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Abstract—Starting from a member of an image database designated the “query image,” traditional image retrieval techniques, for

example, search by visual similarity, allow one to locate additional instances of a target category residing in the database. However, in

many cases, the query image or, more generally, the target category, resides only in the mind of the user as a set of subjective visual

patterns, psychological impressions, or “mental pictures.” Consequently, since image databases available today are often unstructured

and lack reliable semantic annotations, it is often not obvious how to initiate a search session; this is the “page zero problem.” We

propose a new statistical framework based on relevance feedback to locate an instance of a semantic category in an unstructured

image database with no semantic annotation. A search session is initiated from a random sample of images. At each retrieval round,

the user is asked to select one image from among a set of displayed images—the one that is closest in his opinion to the target class.

The matching is then “mental.” Performance is measured by the number of iterations necessary to display an image which satisfies the

user, at which point standard techniques can be employed to display other instances. Our core contribution is a Bayesian formulation

which scales to large databases. The two key components are a response model which accounts for the user’s subjective perception of

similarity and a display algorithm which seeks to maximize the flow of information. Experiments with real users and two databases of

20,000 and 60,000 images demonstrate the efficiency of the search process.

Index Terms—Image retrieval, relevance feedback, page zero problem, mental matching, Bayesian system, statistical learning.
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1 INTRODUCTION

OUR scenario is this: A person has an image concept or
category “in mind.” This category is essentially

semantic and might be represented by various “mental
pictures,” by an actual object or photograph in hand or
merely by subjective impressions. The person wishes to
view images in a large database which match this concept.
For example, the person is thinking about “old bridges” and
has access to the Alinari database; see Fig. 4. The database is
not semantically annotated, for example, by a rich variety of
keywords. Even if it were, as pointed out in [1], there are
situations in which the person may have difficulty in
expressing his concept in words; he will know it when he
sees it. Moreover, it may be more efficient to look over
displayed images “. . . and make unconscious ’matches’
with the one drawn by imagination. . . ” than to rely on text
or keywords that may not capture the concept. Our
objective is to design a system to accommodate this “user,”
more specifically to get started by finding a first exemplar.
This is the “page zero problem.”

Scenarios like this, and the increasing demands of
managing the large quantity of existing multimedia docu-
ments, have generated a growing interest in content-based

retrieval techniques, both from academia and from industry
[1], [2], [3], [4]. Query-by-Example (or QBE) is successfully
used in many retrieval systems for ranking the elements in a
database according to their similarity to a “query image” [1].
This does not solve the page-zero problem since the query
image must be available. However, once an exemplar is
found, QBE does allow the system to display other images
that might even better match the user’s concept.

Since a user’s concept of similarity is largely semantic,
the efficiency of the search process, whether for QBE or
mental matching, is adversely affected by the infamous
“semantic gap”—the discrepancy between the low-level
representations of images and the high-level descriptions
meaningful to users [1], [3]. Indeed, in many cases, images
that present similar low-level descriptors may have very
different semantic content. A partial solution is provided by
relevance feedback (or RF): Divide the search session into
several rounds and solicit information from the user at each
step, for example by asking the user to declare which
displayed images are “relevant” and which are “nonrele-
vant” with respect to the desired target category [5]. The
system iteratively refines a model of the user’s target
category and uses this model to filter hopefully relevant
images from the database.

Due to the page-zero problem, most proposed systems
either assume that a starting image has already been
identified by the user, or that the query is seeded by
keywords. Some simply display randomly sampled pages
from the database until the user identifies a suitable starting
point. This rapidly becomes impractical for large databases.
More direct solutions have been explored as well, such as
database categorization [6] and query construction [7].
Other methods, initially directed toward other objectives,
such as mental matching for target search [8], [9] and
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automatic semantic annotation [10], [11], could be adapted
to the initialization problem. These connections will be
amplified in Section 2.

Our main contribution is a new, iterative approach for
discovering an instance from a semantic image category
residing in the mind of the user. The search is terminated
upon displaying one of these images and performance is
measured by the expected number of iterations necessary to
achieve this. No semantic annotation is assumed. Also,
unlike previous approaches to mental matching, ours
extends from target to category search and from small,
structured databases to large, unstructured databases.
(“Unstructured” means that the images in the database
are not labeled by semantic categories.) It could serve either
as a stand-alone module in a retrieval system or as a
method for initializing another session, such as QBE, to
obtain additional examples.

