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Abstract. This paper details the attack on RC6 which was announced
in a report published in the proceedings of the second AES candidate
conference (March 1999). Based on an observation on the RC6 statistics,
we show how to distinguish RC6 from a random permutation and to
recover the secret extended key for a fair number of rounds.

1 Introduction

RC6 is one of the 15 candidate algorithms that were presented at the first Advan-
ced Encryption Standard candidate conference in August 1998. It was submitted
by RSA laboratories [9] and has been selected as one of the five finalists for the
second round of the AES contest organized by NIST [1].

In this paper, we first show the existence of a statistical weakness in RC6 which
allows to mount a distinguisher attack on a reduced number of rounds. This me-
ans that given a certain number of plaintext-ciphertext pairs, an attacker is able
to distinguish RC6 from a random permutation. A distinguisher for the r-round
version of a cipher may often be converted into a key-recovery attack on r + 1
or even more rounds. Matsui’s linear cryptanalysis of DES provides a typical
example of such a situation [7]. This also holds for RC6 : we show that we can
gain one round as compared with our distinguisher to recover the extended keys
of RC6 reduced to 14 rounds (or equivalently 15 RC6 inner rounds).

The paper is organised as follows : in the next Section we give the outlines
of RC6 and in Section 3 we present the probabilistic event which leaks informa-
tion. In Section 4 we explicitely construct the distinguisher and in Section 5 we
adapt the latter to recover the extended secret key. Finally, we shortly discuss
the case of RC5 and conclude.

2 RC6 Outlines

RC6 is characterized by three parameters (w, r, b). It is dedicated to w-bit micro-
processors and encrypts 4w-bit blocks by using four registers. (We assume that w
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is an integral power of 2.) It has r rounds and uses a b-byte secret key. The nomi-
nal parameters for AES are (32, 20, 16), (32, 20, 24) and (32, 20, 32), respectively
for a 128, 196 and 256-bit user key. There is a key scheduling algorithm which
extends the original b-byte key into an 2r + 4-word array S = (S0, . . . , S2r+3).
In this paper, we will only use the w and r parameters, so we consider that the
encryption is performed by using an arbitrary 2r + 4-word array S which plays
the role of the secret key.

The encryption is performed by using four registers A, B, C, D. The algorithm
is described by the following pseudo-code.

Input: (A, B, C, D)
1. B ← B + S0, D ← D + S1
2. for i = 1 to r do

A← ((A⊕ f(B))� f(D)) + S2i

C ← ((C ⊕ f(D))� f(B)) + S2i+1

(A, B, C, D)← (B, C, D, A)
3. A← A + S2r+2, C ← C + S2r+3

Output: (A, B, C, D)

Here the f function plays the role of a pseudo-random generator defined by

f(x) = g(x) mod 2w � log2w = x(2x + 1) mod 2w � log2w .

A picture of the RC6 encryption algorithm is given hereafter.
RC6 is very similar to RC5 in that it uses only simple operations such as

binary addition, exclusive or and circular rotations. In addition, RC6 performs
a simple modular multiplication.

Our results show that a reduced number of rounds of RC6 may be distinguished
from a random permutation, which in turn enables an attacker to recover the
secret keys of RC6 with one more round. This analysis also partly transposes
to RC5. We would like to mention that an outline of our attack was introduced
for the first time at the second AES conference in Rome in March 1999 [2], and
that another paper dealing with the same kind of RC6 statistics [6] appears in
these proceedings. However, the work reported in [6] and the work reported here
are quite independent, both approaches for handling the RC6 statistics differ
to some extent, and we feel it is important to present the attack announced in
[2] in details here. Interestingly, both papers show that we can distinguish RC6
from a random permutation in polynomial time for a fair number of rounds, alt-
hough it has been made clear [4,8] that the RC6 frame provides a pseudorandom
permutation after five rounds once the data-dependent rotations are removed.

3 A Probabilistic Event on RC6 Encryption

For 1 ≤ i ≤ r and 0 ≤ j < 4, we let Ri,j(S, a, b, c, d) denote the value of the
register with index j (considering that index 0 is for A, index 1 is for B, ...) after
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Fig. 1. Encryption with RC6-w/r/b where g(x) = x × (2x + 1).

the ith round when the input of the encryption is (a, b, c, d) and the key is S.
We can extend the above notation to i = 0 letting R0,j(S, a, b, c, d) denote the
input words to the first round. We will omit (S, a, b, c, d) in most cases. In the
sequel we implicitely assume that the j index is taken modulo 4. We start with
the following simple fact.

