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Abstract

There has been much interest recently in the
problem of rank aggregation from pairwise data.
A natural question that arises is: under what
sorts of statistical assumptions do various rank
aggregation algorithms converge to an ‘optimal’
ranking? In this paper, we consider this ques-
tion in a natural setting where pairwise com-
parisons are drawn randomly and independently
from some underlying probability distribution.
We first show that, under a ‘time-reversibility’
or Bradley-Terry-Luce (BTL) condition on the
distribution, the rank centrality (PageRank) and
least squares (HodgeRank) algorithms both con-
verge to an optimal ranking. Next, we show that a
matrix version of the Borda count algorithm, and
more surprisingly, an algorithm which performs
maximum likelihood estimation under a BTL as-
sumption, both converge to an optimal ranking
under a ‘low-noise’ condition that is strictly more
general than BTL. Finally, we propose a new
SVM-based algorithm for rank aggregation from
pairwise data, and show that this converges to an
optimal ranking under an even more general con-
dition that we term ‘generalized low-noise’. In
all cases, we provide explicit sample complexity
bounds for exact recovery of an optimal ranking.
Our experiments confirm our theoretical findings
and help to shed light on the statistical behavior
of various rank aggregation algorithms.

1. Introduction

Rank aggregation is a classical problem that has been stud-
ied in several contexts, starting with social choice theory
in 18th century France (Borda, 1781; Condorcet, 1785),
and more recently, in computer science, statistics, linear
algebra, and optimization, with a variety of different ap-
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plications, and with different forms of both input rankings
and desired aggregated rankings being considered (Dwork
et al., 2001; Hochbaum, 2006; Meila et al., 2007; Ailon
et al., 2008; Klementiev et al., 2008; Jagabathula & Shah,
2008; Guiver & Snelson, 2009; Ailon, 2010; Qin et al.,
2010; Jiang et al., 2011; Gleich & Lim, 2011; Volkovs
& Zemel, 2012; Negahban et al., 2012; Soufiani et al.,
2012; Osting et al., 2013). A prominent setting that has
gained interest in recent years is that of rank aggrega-
tion from pairwise data, where there is a set of n items
to rank (such as movies or webpages), and one is given
outcomes of various pairwise comparisons among these
items (such as pairwise movie or webpage preferences of
users); the goal is to aggregate these pairwise compar-
isons into a global ranking over the items. Various algo-
rithms have been studied for this problem, including maxi-
mum likelihood under a Bradley-Terry-Luce (BTL) model
assumption, rank centrality (PageRank/MC3) (Negahban
et al., 2012; Dwork et al., 2001), least squares (HodgeR-
ank) (Jiang et al., 2011), and a pairwise variant of Borda
count (Borda, 1781; Jiang et al., 2011) among others.

In this paper, we consider statistical convergence properties
of these rank aggregation algorithms under a natural statis-
tical model, under which pairwise comparisons are drawn
i.i.d. from some fixed but unknown probability distribu-
tion. An ‘optimal’ ranking is then one which minimizes the
probability of disagreement with a random pairwise com-
parison drawn from this distribution. We consider three
conditions of increasing generality on the distribution: a
BTL condition, a ‘low-noise’ (LN) condition similar to a
condition considered by (Duchi et al., 2010) in a differ-
ent setting, and a ‘generalized low-noise’ (GLN) condition.
We show that the rank centrality and least squares algo-
rithms both converge (in probability) to an optimal rank-
ing under the BTL condition, and that the Borda count and
BTL-ML algorithms converge to an optimal ranking under
the LN condition; we then propose a new SVM based rank
aggregation algorithm which we show converges to an op-
timal ranking under the more general GLN condition. In
all cases, we obtain explicit sample complexity bounds.
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Figure 1. We consider three increasingly general conditions on the distribution generating pairwise comparisons: BTL, LN, and GLN.
The table summarizes our results on convergence of various rank aggregation algorithms to an optimal ranking under these conditions.

