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A formulation for viscoplastic behavior of heterogeneous polycrystals is presented based upon the
familiar constructs of statistical continuum theory. The non-local interaction law is derived which
relates properties of the local velocity field to correlation functions of the local microstructure. It is
demonstrated that correlation functions, based upon the two-point orientation coherence function, are
required in a theory which considers first-order deviations from Taylor’s 1938 uniform strain (rate)
assumption. The evolution of the coherence function with deformation is also briefly considered.
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1. INTRODUCTION

During the past three decades, the modern texture theory, with its emphasis upon
the crystallite orientation distribution function (o.d.f.), has been established as a
cornerstone in the theory of polycrystalline plasticity. Of particular significance is
the prediction of mechanical anisotropy based upon various averaging schemes
incorporating the o.d.f. Models based upon Taylor’s 1938 assumption of uniform
strain have often demonstrated first-order agreement with the measured anisotro-
pic response. Comparisons between simulated and measured texture evolution
with these models have also exhibited first-order agreement. The predictive
power of this generation of models often falls short of our expectations, however,
and consequently model refinement is of considerable interest.
The viewpoint espoused in this paper is that improved models must necessarily

include some information about the heterogeneity of strain (and stress) in the
polycrystal. Once Taylor’s uniform strain approximation is abandoned, then the
traditional measures of microstructure, such as the o.d.f., are no longer adequate.
Consistent with the increasing complexity required to describe non-local interac-
tions between material particles (giving rise to the experimentally observed
heterogeneities), is the requirement for microstructural measures of increasing
sophistication. It will be demonstrated in this paper that these measures must
describe, not only lattice orientations, but their spatial correlations.
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During the past three years, we have advocated a two-point probability density
function, named the orientation coherence function (o.c.f.), as a logical first step
towards more sophisticated microstructural measures (Adams et al., 1987;
Adams, Wang and Morris, 1988; Morris, Wang and Adams, 1988). The o.c.f.
describes the correlation of lattice orientations between points in the polycrystal
separated by a specified vector. Whereas the o.d.f, can be conveniently defined in
a three dimensional manifold parameterized by Euler angles, the o.c.f, requires
nine parameters--three describing the lattice orientation at each point, and three
defining their spatial relationship with respect to one-another. Obviously this
represents a very substantial increase in the degree of complexity faced in
describing microstructures; pictorial representations of the o.c.f, become rather
burdensome, for example. However, with simultaneous advances in micro-
diffraction technology and computing hardware, it has been possible to measure
the o.c.f, for several materials, and it is not difficult to envision that the o.c.f.
(and even higher-order density functions of the microstructure) may be measured
in automated fashion in the near future.

In order to illustrate the imperative need for the o.c.f., this paper will describe
a new statistical theory for viscoplastic response in polycrystals. The approach
taken parallels the constructs in the statistical continuum theory for linear-elastic
polycrystals (Beran, 1968; Kr6ner, 1972; McCoy, 1981; Kr6ner, 1987). The
secant modulus formulation of the single-crystal constitutive law, described by
Hutchinson (1976), is chosen for its simplicity. A parallel tangent-modulus
approach to large-strain viscoplastic behavior is presented elsewhere (Molinari,
Canova and Ahzi, 1987; Canova, Molinari, Ahzi and Adams, 1989). As shown
here, the theory considers the inelastic heterogeneity in the context of perturba-
tions from the uniform Taylor polycrystal. This approach makes a very clear
connection with the previous uniform strain-rate upper-bound model. In contrast
to the self-consistent theory, originating with Hill (1965) and implemented by
Hutchinson (1976), the statistical theory is explicit. For example, if the o.c.f, is
known, then the theory provides the complete macroscopic constitutive law,
linking the applied stress and the macroscopic strain-rate tensors, in closed form.
In another application of the theory, local stresses and strain-rates are estimated
based upon non-local interactions with neighboring crystallites.
Although the focus here is upon steady creep of polycrystals, the form of the

