally

invariant image patch representations.

Using the rotationally invariant representation, the Neighbourhood classifier with a dictionary

of 610 textons achieves 96.36% for a radius of 3 pixels and 96.47% for a radius of 4 pixels.

This is slightly better than that achieved by the same classifier using the standard (non invariant)

representation with corresponding 7×7 and 9×9 patches. The rates for the rotationally invariant

MRF classifier are 97.07% and 97.25% using 610 textons and 45 bins. These results are

slightly worse than those obtained using the standard representation. However, the fact that
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such high classification percentages are obtained strongly indicates that rotation invariance can

be successfully incorporated into the image patch representation.

5.3. Results on other datasets

We now show that image patches can also be used to successfully classify textures other than

those present in the CUReT database. It is demonstrated that the Joint classifier with patches

of size 3 × 3, 5 × 5 and 7 × 7 is sufficient for classifying the Microsoft Textile [42] and San

Francisco [29] databases. For the UIUC database [30], while 9× 9 patches already yield good

results, the best results are obtained by patches of size 17×17. While the MRF classifier leads to

the best results in general, we show that on these databases the Joint classifier already achieves

very high performance.

5.3.1) The Microsoft Textile database: This has 16 folded materials with 20 images available

of each taken under diffuse artificial lighting (see Figure 9 for an example). The impact of non-

Lambertian effects is plainly visible (as it is in the Columbia-Utrecht database). Furthermore, the

variations in pose and the deformations of the textured surface make it an interesting database

to analyse.

For this database, the experimental setup is kept identical to the original setup of the authors.

Fifteen images were randomly selected from each of the sixteen texture classes to form the

training set. While all the training images were used to form models, textons were learnt from

only 3 images per texture class. Various sizes of the texton dictionary S = 16×K were tried,

with K = 10, . . . , 40 textons learnt per textile. The test set comprised a total of 80 images.

Table V shows the variation in performance of the Joint classifier with neighbourhood size N

and texton dictionary size S.

Size of Texton Dictionary S

N × N 160 (%) 320 (%) 480 (%) 640 (%)

3 × 3 96.82 96.82 96.82 96.82

5 × 5 99.21 99.21 99.21 99.21

7 × 7 96.03 97.62 96.82 97.62

TABLE V. The Joint classifier performs excellently on the Microsoft Textile database – only a single image is misclassified

using 5×5 patches. These results reinforce the fact that very small patches can be used to classify textures with global structure

far larger than the neighbourhoods used (the image resolutions are 1024 × 768).
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Black Linen

(a)

Black Pseudo Silk

(b)

Fig. 9. Only a single image in the Microsoft Textile database is misclassified by the Joint classifier using 5 × 5 patches: (a)

is an example of Black Linen but is incorrectly classified as Black Pseudo Silk (b).

As can be seen, excellent results are obtained using very small neighbourhoods. In fact, only

a single image is misclassified using 5 × 5 patches (see Figure 9). These results reinforce the

fact that very small patches can be used to classify textures with global structure far larger than

the neighbourhoods used (the image resolutions are 1024× 768).

5.3.2) The San Francisco database: This database has 37 images of outdoor scenes taken on

the streets of San Francisco. Konishi and Yuille have segmented the images by hand [29] into 6

classes: Air, Building, Car, Road, Vegetation and Trunk. We work with the given segmentations

and our goal is to classify each of the regions selected by Konishi and Yuille. Note that since

each image has multiple texture regions present in it, the global image mean is not subtracted

as was done in previous cases.

A single image is chosen for training the Joint classifier. Figure 10 shows the selected training

image and its associated hand segmented regions. All the rest of the 36 images are kept as the

test set. Performance is measured by the proportion of pixels that are labelled correctly during

Road 7

(a)

Hand Segmentation

(b)

Fig. 10. The single image used for training on the San Francisco database and the associated hand segmented regions.
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Fig. 11. Region classification results using the Joint classifier with 7×7 patches for a sample test image from the San Francisco

database.

classification of the hand segmented regions. Using this setup, the Joint classifier achieves an

accuracy rate of 97.9%, i.e. almost all the pixels are labelled correctly in the 36 test images.