Related Work. The work most closely related to ours is
that of Negahban et al. (Negahban et al., 2012), who ana-
lyzed convergence of the rank centrality algorithm under a
statistical model where a fixed set of item pairs is repeat-
edly compared a fixed number of times, and the outcomes
of the comparisons are determined by a BTL model. Our
statistical model, where pairs to be compared are drawn
randomly, is more natural in many applications (e.g. movie
rankings). Our analysis of the rank centrality algorithm
builds on that of (Negahban et al., 2012). However, we
cannot use the standard matrix concentration tools used
in (Negahban et al., 2012) since the comparison matrix in
our case does not contain independent entries; instead, we
use a McDiarmid-like concentration result of Kutin (Kutin,
2002) to analyze each entry separately. We point out our
setting differs from the active learning settings of (Ailon,
2011; Jamieson & Nowak, 2011), where the goal is to re-
cover a true permutation on n items by actively querying
specific pairs; in our setting, the pairs are randomly sam-
pled. Similarly, our setting differs from that of (Wauthier
et al., 2013), where each pair of items can be compared at
most once; in the rank aggregation setting we consider, it is
common to have the same pair of items compared several
times (with possibly different random outcomes). Our set-
ting also differs from standard learning-to-rank problems
involving pairwise preferences, where algorithms such as
RankSVM or RankBoost are typically applied (Herbrich
et al., 2000; Joachims, 2002; Freund et al., 2003), as there
are no feature vectors in our setting; instead we simply
have a finite number of objects with identifiers 1,...,n.
Finally, our setting also differs from the subset ranking set-
tings studied recently in machine learning and information
retrieval (Cossock & Zhang, 2008; Duchi et al., 2010; Liu,
2011), where one ranks documents for various queries.

Summary and Organization. Figure 1 summarizes our
results. Section 2 gives preliminaries. Section 3 summa-
rizes various useful properties of the comparison matrix in
our setting. Sections 4-6 consider conditions of increas-
ing generality on the probability distribution generating
pairwise comparisons, and analyze convergence properties
of various rank aggregation algorithms under these condi-
tions. Section 7 gives our experimental results. All proofs
can be found in the supplementary material.

2. Preliminaries, Notation, and Background

Setup. Let [n] = {1,...,n} denote a set of n items to rank.
Let X = {(i,j) 24, € [n],i < j}. The learner is given
a training sample S = ((i1,71,41),- -+, (bmyJm, Ym)) €
(X x {0,1})™, where for each k € [m], (ix,jx) € X
denotes the k-th pair of items compared, and y;, € {0,1}
denotes the outcome of the comparison; we adopt the con-
vention that y; is 1 if item j; is ranked higher than item
ix, and O otherwise. Given S, the goal of the learner is to
produce a ranking or permutation of the n items, o € S,,.

We assume a probability distribution ¢ on X from which
item pairs are sampled. For each 7 < j, we denote by f;;
the probability of the pair (4, j) under y; with some abuse
of notation, we also denote pi;; = p;; Vi < j. We also
assume a set of conditional label probabilities from which
labels are drawn. Specifically, for each ¢ < j, we denote by
P;; € [0, 1] the probability that item j will be ranked higher
than item ¢ when items ¢ and j are compared; we represent
this as a pairwise preference matrix P € [0, 1]"*™ with
Pj; =1 — P fori < j and P;; = 0. The training sam-
ple S = ((ilaj17y1)7 T (imajma ym)) € (‘X X {07 1})m
is then assumed to be drawn randomly according to S ~
(1, P)™, i.e. the item pairs (i, jx ) are drawn randomly and
independently according to p, and conditioned on these, the
labels are drawn as yj, ~ Bernoulli(P;, j, ).

Given a distribution (1, P) as above, define the expected
pairwise disagreement error of a permutation o € S, as

erplo] = Y wiPiy1(o(i) <o(h), (D
i#j
where 1(-) is 1 if its argument is true and O otherwise; this
is the probability that o does not agree with a pairwise com-
parison drawn randomly according to (u, P). An ‘optimal’
permutation is then any permutation ¢* satisfying

o* € argmin, g er, p[o]. (2)

Clearly, an ideal algorithm would recover (with high proba-
bility, for a large enough sample) such an optimal permuta-
tion. In what follows, we will consider various conditions
on (i, P), including a ‘time-reversibility’ or BTL condi-
tion, a ‘low-noise’ condition, and a ‘generalized low-noise’
condition, and will analyze convergence properties of vari-
ous rank aggregation algorithms under these conditions.
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All the algorithms we analyze take as input an empirical
pairwise comparison matrix P € [0, 1]"*™, which in our
case is constructed from .S as follows:

(1)/N” if i < jand N;; > 0
Py =<1~ (NP/Nj;) ifi>jandNj >0  (3)
0 otherwise;
where

= Z;::l l(ik =i, jk :])a
1 m . .. .
NZ(J) = Zkzl 1(“3 =40Jk=1Yk = 1)-

Note that the empirical comparison matrix P differs from
the true pairwise preference matrix P in an important as-
pect: while P satisfies P;; + Pj; = 1 forall ¢ < 7, in the
case of f’, if a particular pair ¢ < j is not observed in S,
we can have P;; = P;; = 0. To reinforce this distinction,
we will use the terms pairwise preference matrix for P and
pairwise comparison matrix for P throughout.