interaction law is observed in a variety of inelastic models. Integral equations of
the form proposed by Zeller and Dederichs (1973) occur not only in viscous
theories, but also in the low temperature elasto-plastic models (e.g., Berveiller et
al., 1987). These, however, have not yet been extended into the realm of
statistical continuum theory.
The Einstein summation convention is used extensively in the following

development. Summation is implied over repeated subscripts. A comma among
the subscripts denotes differentiation relative to the independent variables
associated with the subscripts following the comma. Cartesian tensors of arbitrary
rank (but not their components) are given in bold letters for clarity.

2. SINGLE CRYSTAL VISCOPLASTIC BEHAVIOR AT CONSTANT
TEMPERATURE

The model employed is identical to that defined by Hutchinson (1976) for
power-law steady creep by slip. For a resolved shear stress, :, acting on the kth
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slip system, the slip rate, y(*), is connected by the equation

(k)/’g’(ok) (y(k)/yo)m (2.1)
where m is the rate sensitivity parameter, r0k) is the reference stress, and Yo is an
arbitrary reference slip-rate. This modellization assumes that the dependence
of yk) upon the slip activity on other systems can be incorporated completely inrok). Although it is not explicitly represented in Eq. (2.1), the slip-rate must have
the same sign as the resolved shear stress.
The total deviatoric strain-rate in the crystal, e, is determined by summing over the

contribution from all slip systems:

F-,i] (ijk)l(k) MijklOkl (2.2)
k

where .. + b*)n*)). (2.3)
The unit vectors n(*) and b(*) signify, respectively, the slip-plane normal and slip
direction for the kth slip system. (i is the deviatoric Cauchy stress tensor. Combining
Eqs (2.1) and (2.2), and noting that

v() #.k)oij, (2.4)
the components of the fourth rank tensor of creep compliances, M,l, can be
written as

U,s,,= Z (toledo ’’(*) liirstXrsll’(k)ln--lo l-l(il’k)[7"lit)"
k

(2.5)

The dissipation-rate is given by

Oijgij-- W oijMijklOkl. (2.6)
W is positive for any non-zero choice of o, hence M is positive definite.
Furthermore, the stress potential (= (1/m + 1)W) is convex which assures that
the functional dependence between deviatoric stress and deviatoric strain-rate is
one-to-one. Consequently, the inverse relationship to Eq. (2.2) exists, and is
given as

(ij Nijkl’kl (2.7)
where N M-1.
The creep compliances are homogeneous of degree n- 1 (n 1/m) in the

stress, and therefore the creep moduli are homogeneous of degree (1- n)/n:

M(.o’) ,n-lM(o), N(.e) -")/"N(e). (2.8)
The major focus in this paper will be upon Eq. (2.7). The creep moduli are

obtained by inverting Eq. (2.5) for fixed stress. Equation (2.8) is then used to
minimize the computational requirement. The secant modulus tensor presents the
following symmetry properties.

Nijkl Nl.ik Nijlk Nklij (2.9)
A fully Cauchy stress tensor, T, is obtained by the addition of a hydrostatic

pressure, p, which does not contribute to the dissipation-rate due to the inherent
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incompressibility of the present model.

Tij NijklF.kl PCij NijklLkl Pq (2.10)
This hydrostatic pressure can only be prescribed through the equilibrium
equations and boundary conditions associated with the problem; this is addressed
more completely in a subsequent section.