The core of our framework is a new statistical model for
relevance feedback by mental matching. A binary random
variable is assigned to every image in the database; the
value is one if that image belongs to the target class and is
zero if it does not. Taken together, these variables
determine the category. The relevance feedback session
starts with a random screen. At each iteration, the user is
asked to choose from among the displayed images the one
that is closest to his target category using whatever criteria
he desires. The interface used in our experiments is shown
in Fig. 12. Obviously, the target class is not displayed
during a search session, ensuring that matching is entirely
“mental.” Even if exemplars were on display, the decisions
are inevitably subjective; indeed, the challenge is to design
an “answer model” which accounts for the nature of human
decision making, hopefully capturing the gap between the
user’s “metric” and the one used by the system. Formally,
the answer model is the probability distribution for the
user’s response conditional on the membership status of
any given image.

The system maintains a separate, iteration-dependent
posterior distribution for each image. Probabilities are
updated based on the evidence gathered from the search,
i.e., the responses of the user. The evolution of this
distribution is depicted in Figs. 15 and 16 for two search
sessions, one relatively efficient and one relatively ineffi-
cient. Theoretically, the optimal new display would mini-
mize the conditional entropy on the whole family of
membership variables conditional on the search history
and the new response. As this is computationally intract-
able, we use an extension of the heuristic proposed in [9],
which is shown to work very well in practice. Moreover, in
order to overcome certain problems introduced by the
redundancy among images with very similar low-level
descriptors, we use an unsupervised categorization of the
database into small clusters that are visually highly
coherent. The efficiency of the search is illustrated by
experiments with real users on two databases of sizes 20,000
(Alinari) and 60,000 (Corel). In both cases, fewer than five
iterations are sufficient to locate an instance from a category
of order 100 in 50 percent of the searches and fewer than
10 iterations in about 80 percent.

A preliminary version of this system appeared in [12];
the one presented here is considerably more mature in both
practical and theoretical terms (see Section 2).

The paper is organized as follows: Related and
motivating work is discussed in Section 2. In Section 3,
we formulate the statistical framework for interactive
search—a Bayesian relevance feedback model consisting
of an update model (Section 3.1), answer model (Sec-
tion 3.2), and display algorithm (Section 3.3). The low-
level image descriptors and the clustering algorithm are
described in Section 4, followed by an analysis of the
“enabling assumption” in Section 5. The parameters are
estimated in Section 6 and the whole system is evaluated
in Section 7. Finally, we conclude in Section 8 with a
discussion of our findings and some speculative remarks.

2 RELATED WORK

Relevance feedback hasmatured into an effectivemethod for
dealing with the semantic gap in image category search.
Assuming a starting image, feedback strategies exploit high-
level information provided by the user in order to discover
other images which represent a target class. Recent advances
based on kernel methods [13], [14] avoid restrictive assump-
tions about the data (e.g., that classes are elliptically shaped
in feature space), are flexible, and allow for efficient learning
and searching even for large databases [15], [16]. Other
successful approaches include active learning [15], [17],
manifold learning [18], [19], graph Laplacians [20], and
utilizing enhancements of the training set, for example, user
logs [21] and query expansions from unlabeled images [22];
see Zhou and Huang [5] for a review and [1], [3] for
connections with other machine learning and multimedia
retrieval methods. The shared aspects with our work are the
feedback loop and incremental learning. The key difference
is that we seek an initial element of the target class starting
from a random display (the page zero problem).

Perhaps the most straightforward solution to the page
zero problem, at least for target search (singleton categories),
is to ask the user to create the starting image: This is called
“query-by-sketch” and was a part of the first image retrieval
systems, for example, QBIC [23]. Similarity is then based on
shape matching and evidently the results depend on the
ability of the user to draw the desired query target. Recent
research has focused on elastic matching of images [24],
color [25], or matching the sketch to an automatically
determined relevant subset of regions [26]. Following the
same idea, Fauqueur et al. [7] fabricate a query example by
composing image patches (regions), utilizing a visual
thesaurus composed of many region categories (“sky,”
“building,” “grass,” etc.) and logical connectors.

With the page zero problem in mind, Lesaux et al. [6]
create a summary of the image database from unsupervised
categorization followed by a user-guided refinement of the
resulting clusters. Cluster prototypes then provide a
summary of the database that can be consulted to find a
suitable query point.