The structure of P is critical in our analysis: unlike (Negah-
ban et al., 2012), where the empirical comparison matrix
was constructed by fixing a priori some subset of pairs (i, j)
to be compared and then repeatedly comparing each such
pair a fixed number of times, which led to the entries Qf the
matrix being independent, in our case, the entries of P are
not independent (note that if some pair of items is sampled
many times, other item pairs will be less frequent in .S);
therefore we cannot apply the matrix concentration tools
used in (Negghban et al., 2012). Instead, we will show the
elements of P satisfy a bounded differences property with
high probability, allowing us to analyze P using Kutin’s
extension of McDiarmid’s inequality (Kutin, 2002). This
and other properties of P, proved in Section 3, will then be
used to analyze various algorithms in Sections 4-6.

Notation. We will find it convenient to define

Mmin = YZIl<i§1Mz'j» 4
Blpmin) = 3(#-+3)In (- +3). (5

Our results below will assume i, > 0. We will use
capital boldface letters such as P, Q for matrices and
lower case boldface letters such as f, & for vectors. For
f € R", we will denote by ||f|y = Y0, |fil. [[f]l2 =

(>r, ff)1/2, and ||f||cc = max; |f;| the standard L,
L5 and L., norms. Also, for f € R"”, we will denote by
argsort(f) the set of permutations that order items i € [n]
in decreasing order of scores f;, breaking ties arbitrarily:

argsort(f) = {0 € Sy 1 fi > f; = (i) <o(j)}

Background Results. The following definition of strongly
difference-bounded random variables and concentration re-
sult for such random variables, both due to Kutin (Kutin,
2002), will be used in our analysis of the empirical com-
parison matrix P in Section 3.

Definition 1 (Strong difference-boundedness (Kutin,
2002)). Let X = (X1, ..., X ) be avector of independent
random variables with X; taking values in some set A;, and
let A= Ay X -+ X Ap,. Let ¢ : A—R be any function. Let
b,c > 0and § € (0,1]. The random variable ¢(X) is said
to be strongly difference-bounded by (b,¢,0) if 3B C A
with P(X € B) < 6 such that for each k € [m),

sup  |p(x) — ¢z, 3%, am)|] < c
x¢B,x) €Ak
sup ’qb xl,...,x%,...,xmﬂ < b.
r€A,x| €A
Theorem 2 ((Kutin, 2002)). Let X = (X1,...,X,,) be

a vector of independent random variables with X; tak-
ing values in some set A;, and let A = A} X -+ X Ap,.
Let ¢ : A—R be any ﬁmction such that ¢(X) is strongly
difference-bounded by (b ,exp(— Km)) Let 0 < € <

MWK, Ifm > max(b 3( +3)ln(%+3)),then
P (|¢(X) —E[¢(X)]| =€) < 4dexp(—me*/8\?).

3. Properties of Comparison Matrix P

The following lemma summarizes various useful properties
of the empirical comparison matrix P that are used in our
proofs. In particular, a key property is that for large enough
m, the elements of P are strongly difference-bounded, al-
lowing us to obtain concentration results for them.

Lemma 3. Let ( ,P) be such that piyin, > 0. Let S ~
(1, P)™, and let P be constmctedfmm S as in Eq. (3).

1. Leti # j. If m > M
bounded by (1, mi —, exp (7m53“i“)).
2. Leti# j. Let 0 < € < 2v/2. If m > B(fimin), then

2,2
P(|Pij ~E[B]| ze) < dexp (%)

—1 _In (%) then

Hmin

, then ]3,-j is strongly difference-

3. Leti # j. Lete > 0. If m >
[E[P;] - Pyl < e.
4 Leti # j.

maX(B(Mmin)

Let 0 < € < 4V2.

n (%)) then

P<|I:\)7j _Pij| > E) < 46Xp(

If m >

? Mmin

7m€2.u12nin )
128 ’

5. Let PL‘]‘ S (0, 1) Vi 7é 7 and let Py, = min#j Pij-

Let § € (0,1]. If m > ﬁj\minlpmin In ("(n(;l)), then with
probability at least 1 — 6, Pyj > 0Vi # j.