3. THE INTERACTION LAW FOR POLYCRYSTALS

Having established the local behavior through Eq. (2.10) the response of the
polycrystal is sought. Define the polycrystal to be an aggregate of very many
perfectly b_onded space filling single crystallites. A uniform macroscopic velocity
gradient, L and an arbitrary macroscopic pressure ,_/, are imposed upon the
aggregate at infinity. Incompressibility requires that L 0. Locally, equilibrium
is required throughout the polycrystal, hence from Eq. (2.10)

Tij,j (NijklLkl),j P,i 0 (3.1)
In the spirit of the statistical continuum theory, define a convenient "re-

ference" or "comparison" medium, which manifests a constitutive law which, in
general, differs from the macroscopic law. The secant moduli of the references
medium are defined as

NijRkl I f(h)Nijkl(L h) dh (3.2)
.h

where h represents the relevant set of state variables defining the secant moduli.
This includes the set of reference shear stresses, r0), and the lattice orientation,
g, which fixes /z!). Reference to Eq. (2.5) makes this very clear. Thus
h {o), g} where g represents the usual set of three Euler angles defining the
rotation of the crystal lattice from a chosen macroscopic reference frame. The
domain of local state variables is H R SO(3), where R is the k-dimensional
real domain of reference stresses for k slip systems and SO(3) is the special
orthogonal group of rigid body rotations, f(h) is the probability density for the
occurrence of state h in the polycrystal.
When steady creep is of primary interest, it has been common to assume that

:0), is uniform, not only in individual crystallites, but throughout the polycrystal.
When this assumption is justified Eq. (3.2) reduces to

Nlcl f(g)Ni/lcl( ", g) ah (3.3)
.,gso(3)

where : is constant. Experimental justification for this assumption is rather
sparse, but observations of dislocation cell size in crept polycrystals appear to be
quite uniform, which suggests that the assumption may not be in serious error.
For the development given here the assumption is adopted.

Next, decompose the secant modulus tensor to define a polarized modulus, Ar,
according to

1Qi]kl(L ", g) Ni]kl(L ", g) Ni/Rkl (3.4)
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Also define a polarized deviatoric stress tensor,

ij(L, "), g)= tTij(L, T), g)- o’/(L, T)), (3.5)
where the reference stress is defined for the reference medium according to the
relation

o’/(L zl) RNijklLkl. (3.6)
Further reference to will hereafter be omitted since there is little possibility of
confusion.

Substitution of Eq. (3.4) into (3.1) leads to the equations
g +3= 0 (3.7)NijklLklj P,i

where f can be considered as the components of a "fictitious" body force defined
as

fi [l([ijkl(L, g)Zkl],j (3.8)
The incompressibility condition requires that

Lii O. (3.9)
Thus Eqs (3.7) and (3.9) define a system of four equations to be solved for the
four unknowns vi (velocity) and p.

Following the development previously given by Molinari et al. (1987), this set
of equations is solved using the Green’s function method. The Green’s functions
in the infinite space are Gij(r- r’) and Hk(r- r’) where r and r’ respresent points
in the space. As Ir- r’l goes to infinity G and H are expected to equal zero. The
functions are solutions to equation’s which parallel 3.7 and 3.9"

NiklGkm,lj(t r’) Hm,i(r r’) + 6im6(r r’) 0 (3.10)
and

Gim, i(r r’) 0 (3.11)
The function di(r-r’) is the Dirac function centered at r’ and the term
6im6(r- r’) represents the ith component of a unit force acting at r’ for fixed m.
Of particular importance is the fact that G and H depend only upon reference
secant moduli Ng and the aforementioned boundary condition. The formal
solution to the problem is well known.

3 "" Gij(r- r’)fj(r’) dr ’3 (3.12)oi(r)

=/ + /-//(r- r’)(r’) dr ’3 (3.13)p(r)

It is conveneint to express Eq. (3.12) in terms of the local and macroscopic
velocity gradient tensors. Taking the derivative with respect to the components of
r, and then reforming the left side of the equation, integrating by parts, the
fundamental interaction law is obtained:

--’ik d- aij,kl(r r’)/,(L(r’), g(r’))L(r’) dr ’3 (3.14)Lk(r)
3r’V
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Note the physical interpretation of the interaction law. The local velocity gradient
at r differs from the imposed macroscopic velocity gradient by the convolution
over the infinite volume V of a polarized deviatoric stress, 0, which depends upon
the local velocity gradient and lattice orientation at r’ e V. This polarized stress is
defined as