For databases which are semantically annotated, a visual
search session can, of course, be seeded by keywords
providedby theuser.Understandably, then, automatic image
annotation has generated a lot of interest lately, even if the
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methods remain far from reliable and the state-of-the-art
unsatisfactory. For example, Li and Wang [11] represent
semantic concepts by feature-based probability distribu-
tions, allowing for models to be updated as the database
grows without massive retraining. Carneiro et al. [10]
model images as bags of localized feature vectors, estimat-
ing a mixture density for each image; the mixtures
associated with images with shared annotations are pooled
into a density estimate for the corresponding semantic class.
Once images are associated with semantic concepts, by
whatever method, new queries can be seeded by using
natural language or keywords. Even if the annotations are
not completely reliable, the user may still find a suitable
starting point among the retrieved results.

In the area of category search, but assuming a starting
point, Caenen and Pauwels [27] assign to each image in the
database a probability that reflects its relevance to the
user’s intentions. The system is based on a quadratic
logistic regression model used to select the next sample of
images that will be presented to the user for individual
annotation. There is no mental matching. The shared
feature with our work is the image-specific distribution
and a statistical framework.

A number of probabilistic frameworks for content-based
image retrieval have been proposed in the last few years.
Vasconcelos and Lippman [28] minimize the probability of
retrieval error by combining feature selection and similarity
measures into a Bayesian formulation. See also [29], where
the same authors formulate the problem of retrieving
images using Bayesian inference; the algorithm relies on
belief propagation to account for both positive and negative
examples of the user’s preferences. Su et al. [30] suppose
that the elements of the target class are generated by an
underlying Gaussian density and use a Bayesian-classifier
reranking of the images after each feedback step. All these
results, while not directed toward solving the page zero
problem, do establish that probabilistic frameworks, albeit
computationally intensive, can provide state-of-the-art
results in standard scenarios.

Mental matching seems to have first appeared in the
seminal work of Cox et al. [8] on iterative search for a
specific image in the database (target search). At every
round, the user is asked to choose which of two images
displayed by the search engine is “closest” to the target
image residing in his mind. The formulation in [8] does not
extend to category search because the mechanism gathering
information ceases to be computationally feasible. Indeed,
one cannot maintain a probability distribution on arbitrary
subsets of images, even for small databases. Also, the answer
model does not accommodate more complex user behavior
associated with displaying multiple images, which is
necessary to achieve reasonable search times with large
databases.

Fang and Geman [9] and Ferecatu and Geman [12]
extended the Bayesian framework introduced in [8]. In the
context of target search, an efficient, entropy-based display
algorithm was proposed in [9] and applied to mental face
retrieval. We shall adapt their display mechanism to our
purposes in Section 3.3. Also, unlike in [8], the answer
model is explicitly designed to capture human decision

making (through learned parameters). Still, the approach
in [9] does not scale to large generic and heterogeneous
databases, both computationally and in terms of number of
feedback rounds necessary to reach the target. Indeed, the
user’s notion of similarity is more complex for generic
images than for faces and his choices are less likely to be
coherent with the feature-based metric employed by the
system. Nor does the method in [9] extend to category
search and unstructured databases.

The direct precursor of this work is [12], which adapts [9]
to category search. First, we extend that system to handle
larger databases (60,000 images), more complex semantic
classes (art images, architecture, and history), and user-
terminated search. Second, we provide theoretical explana-
tions for the main algorithms; in particular, we show that
the Voronoi-based display algorithm minimizes the condi-
tional entropy of an ideal user who responds to queries
based on a “reference” image in his semantic class. We also
provide a quantitative analysis of the enabling assumptions
by measuring the degree of semantic unity within sets of
images which are close in the system metric and the degree
of coherence between the answer statistics of the user and
the system. Finally, we provide a behavioral interpretation
for the two parameters of the answer model which leads to
a highly efficient and statistically rigorous model estimation
scheme in the context of two psychovisual experiments.

3 STATISTICAL FRAMEWORK

Suppose � denotes a database of N images, labeled
f1; 2; . . . ; Ng for simplicity. The objective is to identify an
image that matches the semantic and visual impressions in
the mind of the user. Let S � � denote that subset of the
database, i.e., the ones the user would deem as belonging to
his category or target class. Naturally, the subset S is
unknown to the system and regarded as a random set. We
assume that if a member of S is displayed, the user will
recognize it as an instance of the target class, terminating
the search. At that point, other members of S could be
retrieved by standard query-by-visual-example.