The proof of Part 1 makes use of Hoeffding’s inequality and
involves a somewhat detailed, careful case-by-case analy-
sis. Part 2 then follows from Part 1 and Theorem 2. Part
3 follows by observing EJ ”] = Pi;(1 — (1 — pj)™).
Part 4 follows from Parts 2 and 3. Part 5 is straightforward.
Details can be found in the supplementary material.
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4. Time-Reversibility/BTL Condition

We first consider the following ‘time-reversibility’ and
BTL conditions on the preference matrix P:

Definition 4 (Time-reversibility condition). We say the

pairwise preference matrix P € [0,1]"*"™ satisfies the
time-reversibility condition if the Markov chain Q given

by
Qij = {ipijl lfméj
L= 0> ke P ifi=
is time-reversible, i.e. if Q is irreducible and aperiodic and
the stationary probability vector m of Q satisfies m;Q;; =
m;Qji Vi, j € [n].
Definition 5 (Bradley-Terry-Luce (BTL) condition). We
say the pairwise preference matrix P € [0, 1]"*™ satisfies
the Bradley-Terry-Luce (BTL) condition if it corresponds
to a BTL model, i.e. if 3w € R} with w; > 0 Vi such that

(6)

Clearly, if P satisfies the time-reversibility condition with
Q and 7 as above, then Vi # j, P;; > Py — m; > m,
and therefore any permutation that ranks items ¢ € [n] in
decreasing order of scores 7; is an optimal permutation
w.r.t. the pairwise disagreement error (see Eq. (1)). Sim-
ilarly, if P corresponds to a BTL model with parameter
vector w as above, then any permutation that ranks items
according to decreasing order of scores w; is an optimal
permutation. The following lemma shows that the time-
reversibility and BTL conditions are in fact equivalent:

Lemma 6. A preference matrix P € [0, 1]"*" satisfies the
time-reversibility condition if and only if it satisfies the BTL
condition.

Note that if P satisfies the time-reversibility condition, then
by the above result, P;; € (0,1) Vi # j.

4.1. Convergence of Rank Centrality Algorithm

We start by analyzing convergence behavior of the rank
centrality algorithm (Dwork et al., 2001; Negahban et al.,
2012) (Algorithm 1)! in our setting under the above time-
reversibility/BTL condition. In particular, we first show
the following result, which establishes convergence of the
score vector 7 produced by the rank centrality algorithm to
7, the stationary vector of the matrix Q defined in Eq. (6)
(in Lo norm):

"Note that the rank centrality algorithm as presented here dif-
fers slightly from (Negahban et al., 2012) in two aspects: rather
than divide elements of P by the maximum degree, which in our
case depends on the sample S, we divide by n in constructing Q;
similarly, since in our case the graph defining the Markov chain
Q depends on S and may not be strongly connected, we allow for
the possibility of producing a default vector & = 0 in this case.
Also, while (Negahban et al., 2012) are interested in the score
vector 7, we are interested in the ordering & produced by 7.

Algorithm 1 Rank Centrality (PageRank/MC3) (Negahban
et al., 2012; Dwork et al., 2001)

Input: Empirical comparison matrix P € [0, 1]"*"

Construct an empirical Markov chain with transition
probability matrix Q as follows:

@i _ P R ifi #£j
’ 1= L5 P ifi=j.
If Q defines an irreducible, aperiodic Markov chain, tl/l\en
compute 7, the stationary probability vector of Q
elselet™ =0 € R

Output: Permutation & € argsort(7)

Theorem 7. Let (i, P) be such that fimi, > 0 and P satis-
fies the BTL condition. Let Q be defined as in Eq. (6), and
let 7 be the stationary probability vector of Q. Let Py, =
min;«; Pj, Tmax = Mmax; m;, and Tyin = min; m;. Let
0<e<landé € (0,1]. If

m > max (62;22471 (Wmax)g In (16;2) , B(Nmin))

2
minfmin * Tmin

then with probability at least 1 — 6 (over the random draw
of S ~ (u, P)™ from which P is constructed), the score
vector 7 produced by the rank centrality algorithm satisfies

|7~ <e.

The proof of Theorem 7 builds on the technique used by
(Negahban et al., 2012), and makes use of two lemmas,
which establish convergence of the empirical Markov chain
Q to the true chain Q in spectral norm, and a lower bound
on the spectral gap of Q. As noted previously, the ele-
ments of P, and therefore Q, are not independent in our
setting, and therefore we cannot apply the standard matrix
concentration tools used in (Negahban et al., 2012). Our
proof makes use of the strong difference-boundedness and
related properties of P from Lemma 3 (details can be found
in the supplementary material). From Theorem 7, we im-
mediately have the following sample complexity bound for
the rank centrality algorithm to exactly recover an optimal
permutation under the time-reversibility/BTL condition:

Corollary 8. Let (u, P) be such that piyin > 0 and P sat-
isfies the BTL condition, and 3(i # j) : Pij # 5. Let Q
be defined as in Eq. (6), and let 7 be the stationary proba-
bility vector of Q. Let Py, Tmin and Tmax be defined as
in Theorem 7, and let Tryin = MiNy jir,2x; |7 — 75l Let

