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Abstract 
 

Multivariate statistical approaches have played an 
important role of recognising face images and charac-
terizing their differences. In this paper, we introduce 
the idea of using a two-stage separating hyper-plane, 
here called Statistical Discriminant Model (SDM), to 
interpret and reconstruct face images.  Analogously to 
the well-known Active Appearance Model proposed by 
Cootes et. al, SDM requires a previous alignment of all 
the images to a common template to minimise varia-
tions that are not necessarily related to differences 
between the faces.  However, instead of using land-
marks or annotations on the images, SDM is based on 
the idea of using PCA to reduce the dimensionality of 
the original images and a maximum uncertainty linear 
classifier (MLDA) to characterise the most discrimi-
nant changes between the groups of images. The ex-
perimental results based on frontal face images indi-
cate that the SDM approach provides an intuitive in-
terpretation of the differences between groups, recon-
structing characteristics that are very subjective in 
human beings, such as beauty and happiness. 
 
1.  Introduction 
 

The most successful statistical models for visual in-
terpretation of face images have been based on Princi-
pal Component Analysis (PCA) [1, 3, 10].  These ap-
proaches have used as features either shapes [3] or tex-
tures [10] alone, or a combination of both [1].  Unfor-
tunately, however, even in the PCA approach based on 
a combination of features, the sources of the shapes’ 
and textures’ variations have to be isolated in order to 
extract and interpret the most expressive differences in 
the training samples.  For instance, in the well-known 
Active Appearance Model proposed by Cootes et. al. 
[1] the shape model is dissociate from the texture 
model and a manual annotation of landmarks is neces-
sary to perform the statistical analysis. 

In this paper, we introduce the idea of using a two-
stage separating hyper-plane, here called Statistical 

Discriminant Model (SDM), to interpret and recon-
struct face images.  Analogously to the Cootes et al. 
approaches [1 – 4], SDM requires a previous alignment 
of all the images to a common template to minimise 
variations that are not necessarily related to differences 
between the faces.  However, instead of using land-
marks or annotations on the images, SDM is based on 
the idea of using PCA to reduce the dimensionality of 
the original images and a maximum uncertainty linear 
classifier (MLDA) [8] to characterise the most dis-
criminant differences between the samples of images. 

The remainder of this paper is divided as follows.  
In section 2, we briefly review PCA and highlight its 
importance on reducing the high dimensionality of face 
images.  Section 3 describes the standard linear 
discriminant analysis (LDA) and states the reasons for 
using a maximum uncertainty version of this approach 
to perform the face experiments required.  The estima-
tion of the separating hyper-plane and the implementa-
tion of the Statistical Discriminant Model are described 
in Section 4.  In section 5, we present experimental 
results of the PCA and SDM approaches on a face da-
tabase maintained by the Department of Electrical En-
gineering at FEI.  This section includes reconstruction 
experiments of face images using the SDM approach 
proposed.  In the last section, section 6, the paper con-
cludes with a short summary of the findings of this 
study and future directions. 
 
2.  Principal Component Analysis (PCA) 
 

PCA is a feature extraction procedure concerned 
with explaining the covariance structure of a set of 
variables through a small number of linear combina-
tions of these variables.  It is a well-known statistical 
technique that has been used in several image recogni-
tion problems, especially for dimensionality reduction.  
A comprehensive description of this multivariate statis-
tical analysis method can be found in [6]. 

Let us consider the face recognition problem as an 
example to illustrate the main idea of the PCA.  In any 



image recognition, and particularly in face recognition, 
an input image with n  pixels can be treated as a point 
in an n-dimensional space called the image space.  The 
coordinates of this point represent the values of each 
pixel of the image and form a vector 
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T xxxx ,,, 21 K=  obtained by concatenating the rows 

(or columns) of the image matrix.  It is well-known that 
well-framed face images are highly redundant not only 
owing to the fact that the image intensities of adjacent 
pixels are often correlated but also because every indi-
vidual has one mouth, one nose, two eyes, etc.  As a 
consequence, an input image with n  pixels can be pro-
jected onto a lower dimensional space without signifi-
cant loss of information. 