A relevance feedback session is composed of several
rounds (or iterations) during each of which a different set
D � � of m images is displayed. If D \ S 6¼ ;, the user
identifies an element of his category; otherwise, the user
chooses the image in D which he deems to be “closest” to S.
Naturally, this concept of similarity will only partially
cohere with the one employed by the system, which is
based on low-level image features (see Section 4).

The most straightforward generalization of the Bayesian
framework for target search [8], [9] would be centered on a
probability distribution for S and an answer model
conditional on S. This distribution would then be updated
after each iteration and would drive the display algorithm.
Needless to say, this is computationally impossible because,
in practice, S is of order 10 to 102 and N is of order 104 to
105. Hence, the number of possible subsets S is far too large
to support the maintenance of a probability distribution.

Instead, we associate a binary random variable Yk with
each image k 2 �: Yk ¼ 1 if k 2 S and Yk ¼ 0 if k 62 S. Of
course, S ¼ fk 2 � : Yk ¼ 1g, so S and fYkg carry the same
information. We maintain N parallel Bayesian systems, one
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for each image. Consequently, there is a response model for
each k separately and, after each feedback iteration and for
each k, we update the posterior distribution on Yk given the
search history. More specifically, if Bt denotes the responses
of the user to the first t displays (see Section 3.1), then the
distribution of Yk given Bt is represented by the single
parameter ptðkÞ ¼ P ðYk ¼ 1jBtÞ. Since we assume no prior
knowledge about S, we take the starting distributions
p0ðkÞ ¼ 0:5. Notice that summing the ptðkÞ over all k in �

gives the expected size of S after t rounds:

E jSj
�

�Bt

� �

¼ E
X

k2�
1SðkÞ

�

�Bt

 !

¼
X

k2�
ptðkÞ; ð1Þ

where 1Sð�Þ is the indicator function of the set S. In
particular, pt is not a distribution over �.

Our framework has three key components:

. Update Model: Computes ptþ1ðkÞ in terms of ptðkÞ and
the user’s answer at step t;

. Answer Model: Specifies, for each k 2 �, the prob-
ability that the user chooses an image i 2 D given
Yk ¼ 1 (for the positive model) and given Yk ¼ 0 (for
the negative model);

. Display Model: Determines which images to display
at step t based on fptðkÞg and the search history.

3.1 Update Model

Let XDt
denote the user’s response to display Dt at time t.

Notice that both Dt and XDt
are random variables (see

Section 3.2); indeed, XDt
remains random even for Dt fixed.

The first display (D1) is randomly sampled from �, but the
actual one chosen is important because it is involved in the
determination of the posterior distributions ptðkÞ at sub-
sequent times. In our scheme, Dtþ1 is determined by D1 and
the answers XDs

; s ¼ 1; . . . ; t, up to iteration t. It follows that
the search history up to iteration t is then

Bt ¼ fD1; XD1
¼ i1; . . . ; XDt

¼ itg; ð2Þ
where is is the image selected by the user in response to Ds.
For simplicity, we will suppress D1, it being understood
that all conditional probabilities are so conditioned.

The basic statistical assumption we need is that

P ðXDtþ1 ¼ ijYk ¼ 1; BtÞ ¼ P ðXD ¼ ijYk ¼ 1; Dtþ1 ¼ DÞ:
That is, given Yk ¼ 1, the distribution of the answer at
time tþ 1 only depends on the history Bt as represented by
the display Dtþ1, which, as stated above, is determined by
Bt. Put differently, the display is a “sufficient statistic.” We
also assume that

P ðXD ¼ ijYk ¼ 1; Dtþ1 ¼ DÞ ¼ pþðijk;DÞ
the “positive answer model.” That is, the answer probabil-
ities are time-independent. Similarly, for conditioning on
Yk ¼ 0 and the negative answer model,

P ðXD ¼ ijYk ¼ 0; Dtþ1 ¼ DÞ ¼ p�ðijk;DÞ:
Notice thatwe are not assuming (as in some earlierwork) that
the answersXDs

, s ¼ 1; 2; . . . , are conditionally independent
given S (and D1). This assumption is unreasonable. For

example, since D2 is determined by i1 (and D1), the joint
distribution P ðXD1

¼ i1; XD2
¼ i2jSÞ becomes P ðXD1

¼ i1;
XD2ði1Þ ¼ i2jSÞ, which factors into P ðXD1

¼ i1jSÞP ðXD2ði1Þ ¼
i2jSÞ. But the second factor is not the same as P ðXD2

¼ i2jSÞ.
Indeed, we do not expect that the second answer follows
the same distribution knowing the display as not knowing
the display.