§ € (0,1]. If

m > max (rg 9}232671 (Wmax>3ln (16(;7,2) | B(umin)) |

minMrQHin Tmin
then with probability at least 1 — § (over the random draw
of S ~ (u, P)™ from which P is constructed), the permu-

tation & output by the rank centrality algorithm satisfies

min

0 € argmin, g erfPP [o].
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4.2. Convergence of Least Squares Algorithm

Next, we analyze convergence of the least squares
(HodgeRank) algorithm (Jiang et al., 2011) (Algo-
rithm 2) in our framework, again under the above time-
reversibility/BTL condition on the preference matrix P. As
discusseAd in (Jiang et al., 2011), the pairwise comRarison
matrix P is converted to a skew-symmetric matrix Y via a
log-odds ratio transform before applying least squares (see
Algorithm 2). Similarly, given a pairwise preference ma-
trix P € [0, 1]"*"™, we can define a skew-symmetric matrix
Y € R"*™ as

Yij =

]

(7

0 otherwise.

{m (jj) if i # jand P;; € (0,1)

Let B = {(i,j) € X :Pj#0or Py # O}, and let f* €
. 2 .
arg mingern >, ep (fi = f5) = Yij)~ . Clearly, since
P =1—-P; Vi # j, we have E = X. In this case,
as discussed in (Jiang et al., 2011), the (minimum norm)
solution to the above optimization problem is given by

1 n
=) Vi ®)
n
k=1

The following lemma shows that if P satisfies the time-
reversibility/BTL condition, then ranking items according
to decreasing order of scores f; as above yields an optimal
ranking w.r.t. the pairwise disagreement error:

Lemma 9. Let (11, P) be such that P satisfies the BTL
condition. Let f* € R"™ be defined as in Eq. (8). Then
argsort(f*) C argmin,, .5 er} p[0].

fi* =

The following is our main result regarding convergence of
the least squares algorithm. Note that it establishes conver-
gence of the score vector f produced by the least squares
algorithm to £* (in L, norm) under any P satisfying P;; €
(0,1) Vi # j; however the optimality of permutations ob-
tained from f* w.r.t. pairwise disagreement is guaranteed
only when P satisfies the time-reversibility/BTL condition.
Theorem 10. Let (11, P) be such that piyin > 0 and P;; €
(0,1) Vi # j. Let Y € R™ ™ and f* € R"™ be defined as
in Egs. (7) and (8). Let Ppin = min;; P;;. Let 0 <e <1
and 6 € (0,1]. If

m > max (132128(1—1— %)2ln (16;2) ) B(Mmin)) )

2
minMmin

then with probability at least 1 — § (over the random draw
of S ~ (u,P)™ from which P is constructed), the score

vector f produced by the least squares algorithm satisfies
[f— £l <e.
This immediately yields the following sample complexity

bound for the least squares algorithm to exactly recover an
optimal permutation under the BTL condition:

Algorithm 2 Least Squares/HodgeRank (Jiang et al., 2011)

Input: Empirical comparison matrix Pec [0, 7)™

Construct empirical skew-symmetric matrix Y:

ﬁij o . 5

7, = In (ﬁ) if i # jand P;; € (0,1)
0 otherwise.

Let E = {G,j)ex: ISij #Oorﬁjj, #0}

b , S o2
Compute f € argmingep. 3 ; <7 ((f; — fi) —Ysj)

Output: Permutation & € argsort(f)

Corollary 11. Let (u, P) be such that pimin > 0 and P
satisfies the BTL condition, and 3(i # j) : Pij # 5. Let
f* be as in Eq. (8), and let rin = mini_j;f;;ﬁf; fr = f]f*|.
Let 6 € (0,1]. If

128 6 \2 16n2
m > max (Pr%inlu’?nin (Hrmm) In ( 5 ) ; B(,umin)) ,

then with probability at least 1 — & (over the random draw
of S ~ (u,P)™ from which P is constructed), the permu-
tation & output by the least squares algorithm satisfies

0 € argmin, g er';]?P [o].

5. Low-Noise (LN) Condition

In this section we consider the following ‘low-noise’ con-
dition on the preference matrix P, which is similar to the
condition studied by (Duchi et al., 2010) in a somewhat
different context; as the lemma below shows, the low-noise
condition includes the BTL condition as a special case.

Definition 12 (Low-noise (LN) condition). We say the
pairwise preference matrix P € [0, 1]"*"™ satisfies the low-
noise (LN) condition if N N

VZ#] Pz‘j>Pj7; - Zpkj>zpki.
k=1 k=1

Lemma 13. If P € [0, 1]™*" satisfies the BTL condition,
then it also satisfies the LN condition.