Figure 11 shows an example of a test image and the regions that were classified in it. This

result again validates the fact that small image patches can be used to successfully classify

textured images. In fact, using small patches is particularly appealing for databases such as the

San Francisco set because large scale filter banks will have problems near region boundaries and

will also not be able to produce many measurements for small, or irregularly shaped, regions.

5.3.3) The UIUC database: The UIUC texture database [30] has 25 classes and 40 images per

class. The database contains materials imaged under significant viewpoint variations. Figure 12

shows examples of the materials in the database and also highlights the extreme scale and

viewpoint changes.

(a) (b)

Fig. 12. The UIUC database: (a) one image from each texture class and (b) sample images from 4 texture classes showing

large viewpoint variations.
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We compare the performance of the Joint classifier to the performance of the rotation invariant

MR8, and rotation and scale invariant MRS4, filter banks. We also compare results to the bi-

Lipschitz and affine invariant state-of-the-art, nearest neighbour methods of Lazebnik et al.

(LSP) [30], Xu et al. (XJF) [57] and Varma and Garg (VG) [51]. For the Joint classifier, we adopt

the rotationally invariant patch based representation developed in Section 5.2. While circular

patches of radius 4 already give good results, the best results are obtained by patches of radius 8.

The best filter bank based results are obtained using filters of support 49×49. Texton dictionaries

of size 2500 are used for all the classifiers. To assesses classification performance, M training

images are randomly chosen per class while the remaining 40−M images per class are taken

to form the test set. Table VI presents classification results averaged over a thousand random

splits of the training and test sets (the results for the LSP, XJF and VG methods are taken from

Table 1 of [51]).

M Joint (%) MR8 (%) MRS4 (%) VG [51] (%) LSP [30] (%) XJF [57] (%)

20 97.83±0.66 92.94±1.06 90.29±1.26 95.40±0.92 93.62±0.97 93.04

15 96.94±0.77 91.16±1.11 88.47±1.25 94.09±0.98 92.42±0.99 91.11

10 95.18±0.94 88.29±1.32 85.43±1.34 91.64±1.18 90.17±1.11 88.79

05 90.17±1.44 81.12±1.74 78.44±1.77 85.35±1.69 84.77±1.54 82.99

TABLE VI. UIUC results as the number of training images M is varied. Means and standard deviations have been computed

over 1000 random splits of the training and test set.

The performance of the Joint classifier is significantly superior (with p-value 0 in all experi-

ments) to that of MR8 and MRS4. The performance gap increases as fewer and fewer images

are used for training. This runs contrary to traditional expectation and bolsters the claim that

the patch based representation is not necessarily adversely affected by large scale variations as

compared to multi-scale filter banks. Surprisingly, the performance of the Joint classifier is also

superior to the state-of-the-art bi-Lipschitz and affine invariant classifiers of [30], [51], [57].

6. WHY DOES PATCH BASED CLASSIFICATION WORK?

The results of the previous sections have demonstrated two things. First, neighbourhoods as

small as 3×3 can lead to very good classification results even for textures whose global structure

is far larger than the local neighbourhoods used. Second, classification using image patches is
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superior to that using filter banks with equivalent support. In this section, we discuss some of

the theoretical reasons as to why these results might hold.

6.1. Classification using small patches

The results on the CUReT, San Francisco and Microsoft Textile databases show that small

image patches contain sufficient information to discriminate between different textures. One

explanation for this is illustrated in Figure 13. In (a), three images are selected from the Limestone

and Ribbed Paper classes of the CUReT dataset, and scatter plots of their grey level co-occurrence

matrix shown for the displacement vector (2, 2) (i.e. the joint distribution of the top left and

bottom right pixel in every 3 × 3 patch). Notice how the distributions of the two images of

Ribbed Paper can easily be associated with each other and distinguished from the distribution of

the Limestone image. Another example in (b) shows the same trend. Thus, 3×3 neighbourhood

distributions can contain sufficient information for successful discrimination.

To take a more analytic example, consider two functions f(x) = A sin(ωf t + δ) and g(x) =

A sin(ωgt + δ), where ωf and ωg are small so that f and g have large structure. Even though f

and g are very similar (they are essentially the same function at different scales) it will be seen

that they are easily distinguished by the Joint classifier using only two point neighbourhoods.