Updating each ptðkÞ depends on both the positive
and negative response models. From (2), we have
Btþ1 ¼ Bt \ fXDtþ1 ¼ ig and, since XDtþ1 is independent of
Bt given Yk and Dtþ1, we have

ptþ1ðkÞ ¼ P ðYk ¼ 1jBtþ1Þ
¼ P ðXD ¼ ijYk ¼ 1; Dtþ1 ¼ DÞptðkÞ=Ctþ1

¼ pþðijk;DÞptðkÞ=Ctþ1;

where the normalizing constant is:

Ctþ1 ¼ pþðijk;DÞptðkÞ þ p�ðijk;DÞð1� ptðkÞÞ:

3.2 Answer Model

Let D ¼ Dt ¼ fi1; . . . ; img � � be the set of images dis-
played at iteration t. We can assume that no element of S
appears in D since otherwise the search terminates.
Consequently, the response XD assumes values in D itself:
XD ¼ i signifies that image i is the closest image to S in the
opinion of the user.

Let d denote the metric in the features space; the image
descriptors are discussed in Section 4. Our answer models
are of the form:

pþðijk;DÞ ¼
�þðdði; kÞÞ

P

j2D �þðdðj; kÞÞ
; ð3Þ

p�ðijk;DÞ ¼
��ðdði; kÞÞ

P

j2D ��ðdðj; kÞÞ
: ð4Þ

The design issue is complex as it involves human
psychology and decision making. Naturally, the efficiency
of the model will also be affected by the extent to which the
system metric captures semantic similarity.

The overall design of the functions �þ and �� is
motivated by the intuitive expectation that, generally speak-
ing, the perceived similarity between two images will be
roughly inversely proportional to their distance apart in the
metric d. Therefore, we take �þðdÞ to be monotonically
decreasing in d and ��ðdÞ to be monotonically increasing in
d. As a result, if k 2 S, the closer the image i 2 D is to k in
the stored metric, the more likely the user is to choose it in
the positive model. That is, if i; j 2 D and dði; kÞ < dðj; kÞ,
then we expect pþðijk;DÞ > pþðjjk;DÞ. Similarly for the
negative model with the inequality on probabilities re-
versed since we are assuming k 62 S.

We adopt parametric forms for �þ and �� (see Fig. 1) and
learn the parameters from real data collected from users
(see Section 6). Parameter estimation is based on character-
izing the parameters in psychovisual terms. The parameter
�1 can be viewed as a “saturation” threshold: For the
positive model (respectively, negative model), an image �1
units away from a target is no more likely (respectively, less
likely) to be chosen than one still farther away. The
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parameter �2 controls the degree of coherence between the
subjective decisions and the system metric. Take, for
example, the positive model and suppose one displayed
image i is very close to k and all the other m� 1 images are
farther than �1 units from k. In other words, there is one
overwhelmingly best choice in terms of d. Then, according
to (3),

pþðijk;DÞ ffi ð1þ ðm� 1Þ�2Þ�1: ð5Þ
Small values of �2 would then embed high coherence. We
shall return to this issue in Section 6.

3.3 Display Model

Perhaps the simplest procedure for choosing Dtþ1 would be
to select the m images most likely to belong to S, as
measured by their masses under ptðkÞ. Unfortunately, this
elementary strategy is far less effective (in terms of average
search time) than others due to the fact that it does not
adequately “sample” the database. For one thing, it does not
take into account visual similarity; for instance, two very

similar images, both with high masses, are probably either
both in S or both not in S. In addition, from an information-
theoretic viewpoint (and confirming what we already
suspect), this is not an efficient way to gather information.
Instead, we borrow the line of reasoning in [9], but adapted
to category search, and seek a more powerful strategy. First,
we establish an interpretation of the normalized ptðkÞ
distribution and then use it to derive a more appropriate
sampling of D from �.