Let an N x n  training set matrix X  be composed 
of N  input face images with n  pixels.  This means 
that each column of matrix X  represents the values of 
a particular pixel observed all over the N  images.  Let 
this data matrix X  have covariance matrix S  with 
respectively Φ  and Λ  eigenvector and eigenvalue 
matrices, that is, 

Λ=SPPT . (1) 

It is a proven result that the set of m  ( nm ≤ ) eigen-
vectors of S , which corresponds to the m  largest ei-
genvalues, minimises the mean square reconstruction 
error over all choices of m  orthonormal basis vectors 
[6].  Such a set of eigenvectors that defines a new un-
correlated coordinate system for the training set matrix 
X  is known as the principal components.  In the con-

text of face recognition, those pcaP components are 
frequently called eigenfaces [10]. 

Therefore, although n  variables are required to re-
produce the total variability (or information) of the 
sample X , much of this variability can be accounted 
for by a smaller number m  of principal components.  
That is, the m  principal components can then replace 
the initial n  variables and the original data set, consist-
ing of N  measurements on n  variables, is reduced to 
a data set consisting of N  measurements on m  princi-
pal components. 
 
3.  Maximum Uncertainty LDA (MLDA) 
 

The primary purpose of the Linear Discriminant 
Analysis, or simply LDA, is to separate samples of 
distinct groups by maximising their between-class 
separability while minimising their within-class vari-
ability.  Although LDA does not assume that the popu-
lations of the distinct groups are normally distributed, it 
assumes implicitly that the true covariance matrices of 

each class are equal because the same within-class scat-
ter matrix is used for all the classes considered. 

Let the between-class scatter matrix bS  be defined 
as 
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and the within-class scatter matrix wS  be defined as 
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where jix ,  is the n-dimensional pattern j  from class 

iπ , iN  is the number of training patterns from class 

iπ , and g  is the total number of classes or groups.  
The vector ix  and matrix iS  are respectively the unbi-
ased sample mean and sample covariance matrix of 
class iπ  [6].  The grand mean vector x  is given by 
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where N  is the total number of samples, that is, 

gNNNN +++= L21 .  It is important to note that 
the within-class scatter matrix wS  defined in equation 
(3) is essentially the standard pooled covariance matrix 

pS  multiplied by the scalar )( gN − , where pS  can be 
written as 

.
)1()1()1(

)1(
1 2211

1
gN

SNSNSN
SN

gN
S gg

g

i
iip −

−++−+−
=−

−
= ∑

=

L  
(5)

The main objective of LDA is to find a projection 
matrix ldaP  that maximizes the ratio of the determinant 
of the between-class scatter matrix to the determinant 
of the within-class scatter matrix (Fisher’s criterion), 
that is, 
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The Fisher’s criterion described in equation (6) is 
maximised when the projection matrix ldaP  is com-
posed of the eigenvectors of bw SS 1−  with at most 

)1( −g  nonzero corresponding eigenvalues [5].  This is 
the standard LDA procedure. 

However, the performance of the standard LDA can 



be seriously degraded if there is only a limited number 
of total training observations N  compared to the di-
mension of the feature space n .  Since the within-class 
scatter matrix wS  is a function of )( gN −  or less line-
arly independent vectors, its rank is )( gN −  or less.  
Therefore, wS  is a singular matrix if N  is less than 

)( gn + , or, analogously, might be unstable if N  is not 
at least five to ten times )( gn + [7]. 

To avoid the aforementioned critical issues of the 
standard LDA in limited sample and high dimensional 
problems, we have calculated ldaP  by using a maxi-
mum uncertainty LDA-based approach (MLDA) that 
considers the issue of stabilising the wS  estimate with 
a multiple of the identity matrix [8, 9]. In a previous 
study [8] with application to the face recognition prob-
lem, Thomaz and Gillies showed that the MLDA ap-
proach improved the LDA classification performance 
with or without a PCA intermediate step and using less 
linear discriminant features [8]. 