Oj/(r’) Njlrs(L(r’), g(r’))Lrs(r’); (3.15)
it represents the difference between the local response and the reference response
to the local velocity gradient at r’.
The inherent singularity of derivatives of the Green’s function at r r’ must be

handled with some care (McCoy, 1981). This is typical of many boundary value
problems in physics. One way to circumvent problems with the singularity is to
construct solutions for a finite volume surrounding point r. Examine an arbitrarily
small volume Vc surrounding point r. The average velocity gradient in Vc is
calculated from Eq. (3.14). Let L(r) now represent this averaged value in the
near neighborhood of r, then for V sufficiently small we have

a f, f,L/k(r) =/-]ik +c V ’V
aij,kl([ rt)lflrs(L(rt), g(rt))Lrs(rt ) dr ’3 dr3 (3.16)

Hereafter, wherever possible an abbreviated notation for Eq. (3.16) will be
employed:

L(r) , + G(r r’) ll(r’)L(r’) (3.17)
The symmetrical part of 3.17 defines the local strain-rate tensor

e(r) g + r(r r’) ll(r’)e(r’) (3.18)
where

Fqkl 1/4(Gq, k, + Gjk, i, - Gil,jk - Gjl, ik)
The antisymmetrical portion returns the total rate-of-rotation tensor

(r) (b + A (r- r’) ll(r’)C(r’)

(3.19)

(3.20)
where

Ai]kl 4(Gij,kl- G]k,i - Gil,jk Gjl, ik)
The rate-of-lattice-rotation in Vc is *(r) where

O,(r) mO(r) 0p (r)

(3.21)

(3.22)
and

O)P 1/2 Z ,(b(k)"(k)i "’1 bi(k)ni(k))(k) (3.23)
k

The slip-rates 7(k) are calculated using Eqs (2.1), (2.4), and (2.7), and hence the
rate-of-lattice rotation is readily obtained.
As a practical matter, the Green’s functions required in the localization law can

be obtained from the Fourier transforms of Eqs (3.10) and (3.11):
g ikiIm(k) "Jr" im 0 (3.24)-NqklkktGkm(k) +
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and

kktkm(k) =0. (3.25)
Thus, in k-space the differential equations defining the Green’s function are
rep_laced with a system of linear equations which are solved for kEkm(k) and
ikH(k). In direct space the required Green’s functions are given by

1 fk kkkli/(k)e-ik. (r-r’) dk3Gi , l(r r’)

and
-i

kit m(k)eHm,i([ [’)

(3.26)

--ik" (r--r’) dk3 (3.27)

Self-consistent iterative schemes can be pursued to solve the implicit interaction
law (Eq. (3.17)) for prescribed microstructures. This approach is described by
Molinari et al. (1987) in order to simulate texture evolution in fcc metals. Here, a
statistical description of microstructures is preferred, and this is described in the
subsequent section.

4. A STATISTICAL FORMULATION OF THE VISCOELASTIC
THEORY

Consider variations of the velocity-gradient field away from the uniform field of
the Taylor polycrystal. Assume that the polarized deviatoric stress, #, does not
deviate "too far" from its value at L, i.e.,

rij(L, g) rij([,, g) << 1 for all i, j and g. (4.1)

For these circumstances Eq. (3.17) can be written, omitting reference to spatial
position and lattice orientation, as Taylor series expansion about L, retaining
only the first few terms:

where

L L + G * (#(L) + #’ (L)[, + ."(L)[,2 + -> 0([,)3)

tYijrs(L)
\ aLr,

(4.2)

and ( a2YiJ )tYijrstu(L)
\SLrscLtu

(L) (4.3)