Imagine an “ideal user” who picks at random an image i
from his category S and whose selections from D are based
entirely on this image alone and the actual system metric.
Specifically, presented with D, this ideal user chooses
the image j 2 D that is closest to i using d. We will compute
the optimal display for learning the reference image of

this user.
Since S is random, and since i is picked randomly from

S, the reference image is a random variable Z with values in
�. For every image k 2 �, at stage t, we first calculate
P ðZ ¼ kjBtÞ. Since Z ¼ k implies k 2 S:

P ðZ ¼ kjBtÞ ¼ P ðZ ¼ k; k 2 SjBtÞ
¼ P ðZ ¼ kjk 2 S;BtÞP ðk 2 SjBtÞ
¼ E 1=jSj

�

�k 2 S;Bt

� �

ptðkÞ:

Now, make the assumption that E 1=jSj
�

�k 2 S;Bt

� �

� Ct

independently of k. Summing the above equation over
k yields

1 ¼
X

k

P ðZ ¼ kjBtÞ ¼ Ct

X

k

ptðkÞ;

from which it follows that the normalized probabilities
ptðkÞ=

P

j ptðjÞ represent the distribution of Z at time t, i.e.,
the normalized ptðkÞ is the probability that image k is a
given element randomly extracted from S. From (1), we also
know that the normalizing constant represents 1=EðjSjÞ.

Returning to the choice of the display D, for this ideal
user, we attempt to minimize the uncertainty about Z given
the search history and the new evidence provided by XDtþ1 :

Dtþ1 ¼ argmin
D��

HðZjBt; XDÞ: ð6Þ

This combinatorial optimization problem is evidently
intractable because it involves looping over all subsets of
�. But, an equivalent reformulation leads to a practical
algorithm.

3.3.1 Reformulation of (6)

Using elementary properties of conditional entropy,

Dtþ1 ¼ argmin
D��

HðXDjZ;BtÞ �HðXDjBtÞð Þ: ð7Þ

However, the response XD of this ideal user is a function of
Z and, hence, HðXDjZ;BtÞ ¼ 0. As a result, the optimal
display is the one for which HðXDjBtÞ is maximized. Since
entropy is maximized at the uniform distribution, we seek
m images, again call them fi1; . . . ; img, such that
P ðXD ¼ iljBtÞ � 1

m . In summary, in order to solve (6) for our
ideal user, we want the Voronoi partition based on D and on the
metric d to have cells of equal mass under the normalized ptðkÞ
distribution over �. This situation is depicted in Fig. 2 for the
casem ¼ jDj ¼ 8; the disks represent images in the database
and the size of the disks is proportional to their mass under
ptðkÞ. The centers are the images in the optimal D. All of the
images in each cell are closer to the center of the cell than to
any other center; hence, knowing only the search history Bt,
the answer of our ideal user is uniformly distributed.

A natural, sequential procedure for constructing a
display D which yields approximately equally likely
answers relative to a distribution over � was described in
[9]. Hence, we normalize the distribution ptðkÞ over � and
use the algorithm described there in order to compute the
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mass, the centers represent an optimal display D for an ideal user.



images i1; :::; im sequentially. We refer the reader to [9] for
the details. Roughly speaking, the center of the first cell is
the image with the highest mass; the cell is initially
constructed by adding images according to their distance
to the center until mass 1=m is reached. Then, the next
largest mass seeds the next cell, and so forth. There is also a
feedback loop which adjusts the cells after each iteration.

3.3.2 Acceleration by Clustering

Although fast, easy to implement, and highly effective for
target search, the heuristic solution lacks efficiency for
category search with large databases in which many images
are visually very similar. In fact, many semantic categories
can be very roughly decomposed into a union of clusters of
highly similar images. For example, “red flowers” likely
have very similar low-level descriptors. Applying the
heuristic described here at the image level can then result
in search sessions in which the probability mass gets highly
concentrated on images in the complement of S at the
beginning of the search session.

For this reason, and in order to lower the memory
requirements of the algorithm, we reduce this redundancy
by unsupervised clustering of the image database into
small but highly coherent cells. Let C ¼ fClgPl¼1 be a
partition of �. For each cluster C 2 C, we compute the
expected size of C \ S given the session history, namely,
�tðCÞ ¼

P

k2C ptðkÞ, and then normalize these to a prob-
ability distribution ptðCÞ over C. We then compute the next
display screen Dtþ1 just as previously described, but at the
cluster level, i.e., feeding the algorithm with the list of
clusters C and the corresponding probabilities fptðCÞ : C 2
Cg in place of fptðkÞg. The distance between two clusters is
the average link distance:

dðCl; CpÞ ¼
1

jClkCpj
X

i2Cl

X

j2Cp

dði; jÞ:

The output of the algorithm is then a list of clusters D � C.
For each element C 2 D, we choose the image that has the
highest posterior ptðkÞ for k 2 C to be displayed.