The MLDA algorithm can be described as follows: 

i.Find the Φ  eigenvectors and Λ  eigenvalues of pS , 
where ][ gNSS wp −= ; 

ii.Calculate the pS  average eigenvalue λ , that is, 
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iii.Form a new matrix of eigenvalues based on the fol-
lowing largest dispersion values 

)],max(),...,,[max( 1
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iv.Form the modified within-class scatter matrix 

))(()( *** gNgNSS T
pw −ΦΦΛ=−= . (7c) 

The maximum uncertainty LDA (MLDA) is con-
structed by replacing wS  with *

wS  in the Fisher’s crite-
rion formula described in equation (6).  It is based on 
the idea [8] that in limited sample size and high dimen-
sional problems where the within-class scatter matrix is 
singular or poorly estimated, the Fisher’s linear basis 
found by minimising a more difficult but appropriate 
“inflated” within-class scatter matrix would also mini-
mise a less reliable “shrivelled” within-class estimate. 
 

4.  Statistical Discriminant Model (SDM) 
 

The Statistical Discriminant Model proposed in this 
work is essentially a two-stage PCA+MLDA linear 

classifier that reduces the dimensionality of the original 
images and extracts discriminant information from im-
ages. 

In order to estimate the SDM separating hyper-
plane, we use training examples and their correspond-
ing labels to construct the classifier.  First a training set 
is selected and the average image vector of all the train-
ing images is calculated and subtracted from each n-
dimensional vector.  Then the training matrix com-
posed of zero mean image vectors is used as input to 
compute the PCA transformation matrix.  The columns 
of this n  x m  transformation matrix are eigenvectors, 
not necessarily in eigenvalues descending order.  We 
have retained all the PCA eigenvectors with non-zero 
eigenvalues, that is, 1−= Nm , to reproduce the total 
variability of the samples with no loss of information.  
The zero mean image vectors are projected on the prin-
cipal components and reduced to m-dimensional vec-
tors representing the most expressive features of each 
one of the n-dimensional image vector.  Afterwards, 
this N  x m  data matrix is used as input to calculate 
the MLDA discriminant eigenvector, as described in 
the previous section.  Since in this work we have lim-
ited ourselves to two-group classification problems, 
there is only one MLDA discriminant eigenvector.  The 
most discriminant feature of each one of the m-
dimensional vectors is obtained by multiplying the N  
x m  most expressive features matrix by the m  x 1 
MLDA linear discriminant eigenvector.  Thus, the ini-
tial training set of face images consisting of N  meas-
urements on n  variables, is reduced to a data set con-
sisting of N  measurements on only 1 most discrimi-
nant feature. 

Once the two-stage SDM classifier has been con-
structed, we can move along its corresponding projec-
tion vector and extract the discriminant differences 
captured by the classifier.  Any point on the discrimi-
nant feature space can be converted to its correspond-
ing n-dimensional image vector by simply: (1) multi-
plying that particular point by the transpose of the cor-
responding linear discriminant vector previously com-
puted; (2) multiplying its m most expressive features by 
the transpose of the principal components matrix; and 
(3) adding the average image calculated in the training 
stage to the n-dimensional image vector.  Therefore, 
assuming that the spreads of the classes follow a Gaus-
sian distribution and applying limits to the variance of 
each group, such as 2± sd, where sd is the standard 
deviation of each group, we can move along the SDM 
most discriminant features and map the results back 
into the image domain. 
 



5.  Experimental Results 
 

We have used frontal images of a face database 
maintained by the Department of Electrical Engineer-
ing of FEI to carry out the experiments.  This database 
contains a set of face images taken between June 2005 
and March 2006 at the Artificial Intelligence Labora-
tory in São Bernardo do Campo, with 14 images for 
each of 118 individuals – a total of 1652 images∗.  All 
images are colourful and taken against a white ho-
mogenous background in an upright frontal position 
with profile rotation of up to about 180 degrees.  Scale 
might vary about 10% and the original size of each 
image is 640x480 pixels. 