For the rest of this section (Section 5), given a pairwise
preference matrix P € [0, 1]"*™, define f* € R} as

1 n
fro= =D P ©)
k=1

Clearly, if P satisfies the LN condition, then any permuta-
tion that ranks items ¢ € [n] in descending order of scores
f; as defined above is an optimal permutation w.r.t. the
pairwise disagreement error (see Eq. (1)).

5.1. Convergence of Borda Count Algorithm

Given a pairwise comparison matrix P, (the matrix version
of) the Borda count algorithm (Borda, 1781; Jiang et al.,
2011) (Algorithm 3) simply averages for each item ¢ the
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Algorithm 3 Borda Count (Borda, 1781; Jiang et al., 2011)

Algorithm 4 BTL-ML Estimator

Input: Empirical comparison matrix Pec [0, 7)™
Fori=1lton: f; = %Zzzlﬁ;ﬁ

-~

Output: Permutation & € argsort(f)

fraction of times 13;w it has beat each other item k, and
ranks items by this score.” Here we show this algorithm
converges to an optimal ranking under the LN condition.

The following result establishes convergence of the score
vector f produced by Borda count to f* (in L., norm)
under general P; however the optimality of permutations
obtained from f* w.r.t. the pairwise disagreement error is
guaranteed only for P satisfying the LN condition.

Theorem 14. Let (p, P) be such that piin > 0, and let
f* € R} be defined as in Eq. (10). Let 0 < € < (4\/5) and
5 € (0,1]. If

128 4n?
m > max <6212mn In (T) 5 B(Hmin)) )
then with probability at least 1 — § (over the random draw
of S ~ (u,P)™ from which P is constructed), the score
vector f produced by the Borda count algorithm satisfies

£ = £*]loc <€.

This immediately yields the following sample complexity
bound for the Borda count algorithm to exactly recover an
optimal permutation under the LN condition:

Corollary 15. Let (u, P) be such that piyin > 0 and P
satisfies the LN condition, and 3(i # j) : Pj # . Let f*
be as in Eq. (10), and let 1,5, = mini,j:f;#f; |fr— f;‘|
Let§ € (0,1]. If

1152 An?
m Z max (252 In (%) 5 B(Nmin)) )

" minMmin
then with probability at least 1 — § (over the random draw

of S ~ (u,P)™ from which P is constructed), the permu-
tation & output by the Borda count algorithm satisfies

o € argmin, g er, p[0].

5.2. Convergence of BTL-ML Estimator

Given a pairwise comparison matrix P, the BTL-ML es-
timator (Algorithm 4) finds a maximum likelihood score
vector assuming a BTL model. Here we show this algo-
rithm actually converges to an optimal permutation w.r.t.
pairwise disagreement under the more general LN condi-
tion; in fact we obtain the same sample complexity bound
for BTL-ML as for the Borda count algorithm above:

’The standard Borda count algorithm ranks items by the num-
ber of times they beat other items; this algorithm converges to an
optimal ranking under a condition involving both p and P. For
simplicity, we count here the fraction of times an item beats other
items, which allows us to restrict our attention to conditions on P.

Input: Empirical comparison matrix Pec [0, 1]™*™
Find maximum likelihood estimate of BTL score vector:
0 c arg GIIGI]iRI}l ; (ln(l +exp(0; —6;))— Pi;(0; — 91))
Fori=1ton: w; = exp(@)

Output: Permutation & € argsort(w)

Theorem 16. Let (1, P) be such that pimin > 0 and P
satisfies the LN condition, and 3(i # j) : Pij # &. Let £*
be as in Eq. (10), and let rrin = mini7j:f;¢f; \fr— f;f|.
Let§ € (0,1]. If

1152 4n?
m > max (22 In (%) , B(umin)> ,

" minMmin

then with probability at least 1 — § (over the random draw
of S ~ (u,P)™ from which P is constructed), the permu-
tation o output by the BTL-ML algorithm satisfies

0 € argmin, g erE]?P [o].

6. Generalized Low-Noise (GLN) Condition

In this section we consider a more general condition on the
preference matrix P that we term ‘generalized low-noise’:

Definition 17 (Generalized low-noise (GLN) condition).
We say the pairwise preference matrix P € [0, 1]"*™ satis-
fies the generalized low-noise (GLN) condition if 3o € R™
such that

Vi#j: Py >P; = Zakij > Zakpki~
k=1 k=1

Clearly, the LN condition of Section 5 is a special case with
ar = 1 Vk € [n]. Moreover, if P satisfies the GLN con-
dition for some vector «, then any permutation that ranks
items in decreasing order of scores f; = 22:1 oy Py; is an
optimal permutation w.r.t. the pairwise disagreement error.