Equation 4.2 can be explicitly iterated by reintroducing the expression for [,0
(= L- [,) into itself on the right hand side as many times as necessary. This
increases the required order of integration since the convolution implied by *
occurs more than one time in higher-order tensors. Note, however, that this
iteration removes dependence of the equation upon L if sufficient iterations are
taken. This implicit character of the equation is replaced by an explicit one. The
price which is exacted is an increasing order of complexity in the integrations
required.
Taking only the zeroth-order term in Eq. (4.2) we obtain the condition L- [,

which is recognized to be the Taylor approximation. Here the focus will be upon
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the first-order correction to the homogeneous Taylor solution; hereafter L is
approximated with the equation

L(r) , + G(r r’) 0(,, h(r’)), + G(r r’) (,, h(r’)), (4.4)

A further connection with statistical theory is obtained by considering the
ensemble average of the local velocity gradient associated with very many
particles of state h (, g). Each particle will be surrounded by a structure
which is, in some respects, different from all other particles having the same
lattice orientation and reference shear stress. Consequently it is expected that
each particle will exhibit a distinctive velocity gradient. The expectation value for
the ensemble of particles of equivalent state is also expected to be different from
that obtained for other ensembles of particles exhibiting different state. Of
primary focus here, is this latter difference. The former variation would also be of
interest in a more comprehensive theory.

Let the brackets ( )h denote the ensemble average over particles at state h:

1 v
((),) h . (), (4.5)

Noting that ensemble averaging commutes with integration, form the ensemble
average of the velocity gradient for particles at state h"

(L(r))h , + G(r r’) (0(,, h(r’)))h, + G(r r’) (1(,, h(r’)))h, (4.6)

To be consistent with our assumption of uniformity in the reference shear stress,
let h(r’)= (r, g’). The ensemble average of the polarized creep modulus is
conveniently expressed in terms of the conditional 2-point probability density
function of lattice orientations:

( g’) ),, f2(g’, r’ r g)(L, g’) dg’ (4.7)

The function fz(g’, r’- r Ig) represents the probability density for the occurrence
of lattice orientation g’ at point r’ given that orientation g occurs at r. The point r
must be taken to be any arbitrary point in the microstructure where lattice
orientation g occurs. Thus, the structure is assumed to exhibit spatial stationarity.
The two-point function is normalized according to

fg f2(g’, r’-rlg)dg’= 1 for all r’ (4.8)
’so(3)

Additional details about the 2-point function their determination and their
representation, were previously published [Adams, Morris, Wang, Willden and
Wright 1987; Adams, Wang and Morris 1988; Morris, Wang and Adams 1988].
Equation (4.6) constitutes the first-order statistical localization law. A similar
first-order localization law can be derived for the local pressure in the particle,
(pO)h"

(pO)h =/ + H(r- r’). (ll(, h(r’)))h (4.9)
Here H(r-r’) denotes the partial derivatives of the Green’s tensor H with
respect to xj. The components are Hia(r- r’).
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Physically, (lq(,, h(r’)))h represents the correlation of polarized moduli at r’
when a particle of state h exists at r. It is customary to refer to entities of this
character as "correlation functions," or more precisely "microstructural correla-
tion functions." If higher order terms were taken in theory, either by including
more terms of the iteration of equation 4.2 or by incorporating higher-order
terms in the Taylor expansion of #(L), then correlation functions of higher-order
would naturally occur. The explicit determination of these terms would require
orientation coherence functions of more than two points.

5. ESTIMATES OF THE MACROSCOPIC CONSTITUTIVE LAW

Assuming that (L)h is adequate to describe the velocity gradient in particles of
state h (neglecting local variations due to local microstructure), a straight forward
estimate of the macroscopic constitutive law is easily constructed. Let X represent
the macroscopic deviatoric Cauchy stress, which must be equated to the volume
averaged local stresses:

f f(h)(oij)h dh
.h.H

f(h)Nikl(t, h)(Lkl)h dh (5.1)
.heH

Incorporating Eqs (3.3), (4.6) and the assumption of uniform reference stresses,
this becomes

N/
’ij Ni’kl(L)kl -I- akm,ln(r- r’) * CijklmnpqZpq (5.2)