Lemma 1. For any i and any (S, a, b, c, d), we have

f(Ri−1,1) ≡ 0 (mod w)
f(Ri−1,3) ≡ 0 (mod w)

}
=⇒

{
Ri,3 −Ri−1,0 ≡ S2i (mod w)
Ri,1 −Ri−1,2 ≡ S2i+1 (mod w)

and in addition, Ri,0 = Ri−1,1 and Ri,2 = Ri−1,3.
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This comes from the fact that if the mod w part of f(B) and f(D) are both zero
in the ith round, then nothing is XORed onto the mod w part of A and C, and
none are rotated.

This fact extends into the following

Lemma 2. If we have f(Ri−1,1) ≡ f(Ri−1,3) ≡ 0 (mod w) for i = k, k +
2, . . . , k + 2`, then Rk+2`,−2`−1−Rk−1,0 mod w and Rk+2`,1−2`−Rk−1,2 mod w
are constants which only depend on S.

Assuming that the outputs of f mod w behave like random numbers, this event
holds with probability w−2`. We thus have the following heuristic result which
has been confirmed by statistical experiments for w = 32 and small values of r.

Theorem 1. Under heuristic assumptions, there exists some functions c1(S)
and c2(S) such that for random (R0,0, . . . , R0,3) and a random S we have

Pr
[

Rr,1−r(S)−R0,1(S) mod w = c1(S)
Rr,3−r(S)−R0,3(S) mod w = c2(S)

]
≈ w−2

(
1 + w−2b r

2c
)

.

4 On Distinguishing RC6 from a Random Permutation

We can construct a distinguisher between RC6 and a random permutation by
using the above theorem through a known plaintext attack.

1. The distinguisher first gets n random samples (xi,Enc(xi)) where

xi = (xi,0, xi,1, xi,2, xi,3)

and
Enci = (yi,0, yi,1, yi,2, yi,3).

2. Then it hashes the samples onto

hi = (yi,1−r − xi,1 mod w, yi,3−r − xi,3 mod w).

3. It then creates w2 counters which correspond to possible hi values and counts
the number n(u,v) of i indices such that hi = (u, v).

4. If the maximum of all n(u,v) is greater than a given threshold t, output 1,
otherwise, output 0.

We let ε ≈ w−2b r
2c denote the probability that the event of Theorem 1 occurs

for RC6. We need to compute the advantage in terms of n, t, ε of this attack for
distinguishing RC6 from a random permutation.

Let us choose t = n.w−2 + δ. (nw−2 is the expected value of one counter for
random hashes so δ measures the deviation from the ideal expected case.)

The probability p that the distinguisher outputs 1 for RC6 is greater than
the probability that the counter which corresponds to the constant values in
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Theorem 1 is greater than t. When n is large, this counter tends towards a
normal law with expected value n(w−2(1 − ε) + ε) (which we approximate by
nw−2 + nε) and variance approximately nw−2. We let

ϕ(x) =
1√
2π

∫ x

−∞
e− t2

2 dt.

We have

p ≈ ϕ

(
− t− nw−2 − nε√

nw−1

)
+

(
1− ϕ

(
t− nw−2
√

nw−1

)w2−1
)

which is

p ≥ ϕ

(
− t− nw−2 − nε√

nw−1

)
.

This means

p ≥ ϕ
(
−δwn− 1

2 + wε
√

n
)

. (1)

Now the probability p∗ that the distinguisher outputs 1 for a random permu-
tation is less that w2 times the probability that one given counter is greater then
t. This counter tends to behave like a normal law with expected value nw−2 and
variance nw−2. We thus have

p∗ ≤ w2ϕ

(
− t− nw−2
√

nw−1

)

which means

p∗ ≤ w2ϕ
(
−δwn− 1

2

)
. (2)

Therefore the advantage for distinguishing RC6 from a random permutation
is

Adv ≥ ϕ
(
−δwn− 1

2 + wε
√

n
)
− w2ϕ

(
−δwn− 1

2

)
.

If we derive this function with respect to δ, we obtain the maximum when the
derivative is equal to zero. The choice of δ which maximizes this right hand term
is

δ =
2 log w

εw2 +
εn

2

for which

Adv ≥ ϕ

(
−2 log w

εw
√

n
+

εw
√

n

2

)
− w2ϕ

(
−2 log w

εw
√

n
− εw

√
n

2

)
.