Fig. 13. Information present in 3 × 3 neighbourhoods is sufficient to distinguish between textures: (a) The top row shows

three images drawn from two texture classes, Limestone and Ribbed Paper. The bottom row shows scatter plots of I(x) against

I(x + (2, 2)). On the left are the distributions for Limestone and Ribbed Paper 1 while on the right are the distributions for

all three images. The Limestone and Ribbed Paper distributions can easily be distinguished and hence the textures can be

discriminated from this information alone. Another example is shown in (b) with the same notation.
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Fig. 14. Similar large scale periodic functions can be classified using the distribution of their derivatives computed from two

point neighbourhoods.

Figure 14 illustrates that while the intensity distributions of f and g are identical, the distributions

of their derivatives, fx and gx, are not. Since derivatives can be computed using just two points,

these functions can be distinguished by looking at two point neighbourhoods alone.

In a similar fashion, other complicated functions such as triangular and saw tooth waves can

be distinguished using compact neighbourhoods. Furthermore, the Taylor series expansion of

a polynomial of degree 2N − 1 immediately shows that a [−N, +N ] neighbourhood contains

enough information to determine the value of the central pixel. Thus, any function which can

be locally approximated by a cubic polynomial can actually be synthesised using a [−2, 2]

neighbourhood. Since, in general, synthesis requires much more information than classification

it is therefore expected that more complicated functions can still be distinguished just by looking

at small neighbourhoods. This illustrates why it is possible to classify very large scale textures

using small patches.

There also exist entire classes of textures which can not be distinguished on the basis of local

information alone. One such class comprises of textures made up of the same textons and with

identical first order texton statistics, but which differ in their higher order statistics. To take a

simple example, consider texture classes generated by the repeated tiling of two textons (a circle

and a square for instance) with sufficient spacing in between so that there is no overlap between

textons in any given neighbourhood. Then, any two texture classes which differ in their tiling
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pattern but have identical frequencies of occurrence of the textons will not be distinguished on

the basis of local information alone. However, the fact that classification rates of nearly 98% have

been achieved using extremely compact neighbourhoods on three separate data sets indicates that

real textures are not as simplistic as this.

The arguments in this subsection indicate that small patches might be effective at texture

classification. The arguments do not imply that the performance of small patches is superior to

that of arbitrarily large filter banks. However, in the next subsection, arguments are presented

as to why filter banks are not superior to equivalent sized patches.

6.2. Filter banks are not superior to image patches

We now turn to the question of why filter banks do not provide superior classification as

compared to their source image patches. To fix the notation, f+ and f− will be used to denote

filter response vectors generated by projecting N × N image patches i+ and i−, of dimension

d = N2, onto a lower dimension Nf using the filter bank F. Thus,

f±Nf×1
= FNf×d i±d×1

(3)

In the following discussion, we will focus on the properties of linear (including complex) filter

banks. This is not a severe limitation as most popular filters and wavelets tend to be linear. Non

linear filters can also generally be decomposed into a linear filtering step followed by non linear

post-processing. Furthermore, since one of the main arguments in favour of filtering comes from

dimensionality reduction, it will be assumed that Nf < d, i.e. the number of filters must be less

than the dimensionality of the source image patch. Finally, it should be clarified that throughout

the discussion, performance will be measured by classification accuracy rather than the speed

with which classification is carried out. While the time complexity of an algorithm is certainly

an important factor and can be critical for certain applications, our focus here is on achieving

the best possible classification results.

The main motivations which have underpinned filtering (other than biological plausibility) are:

(i) dimensionality reduction, (ii) feature extraction at multiple scales and orientations, and (iii)

noise reduction and invariance. Arguments from each of these areas are now examined to see

whether filter banks can lead to better performance than image patches.
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6.2.1) Dimensionality Reduction: Two arguments have been used from dimensionality re-

duction. The first, which comes from optimal filtering, is that an optimal filter can increase

the separability between key filter responses from different classes and is therefore beneficial

for classification [25], [40], [49]. The second argument, from statistical machine learning, is

that reducing the dimensionality is desirable because of better parameter estimation (improved

clustering) and also due to regularisation effects which smooth out noisy filter responses and

prevent over-fitting [5], [8], [14], [21]. We examine both arguments in turn to see whether

such factors can compensate for the inherent loss of information associated with dimensionality

reduction. For a more comprehensive discussion of these issues please refer to [5], [45].