CN is the microstructural correlation function defined by

Ci]klmnpq(L) f2(h’, r’ r, h)Ni.ikl( h)lQmnpq( h’) dh’ dh (5.3)
.H ’.H

where the CN is a function of r- r’; its calculation requires the two-point o.c.f.
which is related to the conditional form used in Eq. (4.7) by the relation

f2(h’, r’-r,h)=f2(h’, r’-r, Ih).f(h) (5.4)

Physically, Cs represents the expected correlation of N and lq given that they
are separated by r’-r in the microstructure.
Equation (5.2) is the estimated macroscopic constitutive law con_necting

macroscopic stress with the imposed macroscopic velocity gradient L. The
symmetry of 1 is carried in NR and Cs. It is notable that the macroscopic law

NNhas the same form as the local law. If the term containing the correlation C is
neglected, the macroscopic constitutive law reduces to Hutchinson’s (1976)
uniform strain-rate upper bound for creep.

6. EVOLUTION OF THE ORIENTATION COHERENCE FUNCTION

The previous sections have illustrated the use of microstructural correlation
functions to estimate constitutive behavior in polycrystals. Although the theory
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presented retained only first-order terms in the Green’s functions (resulting in
analysis requiring the o.c.f, to obtain two-point correlation functions) second-
order and higher-order terms are easily incorporated in the theory. These would
require higher-order microstructural correlation functions. As the structure
deforms with loading these correlation functions are naturally expected to evolve.
Changes in lattice orientation and crystallite shape will cause this evolution in the
correlation functions. A theory which is useful at finite strain must include means
for describing this evolution.

In this section some preliminary analysis of this evolution is described; a more
comprehensive treatment is desirable but is deferred to a subsequent paper. For
the assumption of uniform reference stresses, the evolution of the local state
variable, h, reduces to the evolution of the lattice orientation, g. This is
completely described by Eq. (3.22) which relates lattice spin to local and
macroscopic rotation rates. A description of the rate-of-change of r’-r is
also required. Here it is demonstrated that a rigorous treatment of this requires a
three-point probability density function; but the evolution of the three-point
function is then required to complete the problem. This would require a
four-point density function, and so forth. Thus a complete treatment of the
problem requires probability density functions in the sate variables of infinite
order.
A practical question is whether approximations of this evolution based upon

finite-order probability density functions is sufficient. This is the problem of
closure which is central to the theory. Here, an approximation to the evolution
problem requiring only the two-point o.c.f, is presented. The limitations
associated with an approximation of this nature must be given further theoretical
and experimental scrutiny.

Referring to Figure 1, consider the material derivative of an infinitesimal vector
d lying upon the vector r’-r:

L(r + Zj). flj (6.1)Dt

The parameter , lies in the range 0 -< . -< 1 and fixes the location of fl upon . In

Figure 1 Definition of parameters associated with the evolution equations.
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component form the overall evolution of is given by

i=Di fO’--- Li(r +Z) d, (6.2)

Define (L(r + Zig))h,h, to be expected value of the velocity gradient in a particle
located at r +Z given that state h occurs at r and h’ occurs at r + . The explicit
definition of (L(r + Z))h,h, follows from the construction in Section 4. Analo-
gous to Eqs (4.6) and (4.7) it follows that

(L(r+))h,h,=+G(r+,--r")*((,h"(r")))h,h, (6.3)
and

Jh 3(h", r" h’, r’, h, r)lq(L, h") dh".((,,h"(r")))h,h,
"n

(6.4)

Notice that Eq. (6.4) now contains the three-point conditional probability density
function which gives the probability of occurrence of h" at r" given that h’ and h
have occurred at r’ and r respectively.
The expectation value for , given that h and h’ occur at its endpoints, is

estimated by introducing Eq. (6.3) into 6.2:

L. g + + ) L.

As it has been typical in the entire theory, the first term on the right hand side of
Eq. (6.5) contains the uniform velocity gradient effect, and the second term
addresses the difference due to local microstructures in the vicinity of a pair of
material particles at states h and h’ separated by ig.
At this unction it should be clear that describing the evolution of all types of

vectors j naturally requires three-point microstructural functions, but the
evolution of these would require 4-point functions, etc. The strategy is therefore
open. Intuitively, however, we must anticipate that for some order of these
functions, O, it will be possible to construct (to the desired degree of accuracy)
all functions of order > O with those of order O. This order of closure will
depend upon the degree of accuracy required in the theory. Suppose that order
two is sufficient for present purposes. Then an adequate approximation for the
evolution of the two-point functions is obtained by introducing the approximation

f3(h", r"lh’, r’, h, r) 1/2(f2(h", r"- r’ h’) + f2(h", r"- r lh)) (6.6)
into Eq. (6.4). The extension to closures of higher order is evident.

7. SUMMARY AND CONCLUSIONS

The preceding development demonstrates the construction of a new theory of
viscoplasticity in polycrystalline materials. Its form parallels the statistical theory
for heterogeneous elastic media. For example, the interaction law (Eq. (3.14))
has algebraic form identical to the Zeller-Dederichs equation in the elastic theory
(Zeller and Dederichs, 1973). The present theory emphasizes the secant-modulus
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form of the single-crystal constitutive law originating with the work of Hutchinson
(1976). The secant modulus formulation is best suited to the problem of creep,
since the stresses typically remain a fraction of the yield stress. For large
stress/large strain-rate problems a similar development, originating with the work
of Molinari et al. (1987), and using the tangent-modulus, is more suitable. This
development can also be treated in the framework of the statistical theory
(Canova, Molinari, Ahzi and Adams, 1989).
The present theory focuses upon perturbations away from the uniform

strain-rate approximation of the Taylor polycrystal. When these deviations are
too large (according to Eq. (4.1)) then the theory breaks down. In any case, since
only first-order terms correcting the uniform strain-rate solution are retained in
the solution, the theory should only be viewed as a first-order correction to the
Taylor-like theories.
The emergence of microstructural correlation functions is a central characteris-

tic of the theory. The connection between these correlation functions and the
ensemble averages is typified by Eq. (4.7). Notably, the passage between the
ensemble average on the left hand side of this equation, to the correlation
function on the right, requires use of the ergodic hypothesis. This hypothesis is
central to the present theory, and to many other statistical theories. The passage
from hypothesis to proof has been elusive in all but the simplest theories, but its
intuitive appeal is strong. For further discussion on this issue the reader is
referred to Beran (1968).

It is of particular significance that the theory includes predictions of the local
velocity gradient and stress (Eq. (4.6)) and the local pressure (Eq. (4.9)) as a
function of the microstructure surrounding a material particle. These localization
effects are of great interest in modelling damage localization (e.g., creep
cavitation damage). The non-local interaction derives from the stress-quilibrium
requirement which is not imposed in the uniform strain-rate theory. From a
particular vantage point the present theory constitutes a relaxation of the fully
constrained uniform strain-rate theory. This relaxation is not arbitrary, however,
since it must occur in a manner which drives the stress field towards equilibrium.
The assumption of a universal, uniform reference shear stress in the theory is not
required. If further information is available this assumption can easily be relaxed.

It is also useful to compare the present theory with the self-consistent theory
(Hill, 1965; Hutchinson, 1976). The major difference is in including the explicit
distribution of microstructure surrounding the particle. The self-consistent
theories are based upon the solution of Eshelby for the interaction of an
ellipsoidal inclusion embedded in a homogeneous medium. The properties of the
medium are taken to be the average properties associated with the assemblage of
inclusions. In this situation the convolution integral of Eq. (4.4) includes no
contribution from particles at r’ lying outside of the ellipsoidal inclusion since lq is
zero for these particles. This would only be valid when the microstructure outside
the ellipsoid is perfectly disordered. The present theory makes no such
restriction, and is therefore more general than the self-consistent theory.
The connections of the theory with macroscopic constitutive laws, shown in