This analysis leads to the following result.
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Theorem 2. Let α = εw
√

n

2
√

log w
. Under heuristic assumptions, the above distin-

guisher, when used with

t =
n

w2 +
2 log w

εw2 +
εn

2
and n ≥ 4α2w4b r

2c−2 log w

has an advantage greater than

Adv ≥ ϕ
(√

log w(−α−1 + α)
)
− w2ϕ

(√
log w(−α−1 − α)

)
.

Considering α = 5 we have

Adv ≥ ϕ

(
24
5

√
log w

)
− w2ϕ

(
−26

5

√
log w

)

with a complexity of
n ≥ 100w4b r

2c−2 log w.

We have to be concerned that the total number of samples cannot be greater
than 24w, which is the total number of possible plaintexts. Hence the above
attack is significant for

r ≤ 2
⌊

4w − 7− log2 log w

4 log2 w
+

1
2

⌋
+ 1 .

As an application, with the nominal choice w = 32 we obtain an advantage
greater than 1− 2−60 with a complexity of n ≈ 220b r

2c−2. Thus we can break up
to r = 13 rounds (with n = 2118).

5 On Recovering the Secret Key

5.1 A Simplified Approach for Recovering S0 and S1

Let us focus on nominal RC6 reduced to r = 14 rounds for a moment. Then a
way of adapting the distinguisher to recover the whole secret key for RC6 redu-
ced to 14 rounds is by a known plaintext attack which proceeds in the following
way.

Suppose we black box encrypt a multiple m of the n plaintexts required by
the previously described distinguisher on 13 rounds, thus obtaining m (xi, yi)
plaintext-ciphertext pairs for the 14-round RC6. Let ∆A = Aout−Ain (mod w)
where Aout = yi,−14 and Ain = xi,0 denote the input-output difference of
the log2 w least significant bits of the input word A and similarly let ∆C =
Cout − Cin (mod w) where Cout = yi,2−14 and Cin = xi,2 denote the diffe-
rence modulo w on input word C. For those (xi, yi) pairs such that the A and
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C input words are not rotated at the first round, ∆A and ∆C are equal, up
to the unknown constants S2 (mod w) and S3 (mod w), to the hi differences
considered in the 13-rounds distinguisher of Section 4.

The exhaustive trial of all the S0 and S1 keys, i.e. the computation for each
(S0, S1) key assumption, of the (∆A, ∆C) frequencies distribution on the subset
of plaintext-ciphertext pairs such that no A and C rotations occur at the first
round, followed by the 13-round distinguisher test of Section 4, can be performed
in an efficient way which avoids processing each plaintext individually for each
key assumption.

• First we generate a table of 22w+2 log2 w (e.g. 274 for nominal RC6) elements,
where each entry is the frequency observed for the plaintext-ciphertext pairs
according to the value of the B and D input words as well as the ∆A and ∆C

input-output differences modulo w (i.e. a potential value of the constant diffe-
rences if all the rotations were zero as in our model).

• Now for approximately 2w−log2 w (e.g. 227) “good” B values, we obtain that
f(B +S0) ≡ 0 (mod w) in the first round. Therefore for each possible choice of
the first subkey S0, we may add together the frequencies of the 2w−log2 w corre-
sponding good B values. This requires a work load of about 2w−log2 w+w+2 log2 w =
22w+log2 w (e.g. 269) operations per S0 guess. We are left with a table of 2w+2 log2 w

- e.g. 242 - (D, ∆A, ∆C) frequencies.

• Next, for every possible S1 value, we can do the same. For a given guess, we
select the 2w−log2 w possible values for D which achieve f(D+S1) ≡ 0 (mod w)
in the first round, and add their frequencies together. We are left with a table
of w2 (∆A, ∆C) frequencies, the maximum of which corresponds to the sum of
some key bits when the two subkeys are correctly guessed. This step requires an
effort of 2w+log2 w operations for all (S0, S1) subkey guesses.