To minimise image variations that are not necessar-
ily related to differences between the faces, we aligned 
first all the frontal face images to a common template 
so that the pixel-wise features extracted from the im-
ages correspond roughly to the same location across all 
subjects.  In this manual alignment, we have randomly 
chosen the frontal image of a subject as template and 
the directions of the eyes and nose as a location refer-
ence.  For implementation convenience, all the frontal 
images were then cropped to the size of 64x64 pixels 
and converted to 8-bit grey scale. 

We have carried the following two-group statistical 
analyses: female versus male experiments, and non-
smiling versus smiling experiments.  The idea of the 
first discriminant experiment is to evaluate the statisti-
cal approaches on a discriminant task where the differ-
ences between the groups are evident.  In contrast, the 
second experiment, i.e. non-smiling versus smiling 
samples, poses an alternative analysis where there are 
subtle differences between the groups.  Since the num-
ber of female images is limited and equal to 49, we 

                                                           
∗ All these images are available upon request (cet@fei.edu.br). 

have composed the female/male training set of 49 fron-
tal female images and 49 frontal male images.  For the 
smiling/non-smiling experiments, we have used the 49 
frontal male images previously selected and their corre-
sponding frontal smiling images.  All faces are mainly 
represented by subjects between 19 and 30 years old 
with distinct appearance, hairstyle, and adorns.  Figure 
1 shows some examples of these two training sets se-
lected. 
 
5.1.  PCA Results 
 

In this section, we describe the most expressive fea-
tures captured by PCA.  As the average face image is 
an n-dimensional point ( 4096=n ) that retains all 
common features from the training sets, we could use 
this point to understand what happens statistically when 
we move along the principal components and recon-
struct the respective coordinates on the image space.  
Analogously to the works by Cootes et al. [1 – 4], we 
have reconstructed the new average face images by 
changing each principal component separately using 
the limits of iλ± , where iλ  are the corresponding 
largest eigenvalues. 

Figure 2 illustrates these transformations on the first 
three most expressive principal components using the 
female/male training set.  As can be seen, the first prin-
cipal component (on the top) captures essentially the 
variations in the illumination and gender of the training 
samples.  The second principal component (middle), in 
turn, models variations related to the grey-level of the 
faces and hair, but it is not clear which specific varia-
tion this component is actually capturing.  The last 
principal component considered, the third component 
(bottom), models mainly the size of the head of the 
training samples.  It is important to note that as the fe-
male/male training set has a very clear separation be-

(a) 

(b) 

Figure 1. Samples of the female versus male (a) and non-smiling versus smiling training sets (b). 



tween the groups, the principal components have kept 
this separation and when we move along each principal 
component axis we can see this major difference be-
tween the samples, even though subtly, such as in the 
third principal component illustrated. 

Figure 3 presents the three most expressive varia-
tions captured by PCA using the non-smiling/smiling 
training set, which is composed of male images only.  
Analogously to the female/male experiments, the first 
principal component (on the top) captures essentially 
the changes in illumination, the second principal com-
ponent (middle) models variations particularly in the 
head shape, and the third component (bottom) captures 
variations in the facial expression among others. 

As we should expect, these experimental results 
show that PCA captures features that have a consider-
able variation between all training samples, like 
changes in illumination, gender, and head shape.  How-
ever, if we need to identify specific changes such as the 
variation in facial expression solely, PCA has not 
proved to be a useful solution for this problem.  As can 
be seen in Figure 3, although the third principal com-
ponent (bottom) models some facial expression varia-
tion, this specific variation has been captured by other 
principal components as well including other image 
artefacts.  Likewise, as Figure 2 illustrates, although the 
first principal component (top) models gender varia-
tion, other changes have been modelled concurrently, 

Figure 2.  PCA results using the female/male training set. 

Figure 3.  PCA results using the non-smiling/smiling training set (male images only). 



such as the variation in illumination.  In fact, when we 
consider a whole grey-level model without landmarks 
to perform the PCA analysis, there is no guarantee that 
a single principal component will capture a specific 
variation alone, no matter how discriminant that varia-
tion might be. 
 