section 5, are not unique. The approximations represented in connecting only
average or expectation values of tensors defined at a fixed state, is the simplest
construction which can be considered. The primary limitation comes from the
order of microstructural functions we are prepared to consider; and this is
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presently limited by experimental capability. These limitations are also evident in
the question of evolution of structures as treated in Section 6.
The major results of the theory, contained in Eqs (4.6, 4.9, 5.2 and 6.5),

require the evaluation of the convolution integrals of the form G,F. A
convenient method for evaluation the convolution integrals is to set V to be a
cube of dimension A with uniform state h, and then to evaluate the interaction of
other individual cubes of the same dimension located in arbitrary locations upon a
cubic lattice of dimension A in the infinite space V. The microstructural
correlation functions are assumed to be constant over these volumes relative to
Vc. Summing the interactions over the lattice completes the evaluation of the
convolution integral. Some details of the numerical solution for the interaction of
two cubes are given in the appendix.
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APPENDIX

Evaluate convolution integrals of the form

ani,mj(’ r), Fij(’ r)
eVc ’eV’c (A.1)

Gni,mj(r’ r) , Fij(r’ r) dr ’3 dr3

where Vc and V’c are cubes of volume A3 centered at c and c’, respectively, in the
infinite volume V (Figure A.1). The correlation function F/j is taken to be

V

Figure A.1 Geometry of the convolution integral problem G * F.
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constant over V relative to Vc. Introducing the Fourier transform of G, Eq.
(A. 1) becomes

Gni,mj Fij 8,7.g,3AF/J3 R
* kmkjJ,i(k)

(A.2)
e-’k’, dr3 e-’k, dr,3 dk3

V V

where the integral over k extends over the infinite space R 3. Next, set k ka
where a is the unit vector defined in spherical angles 0 and W as
[sin 0 cos W, sin 0 sin W, cos 0]. Set e e’ and evaluate the integrals over r
and r’. Equation (A.2) becomes

G,,m, 833 0 0 3J [k]
x [-8 + 4(six terms of the form eik)
-2(twelve terms of the form ekt*’lS t)
+ {eight terms of the formektlS U}]
X dk sin 0 dOd (A.3)

The terms [kEni) are real, and depend only upon Ng and the angles 0 and .
Since G, F is real we only need to evaluate the real part of the integral over k.

This leads to integrals of the form

cos k
k4

dk where (a, , a) (A.4)

Evaluate the integral by expanding cosk about zero and then analyzing the
remainder terms at a convenient order of expansion.

cos k ffcoskk4
dk lim

k
dk

-o (A.5)

[ 1 ] sink=lim 2e2+ +O(e) + dk

Obviously, in the limit as e 0 the first two terms of the right hand side of Eq.
(A.5) diverge, but the fourth term becomes3 sign (@)/12. When all sixty four
terms of Eq. (A.3) are summed, however, the first three terms in the expansion
sum to zero. This leads to the final result, which remains numerical in the
variables 0 and :

Gni,mj(, ,)$ j(,t ) j (2n(n [ jk2ni]2
2 2962A3 0 0 123 j

[-8 la. 1 + 4(la.- al + la.- al 3 + la.- al 3

-2(la.-a- al 3 + la.-a- a313 + la.-a- a31
x la. +1 + A2I3 + la. + + A3[3 + la- + + A.3I3
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x le.. II- A, + :1:’ + I&" I- A: + AI + I&" 6-, +1
x le" 6 +, 1 + le- 6 +A-1 + I&" +, 1}

+ {la. --A Az-- 313 + I" + +z + 313
+ la.-a +a- A3[3

+ I"-A + A2 + A313
x I"- Ae Ae2 + Ae313 + I" + Ae + Ae- Ae313}] sin 0 dOd

(A.6)
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