After theuser has chosen an image in i 2 D (suppose i 62 S,
otherwise the search session is over), the clusterC containing
i is discarded from the list of clusters. Of course, if the cluster
contains elements of S, these are also discarded. However, in
our case, this is not an issue. Suppose the elements of C were
independently sampledwithout replacement fromauniform
distribution over�; then, the probability that an element of S
belongs to C is P ðS \ C 6¼ ;Þ � jCj � jSj=j�j, which is very
small for large databases and small clusters. In our case
(see Section 4.1), j�j ¼ 60;000, jCj ¼ 8, and jSj � 100, thus
P ðS \ C 6¼ ;Þ � 1:3� 10�2. This value is small enough for our
purpose: The event appears once in an average number of
75 feedback iterations (the average search session length was
less than 10 iterations in our experiments). Moreover, the
elements of the clusters are not randomly sampled from �:
They are highly coherent (close to each other in the
description space). Since the element i chosen by the user is
not in S, then the P ðS \ C 6¼ ;Þ should be even smaller
compared to the baseline (random sampling).

We describe the clustering algorithm in Section 4.3. This
procedure produced excellent results in practice and

allowed the average relevance feedback session length to
drop under 10 iterations on our test databases (see Section 7).

4 VISUAL CONTENT DESCRIPTION

4.1 Image Databases and Ground Truth

To test our framework, we use two image databases: the
well-known Corel stock photodatabase and a database of
art images kindly provided by Alinari.1 Both databases are
indexed by keywords which allowed us to select several
ground truth classes to use in the tests, as described below.

The Corel database contains 60,000 natural images cover-
ing a broad range of semantic themes: agriculture, architec-
ture, cities, closeups, cuisine, landscapes, museum, space,
sports, textures, etc. For the tests, we selected 10 semantically
coherent image classes as target categories: “Beverages,”
“Fruits,” “Festive Food,” “Models,” “Monument Valley,”
“Office Interiors,” “Pedigree Dogs,” “Roads andHighways,”
“Space Scenes,” and “Waterfalls” (see Fig. 3).

The Alinari database consists of 20,000 art images
(paintings, sculpture, architecture, archeology, etc.), half of
thembeing gray-level images and the other half color images.
Although smaller, this database is more difficult than Corel;
semantic concepts can be illustrated by different types of
images. For example, images that match the concept “horse”
include paintings, photos, statues and frescoes, all of them
very different visually (see Fig. 4). We manually selected ten
semantic target classes: “Portraits (paintings)”, “Portal
(architecture)”, “Madonna and Child (paintings)”, “Bridge
(architecture)”, “Tower (architecture)”, “Bones (archeol-
ogy)” “Horseback riding (mixed: paintings, sculpture,
high-relief)”, “Medieval Castle (architecture)”, “Still Life
(paintings)” and “Cupola (architecture)”.

In choosing the target classes for our experiments,we tried
to cover a reasonably large range of situations, including both
difficult cases (cluttered, natural scenes) and more “stan-
dard” ones (objects on a relatively uniform background,
human artifacts, etc.), whilemaintaining a feasible number of
classes for experimentswith real users. Also,we ensured that
the interpretation is unambiguous, for example, images from
one class would typically not be wrongfully attributed by
users to another class.Approximately 100 images match the
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Fig. 3. Samples from four semantic ground truth classes from the Corel

database: “Monument Valley,” “Pedigree Dogs,” “Waterfalls,” and

“Roads and Highways” (top to bottom).



concept for each target class, but, of course, the actual
number is likely to be larger because we could not
visually inspect all the images. For this reason, we let the
user terminate the search session by identifying an
element of the class.

A search session begins by showing the user a summary
of the target class. However, during a search session, the
user cannot consult the target class, ensuring that he will
match displayed images with only mental pictures.

4.2 Image Descriptors

Finding good image descriptors that accurately describe the
visual content of many different classes of images is a
challenging task. Such descriptors are easier to compute for
specialized databases (e.g., medical images, fingerprints,
remotely sensed images), where prior knowledge can be
used to devise dedicated mathematical models of the image
content. For generic images, most representations balance
different components of the image content, usually color,
texture, and shape [1], [2], [4].

Local descriptors (e.g., points of interest or image
regions) have been successfully used in several object
detection tasks [31]. However, they are less adapted to
detect semantic concepts that cannot be directly associated
with individual rigid objects, such as emotional states and
aesthetic impressions. Moreover, while such descriptors are
largely stable and invariant to common geometric and
photometric image transformations, they are resource
intensive in terms of memory and computation and,
consequently, not well adapted to large-scale image
retrieval systems that require answers in real time.