6.2.1.1) Increasing separability: Since convolution with a linear filter is equivalent to

linearly projecting onto a lower dimensional space, the choice of projection direction determines

the distance between the filter responses. Suppose we have two image patches i±, with filter

responses f± computed by orthogonal projection as f± = Fi±. Then the distance between f+ and

f− is clearly less than the distance between i+ and i− (where the rows of F span the hyperplane

orthogonal to the projection direction). The choice of F affects the separation between f+ and

f−, and the optimum filter maximises it, in the manner of a Fisher Linear Discriminant, but the

scaled distance between the projected points cannot exceed the original. This holds true for many

popular distance measures including the Euclidean, Mahalanobis and the signed perpendicular

distance [4] (analogous results hold when F is not orthogonal). It is also well known [28] that

under Bayesian classification, the Bayes error either increases or remains at least as great when

the dimensionality of a problem is reduced by linear projection. However, the fact that the Bayes

error has increased for the low dimensional filter responses does not mean the classification is

necessarily worse. This is because of issues related to noise and over-fitting which brings us to

the second argument from dimensionality reduction for the superiority of filter banks.

6.2.1.2) Improved parameter estimation: The most compelling argument for the use of

filters comes from statistical machine learning where it has often been noted that dimensionality

reduction can lead to fewer training samples being needed for improved parameter estimation

(better clustering) and can also regularise noisy data and thereby prevent over-fitting. The

assumptions underlying these claims are that textures occupy a low dimensional subspace of

image patch space and if the patches could be projected onto this true subspace (using a

filter bank) then the dimensionality of the problem would be reduced without resulting in any
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Fig. 15. Projecting the data onto lower dimensions can have a beneficial effect when not much training data is available. A

nearest neighbour classifier misclassifies a novel point in the original, high dimensional space but classifies it correctly when

projected onto the x axis. This problem is mitigated when there is a lot of training data available. Note that it is often not possible

to know a priori the correct projection directions. If it were, then misclassifications in the original, high dimensional space can

be avoided by incorporating such knowledge into the distance function. Indeed, this can even lead to superior classification

unless all the information along the remaining dimensions is noise.

information loss. This would be particularly beneficial in cases where only a limited amount

of training data is available as the higher dimensional patch representation would be prone to

over-fitting (see Figure 15).

While these are undoubtedly sound claims there are three reasons why they might not lead

to the best possible classification results. The first is due to the great difficulty associated with

identifying a texture’s true subspace (in a sense, this itself is one of the holy grails of texture

analysis). More often than not, only approximations to this true subspace can be made and these

result in a frequent loss of information when projecting downwards.

The second counter argument comes from the recent successes of boosting [48] and kernel

methods [45]. Dimensionality reduction is necessary if one wants to accurately model the true

texture PDF. However, both boosting and kernel methods have demonstrated that for classification

purposes a better solution is to actually project the data non-linearly into an even higher (possibly

infinite) dimensional space where the separability between classes is increased. Thus the emphasis

is on maximising the distance between the classes and the decision boundary rather than trying

to accurately model the true texture PDF (which, though ideal, is impractical). In particular,
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the kernel trick, when implemented properly, can lead to both improved classification and

generalisation without much associated overhead and with none of the associated losses of

downward projection. The reason this argument is applicable in our case is because it can be

shown that χ2, with some minor modifications, can be thought of as a Mercer kernel [55].

Thus, the patch based classifiers take the distribution of image patches and project it into the

much higher dimensional χ2 space where classification is carried out. The filter bank based VZ

algorithm does the same but it first projects the patches onto a lower dimensional space which

results in a loss of information. This is the reason why the performance of filter banks, such as

MR8, is consistently inferior to their source patches.