As our experiments will show, none of the four common
rank aggregation algorithms considered in Sections 4-5
above are guaranteed to converge to an optimal ranking un-
der a general probability distribution satisfying the GLN
condition. Below we propose a new SVM-based rank ag-
gregation algorithm which satisfies this property.

6.1. New Algorithm: SVM-RankAggregation
We will need the following definition:

Definition 18 (P-Induced Dataset). For any matrix P €
[0, 1]™*™, define the P-induced dataset Sp = {v;;, 2 }ic;
as consisting of the (72‘) vectors v;; = (P, —P;) € R
(i < j), where P; denotes the i-th column of P, together

with binary labels z;; = sign(Pj; — P;;) € {£1}.
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Algorithm 5 SVM-RankAggregation

Input: Empirical comparison matrix P € [0, 1]"%".

Construct P-induced dataset Sp (see Section 6.1)

If Sp is linearly separable by hyperplane through origin,
then

train hard-margin linear SVM on S5 obtain & € R"
else

train soft-margin linear SVM (with any suitable value

for regularization parameter) on S5 ; obtain & € R

Fori=1ton: f; = > p_, QP

Output: Permutation & € argsort(f)

Proposition 19. Let P € [0,1]"*™ be a preference matrix
with P;; # % Vi,j. Then P satisfies the GLN condition
if and only if the P-induced dataset Sp = {Vij, 2ij }i<;
is linearly separable by a hyperplane passing through the
origin, i.e. da € R™ s.t. zija—rvij >0V <j.

While the above proposition guarantees that a preference
matrix P satisfying the GLN condition induces a linearly
separable dataset Sp, in general, the dataset Sp induced by

an empirical comparison matrix P constructed from a ran-
dom sample S ~ (u, P)™ may not always be linearly sep-
arable. However, as we show in the proof of Theorem 20
below, for large enough m, with high probability, Sg is also
linearly separable by a hyperplane passing through the ori-
gin. Our SVM-RankAggregation algorithm (Algorithm 5)
tests whether Sp is linearly separable by such a classifier; if
80, it trains a hard-margin linear SVM classifier that yields
such a separating hyperplane through the origin.

6.2. Convergence of SVM-RankAggregation Algorithm

We now show that the SVM-RankAggregation algorithm
converges to an optimal ranking under the GLN con-
dition, and give a sample complexity bound for SVM-
RankAggregation to exactly recover an optimal ranking:

Theorem 20. Let (u, P) be such that pimin > 0 and P
satisfies the GLN condition for some vector o € R", and
Py # % Vi, j. Let v = min, ; |P;; — % , and let 1%, =

min

aT i i
min, ; ZePl Lers € (0,1). 1f
3
m>max< 3048n ) (1671 )7
(’rmin,umin) 6

128 8n?
ng (T), B(Mmin)) s

min
then with probability at least 1 — § (over the random draw

of S ~ (u,P)™ from which P is constructed), the permu-
tation & output by SVM-RankAggregation satisfies

o € argmin, g er’ I?P [o].

7. Experiments

In this section we report results of experiments designed to
verify our convergence results and investigate the tightness
of the corresponding sample complexity bounds.

7.1. Convergence under BTL

Our first experiment was with BTL distributions for n =
5,10, 20. For each n, we constructed P using a random
BTL vector w € R? (each component w; chosen uni-
formly at random from [0, 1]), taking u to be the uniform
distribution over the (’QL) item pairs, and generated 100 ran-
dom samples from (s, P) for each of several sample sizes
m. We then ran the 5 algorithms analyzed in Sections 4-6
on the generated samples, and for each n and m, computed
the fraction of times an optimal permutation was recovered
by each algorithm. The results are shown in Figure 2; as
can be seen, for sufficiently large sample size, all 5 algo-
rithms recover an optimal permutation with high probabil-
ity. Similar results were obtained with non-uniform p.
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Figure 2. Fraction of times an optimal ranking was recovered by
various algorithms under a BTL distribution (out of 100 random
runs), for increasing sample sizes m, and for different numbers of
items n (left to right: n = 5, 10, 20).