• Once such a table of frequencies of the (∆A, ∆C) values has been obtained,
the distinguisher of Section 4 may be applied quite naturally to it. If (S0, S1)
is the correct subkey guess, one of the frequencies is expected to pass the test,
whereas the test is expected to fail when wrong values have been picked. Thus
this procedure allows us to recover the first two subkeys using a memory of less
than 2 · 22w+2 log2 w words (e.g. 275) and a workload

C = 2w
(
2 · 22w+log2 w

)
= 23w+log2 w+1 ,

(e.g. 2102), which is far less than the number of encryptions needed for the
distinguisher anyway. However, using this technique, we filter out about w2
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plaintext-ciphertext pairs, therefore we have to start off with far more pairs at
the beginning of the attack in order to make sure the distinguisher gets enough
information after the filtering phase. This leads to a required number of known
plaintexts :

m ≥ 100w4b r−1
2 c log w.

Note that for w = 32 and r = 14, m is about equal to the 2128 limit.

5.2 Improved Approach Without Filtering

As we saw in the last section the fact that we filter pairs for which the first two
rotations are zero “costs” a factor w2 in the number of plaintext-ciphertext pairs.
We want to avoid this and use only the n pairs required by the distinguisher.
We actually guess the first two rotations at the cost of some more memory.

• Let β = f(B) (mod w) and δ = f(D) (mod w) be the two rotations of
the first round. For each of the w2 potential values of (β, δ), we generate a hash
table for the frequencies of the tuples

(
B, D, (Ain � δ) mod w, Aout mod w, (Cin � β) mod w, Cout mod w

)
Thus we have w2 tables of size 22w+4 log2 w (e.g. 284) each, giving all the

frequencies for the various potential (β, δ) couples of rotations. Note that the
generation of such tables may be optimized (avoiding an extra work factor of w2

for each plaintext-ciphertext pair) in a way which will be discussed below.

• Now for every guess of S0, for each of the w possible β values, we may select the
2w−log2 w (e.g. 227) B values such that f(B+S0) = β mod w and, for each of the
w potential δ values, add together, in the (β, δ) table, the frequencies of those t-
uples for which the values of D, ∆A = (Aout−((Ain⊕f(B+S0))� δ)) mod w,
Cin � β mod w and Cout mod w are the same. We thus obtain w2 tables pro-
viding (D, ∆A, Cin � β mod w, Cout mod w) frequencies, at the expense of a
22w+5 log2 w (e.g. 289) work load per S0 assumption.

• Next, for each guess of S1, for each of the w possible δ values, we may select
the 2w−log2 w (e.g. 227) D values such that f(D+S1) = δ mod w and, for each of
the w potential β values, add together, in the (β, δ) table derived at the former
step, the frequencies of those (D, ∆A, Cin � β mod w, Cout mod w) tuples for
which the values of ∆A and ∆C = (Cout − ((Cin ⊕ f(D + S1)) � β)) mod w

are the same. By adding up all the (∆A, ∆C) frequencies obtained for all the
(β, δ) pairs, we are left with a table of w2 (∆A, ∆C) frequencies which can be
used as an input to the distinguisher of Section 4. The distinguisher is expected
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to succeed only when the two subkeys S0 and S1 are correctly guessed. Thus the
above procedure provides the first two subkeys. The work load for this step is
about 2w+4 log2 w for each (S0,S1) assumption.

Discussion. In order to optimize the generation of the w2 (β, δ) tables of the (B,
D, Ain � δ mod w, Aout mod w, Cin � β mod w, Cout mod w) frequencies, we
suggest the following technique. We denote by AL and CL (resp AH and CH) the
w/2+b log2 w

2 c (e.g. 18) lowest (resp highest) weight bits of Ain and Cin. From the
n plaintext-ciphertext pairs used in the attack, we first derive the four tables con-
taining the (B, D, AL, Aout mod w, CL, Cout mod w), (B, D, AL, Aout mod w,
CH , Cout mod w), (B, D, AH , Aout mod w, CL, Cout mod w), and (B, D, AH ,
Aout mod w, CH , Cout mod w) frequencies. Each of the w2 (β, δ) tables of (B,
D, Ain � δ mod w, Aout mod w, Cin � β mod w, Cout mod w) frequencies
can then be deduced from one of the four above tables. This way, we process the
n samples only once, and the additional complexity factor of w2 corresponding
to all possible choices for (β, δ) will apply essentially to the number of entries
in each table, which is about 23w+2b log2 w

2 c+2 log2 w For example, for w = 32 and
n = 2118, this complexity is about 210 · 2110 instead of 210 · 2118.

The complexity of the entire procedure for recovering the first two subkeys S0

and S1 is less than 2 · 23w+5 log2 w (e.g. 2122).