The third argument is an engineering one. While it is true that clustering is better and

that parameters are estimated more accurately in lower dimensional spaces, Domingos and

Pazzani [13] have shown that even gross errors in parameter estimation can have very little

effect on classification. This is illustrated in Figure 16 which shows that even though the means

and covariance matrices of the true likelihood are estimated incorrectly, 98.6% of the data is still

correctly classified, as the probability of observing the data in much of the incorrectly classified

regions is vanishingly small.

Another interesting result, which supports the view that accurate parameter estimation is not

necessary for accurate classification, is obtained by selecting the texton dictionary at random
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Fig. 16. Incorrect parameter estimation can still lead to good classification results: the true class conditional densities of two

classes (defined to be Gaussians) are shown in (a) along with the MAP decision boundary obtained using equal priors (dashed red

curves). In (b) the estimated likelihoods have gross errors. The estimated means have relative errors of 100% and the covariances

are estimated as being diagonal leading to a very different decision boundary. Nevertheless the probability of misclassification

(computed using the true Gaussian distributions for the probability of occurrence, and integrating the classification error over

the entire 2D space) is just 1.4%. Thus, 98.6% of all points submitted to the classifier will be classified correctly despite the

poor parameter estimation.
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(rather than via K-Means clustering) from amongst the filter response vectors. In this case,

the classification result for VZ MR8 drops by only 5% and is still well above 90%. A similar

phenomenon was observed by [19] when Mean-Shift clustering was used to approximate the filter

response PDF. Thus accurate parameter estimation does not seem to be essential for accurate

texture classification and the loss due to inaccurate parameter estimation in high dimensions

might be less than the loss associated with projecting into a lower dimensional subspace even

though clustering may be improved.

6.2.2) Feature extraction: The main argument from feature extraction is that many features

at multiple orientations and scales must be detected accurately for successful classification.

Furthermore, studies of early vision mechanisms and pre-attentive texture discrimination have

suggested that the detected features should look like edges, bars, spots and rings. These have

most commonly come to be implemented using Gabor or Gaussian filters and their derivatives.

However, results from the previous sections have shown that a multi-scale, multi-orientation

large support filter bank is not necessary. Small image patches can also lead to successful clas-

sification. Furthermore, while an optimally designed bank might be maximising some measure

of separability in filter space, it is hard to argue that “off the shelf” filters such as MR8, LM or

S (whether biologically motivated or not) are the best for any given classification task. In fact,

as has been demonstrated, a classifier which learns from all the input data present in an image

patch should do better than one which depends on these pre-defined features bases.

It can also be argued that patch based features might not perform well in the presence of large,

non-linear illumination changes. Edge based features, computed by thresholding filter responses,

might be more stable in this case. However, the same effect can be achieved by putting a suitable

prior over patches while learning the texton dictionary. Thresholding to find edges would then

correspond to the vector quantisation step in our algorithm. Note that the CUReT database

already contains images taken under significant illumination variation (see examples in Figure 1

as well as images of aluminium foil and leaves in the database). Nevertheless, it was noticed that

the patch based classifiers gave better results than filter banks even when only a small number of

training images was used. On a related note, patch based methods are also beginning to provide

viable alternatives to filter banks for texture edge detection and segmentation tasks [56].

6.2.3) Noise reduction and invariance: Most filters have the desirable property that, because

of their large smoothing kernels (such as Gaussians with large standard deviation), they are
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fairly robust to noise. This property is not shared by image patches. However, pre-processing

the data can solve this problem. For example, the classifiers developed in this paper rely on

vector quantisation of the patches into textons to help cope with noise. This can actually provide

a superior alternative to filtering, because even though filters reduce noise, they also smooth the

high frequency information present in the signal. Yet, as has been demonstrated in the 3 × 3

patch case, this information can be beneficial for classification. Therefore, if image patches can

be denoised by pre-processing or quantisation without the loss of high frequency information

then they should provide a superior representation for classification as compared to filter banks.