7.2. Convergence under LN

For our next experiment, we constructed a distribution that
satisfies the LN condition but not the BTL condition; the
preference matrix P we used (with n = 4) is shown below:

0 08 051 051
02 0 09 07
049 01 0 0.65
049 03 035 0

In this case we used a random distribution p over the item
pairs (specifically, (g) numbers u;; were each chosen uni-
formly at random from [0, 1], and then normalized to yield
Mij = Wij/ Y Wkr)- Again, we generated 100 random
samples from (u, P) for each of several sample sizes m,
ran the 5 algorithms on these samples, and in each case
computed the fraction of times an optimal permutation was
recovered. The results are shown in Figure 3 (left); as can
be seen, the rank centrality and least squares algorithms fail
to recover an optimal permutation under this distribution.

P =
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Figure 3. Left: Fraction of times an optimal ranking was recov-
ered by various algorithms under a distribution satisfying the LN
but not the BTL condition (out of 100 random runs), for increas-
ing sample sizes m (here n = 4). Right: Fraction of times an
optimal ranking was recovered by various algorithms under a dis-
tribution satisfying the GLN but not the LN condition (out of 100
random runs), for increasing sample sizes m (here n = 5).

7.3. Convergence under GLN

For our third experiment, we constructed a distribution that
satisfies the GLN condition but not the LN condition; the
preference matrix P we used (with n = 5) is shown below:

0 051 046 04 04
049 0 049 04 04
054 051 0 04 04
06 06 06 0 04
06 06 06 06 0

It can be verified that P satisfies the GLN condition with
a = (—0.4530, —2.6021, 1.4660, 3.0796, 3.7197) T ; how-
ever P does not satisfy the LN condition since Pio > P
but > e Pr1 > > & Pr2. Again we used a random distribu-
tion p over the item pairs as above. The results are shown
in Figure 3 (right); here only the SVM-RankAggregation
algorithm successfully recovers an optimal ranking.

P:

7.4. Tightness of Sample Complexity Bounds

Our final set of experiments was designed to evaluate the
tightness of our sample complexity bounds. We first used
BTL distributions generated similarly as described in Sec-
tion 7.1 for various n between 5 and 20, and evaluated both
the actual number of samples required by each algorithm
to recover an optimal ranking at least 95% of the time, and
the corresponding upper bounds on sample complexity, as
a function of n. The results are shown in Figure 4 (left);
in most cases, the shapes of the upper bounds are largely
similar to those of the actual sample complexity curves.

Figure 4 (left) also suggests the upper bound for the rank
centrality algorithm is significantly looser than those for
other algorithms. This bound, which builds on techniques
of (Negahban et al., 2012), involves an additional (”“”: )3
term not present in the other bounds. To investigate this,
we designed BTL distributions for n = 5 with increasing
values of (Z22x) (keeping the 7min term corresponding to
the LN bounds in Section 5 fixed), and evaluated the sample

| | = ® = RC upper bound ry = ®=RC upper bound
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Figure 4. Left: Sample size required for 95% probability of re-
covery of an optimal ranking by various algorithms under a BTL
distribution (out of 100 random runs), together with the corre-
sponding sample complexity upper bounds, as a function of n.
Right: Sample size required for 95% probability of recovery of
an optimal ranking by various algorithms under a BTL distribu-
tion (out of 100 random runs), together with corresponding sam-
ple complexity upper bounds, as a function of (""‘ax) (keeping
T'min term corresponding to LN bounds constant) (here n =>5).

complexity and corresponding upper bounds as a function
of this ratio. The results are shown in Figure 4 (right). As
can be seen, the dependence of the rank centrality upper
bound on this term appears to be superfluous, and likely an
artefact of the current analysis technique, which is based on
that of (Negahban et al., 2012). In future work, we intend to
explore alternative techniques for obtaining a tighter bound
for the rank centrality algorithm.? We also plan to explore
whether the additional factor of n in the rank centrality and
SVM-RankAggregation bounds can be removed.

8. Conclusion

The problem of rank aggregation from pairwise compari-
son data has received much interest recently. We have ana-
lyzed various algorithms for this problem, and have shown
that under a natural statistical model, where pairwise com-
parisons are drawn randomly and independently from some
underlying probability distribution, the rank centrality and
least squares algorithms converge to an optimal ranking un-
der a BTL condition, while the Borda count and BTL-ML
algorithms converge to an optimal ranking under a more
general LN condition. However, none of these existing
algorithms converges under the more general GLN condi-
tion; we have proposed a new SVM-based rank aggregation
algorithm for which such convergence is guaranteed. Fu-
ture work includes improving the analysis to obtain tighter
bounds, and extending the analysis to other algorithms.
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3We note that the least squares sample complexity also shows
a slight dependence on the ( Zousix ) term; this is due to the fact that
this term is connected to Pmm, the dependence on which appears
to be captured correctly in our bound for least squares.
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