5.2.  SDM Results 
 

As described earlier, in order to estimate the SDM 
separating hyperplane, we have used the female/male 
and non-smiling/smiling training sets previously se-
lected and their corresponding labels to construct the 
classifier.  Since in these experiments we have limited 
ourselves to two-group classification problems, there is 
only one SDM discriminant eigenvector.  Therefore, 
assuming that the spreads of the classes follow a Gaus-
sian distribution and applying limits to the variance of 
each group, such as 2± sd, where ‘sd’ is the standard 
deviation of each group, we can move along the SDM 
most discriminant features and map the results back 
into the image domain for visual analysis. 

Figure 6 presents the SDM most discriminant fea-
tures for the gender experiments.  It displays the image 
regions captured by the SDM approach that change 
when we move from one side (left, male) of the divid-
ing hyper-plane to the other (right, female), following 
limits to the standard deviation ( 2± sd) of each sample 
group.  As can be seen, the SDM hyper-plane effec-
tively extracts the group differences, showing clearly 
the features that mainly distinct the female samples 

from the male ones, such as the size of the eyebrows, 
nose and mouth, without enhancing other image arte-
facts. 

Figure 5 shows the SDM most discriminant features 
for the facial expression experiments.  Analogously to 
the gender experiments, Figure 5 displays the image 
regions captured by the SDM classifier that change 
when we move from one side (left, smiling) of the di-
viding hyper-plane to the other (right, non-smiling), 
following limits to the standard deviation ( 2± sd) of 
each sample group.  As can be seen, the SDM hyper-
plane effectively extracts the group differences, show-
ing exactly what we should expect intuitively from a 
face image when someone changes their expression 
from smiling to non-smiling.  In fact, it is possible to 
note that the SDM most discriminant direction has pre-
dicted a facial expression not necessarily present in our 
corresponding smiling/non-smiling training set, that is, 
the “definitely non-smiling” or may be “anger” status 
represented by the image +2sd in Figure 5. 

Analogously to the PCA experiments, all SDM re-
constructions have been made using the average face 
image of the corresponding training sets.  However, it 
is possible to project any face image on the SDM fea-
ture space, move along its corresponding most dis-
criminant features, and map the changes back to the 
original image space.  Figure 6 shows these experimen-
tal results when we move an example image along the 
male/female (Figure 6a) and smiling/non-smiling (Fig-
ure 6b) hyper-planes previously calculated.  As can be 
seen in Figure 6a, the most discriminant features be-

Mean-2sd -1sd +1sd +2sd

Figure 4.  SDM results using the female/male training set. 

Mean-2sd -1sd +1sd +2sd

Figure 5.  SDM results using the smiling/non-smiling training set. 



tween a male and female face images have been incor-
porated on the example image when we move it to the 
male side of the dividing hyper-plane, such as the 
thickening of the lips, nose, and eyebrows.  In contrast, 
since the example chosen is from a woman, almost no 
facial changes occurs when we move the same example 
to the other side of the hyper-plane, that is, to the fe-
male side.  Also, according to Figure 6b, it is possible 
to see that the SDM linear classifier has incorporated 
all the most discriminant facial changes that we intui-
tively expect when we change our facial expression 
from smiling to non-smiling status.  It is important to 
note in this case where most of the facial changes are 
localised around the mouth that only the differences 
related to the facial expression differences have 
changed on the image with no impact on other face 
features, such as hair-style, forehead, eyebrows, and 
chin. 
 

6.  Conclusion 
 

In this work, we introduced the idea of using the 
PCA+MLDA two-stage linear classifier to interpret and 
reconstruct frontal face images rather than recognising 
subjects.  Differently from other statistical approaches, 
our method is based on a supervised separation be-
tween the whole images and not on the use of land-
marks and isolated models for the shapes’ and textures’ 
variations.  The experiments carried out in this work 
showed that subjective information such as beauty and 
happiness can be efficiently captured by a linear classi-
fier when we pre-process the face images using a sim-
ple affine transformation.  The results presented in this 
paper suggested that the statistical discriminant model 
proposed could be useful to reconstruct not only frontal 

face images but also face images with different pro-
files.  Further work is being undertaken to investigate 
this possibility. 
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