Virtually the same methods can be used to build invariance into the patch representation

as are used for filters – without losing information by projecting onto lower dimensions. For

example, patches are pre-processed and made to have zero mean and unit standard deviation to

achieve invariance to affine transformations in the illuminant’s intensity. Similarly, as discussed in

Section 5.2, to achieve rotational invariance, the dominant orientation can be determined and used

to orient the patch. This does have the drawback of being potentially unstable if the dominant

direction cannot be determined accurately. For instance, corners have two dominant orientations

and, in the presence of noise, can be transformed incorrectly upon reduction to the canonical

frame. One solution to the problem could be to discard such ambiguous patches altogether.

Another would be to take appropriately weighted linear combinations of all transformations. At

the other extreme, one can even include many transformed copies of the patch (for instance, all

rotated versions) in the training set to overcome this problem.

It should be noted that the arguments presented in this section do not imply that any arbitrary

patch based classifier is better than every filter bank based one. We gave a constructive example

of how local patches can make classification mistakes which can be avoided by larger scale filter

banks. Furthermore, Figure 15 also illustrates how a filter bank, designed using prior knowledge,

can perform better if there is limited training data. Instead, our arguments focus on two points.

First, small local patch based classifiers can give surprisingly good results in many real world

situations. Second, given equivalent prior knowledge, patches should do as well, if not better,

than filter banks with equivalent support.

7. SYNTHESIS AND DENOISING

In this section, we investigate how accurately distributions in high dimensional spaces can

be learnt given limited training data. The concern is that the high dimensional, patch based
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representation is incapable of capturing a texture’s statistics as compared to lower dimensional

filter responses. Most of the arguments in subsections 5.3 and 6.2 revolve around this central

issue. While demonstrating good classification results is one way of addressing the concern,

another way is to synthesise or denoise textures by sampling from the learnt PDF. If the

reconstruction is adequate, then that provides additional evidence that our PDF representation is

sufficiently accurate. Therefore, in this section, we also demonstrate that our MRF representation

can be used to synthesise and denoise textures.

7.1. Texture Synthesis

Our texture synthesis algorithm is very similar to [15] but for the fact that we explicitly learn

and sample from the texture’s PDF. Given an input texture block to be synthesised, the first

step is to learn its MRF statistics using the matrix representation of the PDF of image patches.

The parameters that can be varied are N , the size of the neighbourhood, and K the number

of textons used to represent the neighbourhood distribution. The central pixel PDF is stored in

256 bins in this case. Next, to synthesise the texture, the input block is initially tiled to the

required dimensions. A new image is synthesised from this tiled image by taking every pixel,

determining its neighbourhood (i.e. closest texton) and setting the pixel to a value randomly

sampled from the learnt MRF distribution. This iteration is repeated until a desired synthesis

is obtained. Results are shown in Figure 17. As can be seen, the synthesised textures are very

similar to the originals, thereby indicating that the MRF representation can form an adequate

representation of the texture’s statistics. Note that no higher order statistics or image regularity

information [34], [36] has been used and this can only improve results. Furthermore, once the

(a) (b) (c) (d)

Fig. 17. Synthesis Results: (a) Input texture blocks, (b) Ribbed Paper (CUReT) synthesised using a 7× 7 neighbourhood and

100 textons (c) Efros and Leung [15] - 15 × 15, 800 textons and (d) D6 (Brodatz) - 11 × 11, 300 textons.
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representation has been learnt explicitly, the synthesised image can be generated quickly as

exhaustive image search [15] is no longer required. On the other hand, a disadvantage of our

method is that the neighbourhood is fixed while it can be adapted in [15].

7.2. Texture Denoising

Our denoising algorithm is inspired by [7]. In the first stage, the MRF representation of the

noisy images is learnt exactly as had been done for synthesis. This involves clustering all N×N

patches of the noisy image into K textons and then learning the central pixel PDF given each of

the K textons. Denoising is carried out by labelling each patch in the noisy image by its closest

texton and then replacing the central pixel in the patch by the median of the corresponding

central pixel distribution (other statistics, such as the mean or the mode, can also be used if

found to be more appropriate for a given noise model). As such, the algorithm is identical to

our synthesis algorithm except that the pixels in the denoised image are generated by choosing

the median of the appropriate central pixel PDF rather than sampling from it.