Once the first two subkeys are found, we can decrypt one round using the data
in the previously described tables and may apply the same technique on the
next two subkeys. As we go on recovering the extended key piece by piece, the
required number of plaintext-ciphertext pairs to make the distinguisher work
decreases very fast. Thus the overall complexity of this attack stays well below
the effort of an exhaustive search for the key.

6 On the Existence of Similar RC5 Statistics

RC6 is an enhancement of the RC5 encryption algorithm. RC5 is characterized
by three parameters w (word size ; note that the RC5 block size is 2w), r (num-
ber of rounds ; unlike an RC6 round, an RC5 round consists of two half rounds)
and b (number of key bytes).

The following statistical property of RC5 is closely related to the RC6 properties
summarised in Section 3 above : if, in ρ consecutive RC5 half rounds, the rota-
tion amounts applied at each second half round are all equal to zero, then after ρ

half rounds the log2 w lowest weight bits of one of the two plaintext halfes A and
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B has been simply added (modulo w) with a constant value derived from the key.

The analysis of Section 4 is easy to transpose, to show that ρ half rounds of
RC5 can be distinguished from a random permutation using a number n of
known plaintexts which stays within a small factor of w2b ρ

2c−1. For sufficiently
low r values, this distinguisher can be used to guess the RC5-w/r/b expanded
key, using a number n of known plaintexts which stays within a small factor
of w2(r−1)−1. However, for usual RC5 parameter choices such as r = 12 and a
64-bit block size, the number of available plaintexts is far too low to mount such
an attack.

There are some connections beween the above outlined RC5 attack and the
RC5 linear attacks mentioned in [5], which require about 4w2(r−1) known plain-
texts. Both approaches are based related RC5 properties, and the main difference
consists in handling log2w-bit statistics versus binary statistics. We conjecture
- but are not fully sure, since we did not check the RC5 key derivation details
- that the treatment of log2w-bit statistics might provide a slight performance
improvement over the linear cryptanalysis approach.

7 Conclusion

Extending the work presented at the second AES conference, we have shown the
existence of a special statistical phenomenon on RC6 which enables to mount a
distinguisher attack on up to 13 rounds. As usual, this kind of attack is shown to
be convertible into a known plaintext attack which can break up to 14 rounds of
RC6 (or equivalently 15 inner rounds with or without post-whitening), requiring
about 2118 known plaintexts, 2112 memory and a work load of 2122 operations.
Of course this attack is not anywhere near practical, but still leads us to the
conclusion that due to the existence of a slight but iterative statistical weakness
in its round function, RC6 does not have a very conservative number of rounds.

References

1. http://www.nist.gov/aes
2. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen, F.

Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern, S. Vaudenay, “Report
on the AES Candidates,” The Second Advanced Encryption Standard Candidate
Conference, N.I.S.T., 1999, pp. 53–67.

3. FIPS 46, Data Encryption Standard, US Department of Commerce, National Bu-
reau of Standards, 1977 (revised as FIPS 46–1:1988; FIPS 46–2:1993).

4. T. Iwata, K. Kurosawa, “On the Pseudorandomness of AES Finalists – RC6 and
Serpent”, These proceedings.



74 H. Gilbert et al.

5. B. S. Kaliski Jr., Y. L. Yin, “On the Security of the RC5 Encryption Algorithm”,
RSA Laboratories Technical Report TR-602, Version 1.0 - September 1998.

6. L. Knudsen, W. Meier, “Correlations in RC6 with a reduced number of rounds ”,
These proceedings.

7. M. Matsui, “The first experimental cryptanalysis of the Data Encryption Stan-
dard”. In Advances in Cryptology - Crypto’94, pp 1-11, Springer Verlag, New York,
1994.

8. S. Moriai, S. Vaudenay, “Comparison of randomness provided by several schemes
for block ciphers”, Preprint, 1999.

9. R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Yin,“The RC6 Block Cipher”,
v1.1, August 20, 1998.

10. S. Vaudenay, “An experiment on DES - Statistical Cryptanalysis”. In 3rd ACM
Conference on Computer Security, New Dehli, India, pp139-147, ACM Press, 1996.


	Introduction
	RC6 Outlines
	A Probabilistic Event on RC6 Encryption
	On Distinguishing RC6 from a Random Permutation
	On Recovering the Secret Key
	A Simplified Approach for Recovering $S_0$ and $S_1$
	Improved Approach Without Filtering

	On the Existence of Similar RC5 Statistics
	Conclusion