Figure 18 shows some typical results using N = 7 and K = 1000. The central pixel PDF

was stored using 256 bins. No attempt was made at optimising these parameters. In contrast

Original Noisy Denoised Residual

Fig. 18. Texture denoising using the MRF representation: In the top row, Gaussian white noise with σ = 0.01 was artificially

added to the image. In the bottom row, salt and pepper noise with density 0.075 was added. Each image was denoised by first

learning the MRF representation from the noisy image (using 7 × 7 patches and 1000 textons) and then replacing the value of

the central pixel in every patch by the median of its distribution.
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to [7], no Gaussian smoothing of the neighbourhood was performed. Furthermore, statistics were

computed over the entire image rather than over a restricted subregion around the central pixel

being denoised.

Again, the good results indicate that the high dimensional image patch PDF has been learnt

accurately enough and that one does not have to reduce dimensionality using a filter bank in

order to capture a texture’s statistics.

8. CONCLUSIONS

We have described a classification method based on representing textures as a set of exemplar

patches. This representation has been shown to be superior to one based on filters banks.

Filter banks have a number of disadvantages compared to smaller image patches: first, the

large support they require means that far fewer samples of a texture can be learnt from training

images (there are many more 3×3 neighbourhoods than 50×50 in an 100×100 image). Second,

the large support is also detrimental in texture segmentation, where boundaries are localised less

precisely due to filter support straddling region boundaries; A third disadvantage is that the

blurring (e.g. Gaussian smoothing) in many filters means that fine local detail can be lost.

The disadvantage of the patch representation is the quadratic increase in the dimension of

the feature space with the size of the neighbourhood. This problem may be tackled by using

a multi-scale representation. For instance, an image pyramid could be constructed and patches

taken from several layers of the pyramid if necessary. An alternative would be to use large

neighbourhoods but store the pixel information away from the centre at a coarser resolution. A

scheme such as Zalesny and Van Gool’s [58] could also be implemented to determine which

long range interactions were important and use only those cliques.

Before concluding, it is worth while to reflect on how the image patch algorithms and their

results relate to what others have observed in the field. In particular, [16], [32], [40] have all noted

that in their segmentation and classification tasks, filters with small support have outperformed

the same filters at larger scales. In addition, [56] use small 5×5 patches to detect texture edges.

Thus, there appears to be emerging evidence that small support is not necessarily detrimental to

performance.

It is also worth noting that the “new” image patch algorithms, such as the synthesis method of

Efros and Leung and the Joint classifier developed in this paper, have actually been around for
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quite a long time. For instance, Efros and Leung discovered a strong resemblance between their

algorithm and that of [17]. Furthermore, both the Joint classifier and Efros and Leung’s algorithm

are near identical in spirit to the work of Popat and Picard [39]. The relationship between the Joint

classifier and Popat and Picard’s algorithm is particularly close as both use clustering to learn a

distribution over image patches which then forms a model for novel texture classification. Apart

from the choice of neighbourhoods, the only minor differences between the two methods are

in the representation of the PDF and the distance measure used during classification. Popat and

Picard use a Gaussian mixture model with diagonal covariances to represent their PDF while the

texton representation used in this paper can be thought of as fitting a spherical Gaussian mixture

model via K-Means. During classification, Popat and Picard use a naı̈ve Bayesian method which,

for the Joint classifier, would equate to using nearest neighbour matching with KL divergence

instead of the χ2 statistic as the distance measure [53].

Certain similarities also exist between the Joint classifier and the MRF model of Cross and

Jain [10]. In particular, Cross and Jain were the first to recommend that χ2 over the distribution

of central pixels and their neighbours could be used to determine the best fit between a sample

texture and a model. Had they actually used this for classification rather than just model validation

of synthesised textures, the two algorithms would have been very similar apart from the functional

form of the PDFs learnt (Cross and Jain treat the conditional PDF of the central pixel given the

neighbourhood as a unimodal binomial distribution).

Thus, alternative approaches to filter banks have been around for quite some time. Perhaps

the reason that they didn’t become popular then was due to the computational costs required to

achieve good results. For instance, the synthesis results of [39] are of a poor quality which is

perhaps why their theory didn’t attract the attention it deserved. However, with computational

power being readily accessible today, MRF and image patch methods are outperforming filter

bank based methods.
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