Instead, we use a combination of global image
descriptors, specifically color, texture, and shape, for the
following reasons:

. Small memory: The descriptors for the Corel database
(60,000 images) can be stored in the main memory of
an ordinary PC.

. High speed: No special data structures are necessary
and the distance function we use (L1) is easy to
compute.

. Generality: Our system is designed for unstructured,
generic databases and with no restrictions on the

target class. Whereas local descriptors may be fine-
tuned to perform well for a given class of objects,
there is (as yet) no universal detector that can be
trained for any object from only a few examples
(identified by relevance feedback). In contrast, global
descriptors have been shown to perform well in this
context, for example, with SVM-based relevance
feedback (see [5] for a review).

In the rest of this section, we briefly describe the image
descriptors we employ and dimensionality reduction. A
more in-depth description can be found in [32].

4.2.1 Global Descriptors

Color histograms provide a description of the color content
of an image, but ignore spatial information. We use
weighted histograms [33], where the contribution of each
pixel is proportional to its importance in the local context.
As weighting functions, we use the Laplacian k�ðx; yÞk2 at
the pixel ðx; yÞ to emphasize corners and edges, and the
probability of the color of the current pixel in a local
window, with a small value signaling importance.

To describe the shape content of an image, we use a
histogram based on the Hough transform, which captures
the behavior along straight lines of varying directions. First,
the direction of the gradient is found for every pixel. Then, a
joint histogram is constructed for the angle of the gradient
and the length of the projection of a reference point (the
upper-left corner of the image) along the local tangent line
going through the current pixel.

Finally, texture feature vectors are based on the Fourier
transform—the distribution of spectral power density along
different frequencies and along various angles [34].

4.2.2 Dimensionality Reduction

The joint feature vector has more than 600 dimensions,
which can make relevance feedback impractical for large
databases. We use linear Principal Component Analysis [35]
and keep 95 percent of the variance of the data, correspond-
ing to the highest eigenvalues of the covariance matrix. This
procedure reduces the number of dimensions about
fivefold, while remaining within a 5 percent overall loss
on the precision-recall diagrams built using the ground
truth classes presented above.

Of course, if the relevant image classes were known a
priori, other methods, such as discriminant analysis, might
be more appropriate. Also, we expected kernel PCA [14] to
better focus on relevant nonlinear “dimensions”; this
should indeed be the case when the manifold spanned by
the images is low-dimensional and highly nonlinear.
However, KPCA and linear PCA yielded similar preci-
sion-recall diagrams in our case and we decided to keep the
linear PCA because it is easier to compute and does not
require kernel parameter tuning.

4.3 Clustering

Recall that our algorithm for computing the optimal display
is accelerated by clustering the database. Since the database
is generic and since no prior information about semantic
content is available, smaller clusters are expected to be more
coherent than larger ones. Needless to say, the elements of
even a small cluster may belong to different semantic
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Fig. 4. Samples from four classes (Alinari database): “Horse and Rider,”

“Madonna and Child,” “Old Bridges,” and “Medieval Castle” (top to

bottom).



classes. However, this is not a problem since we maintain a
list of probabilities ptðkÞ at the image level.

We tried several classical clustering algorithms, such as
K-Means, Fuzzy K-Means [36], and Competitive Agglom-
eration [37]. However, the results were inadequate for
our purposes because some quite large clusters (over
100 images) were generated with highly diverse visual
and semantic structure.

To satisfy our requirements, wemodified Quality Thresh-
old clustering [38],which provides control over the size of the
clusters and is independent of initialization. Briefly, given a
desired cluster size R, the algorithm iteratively chooses new
clusters from a list of candidates based on computing the
R nearest neighbors to each unclustered image. The candi-
datewith the smallest diameter (enveloping sphere) is chosen
(see Algorithm 1). Running time is no issue since the
computation is off-line. In Fig. 5, we show some example
clusters of sizeR ¼ 8. Most clusters are visually consistent in
terms of our image descriptors based on color, texture, and
shape. Semantic diversity is tolerated since we only use the
clusters to simplify thedisplay algorithm.Of course, themore
homogeneous semantically the better, the ideal being that
every semantic category be a perfect union of clusters.

Algorithm 1 Fixed size QT clustering

Require: �: image database, R: cluster size

Ensure: C: clusters set

C  ;
while � 6¼ ; do

"min ¼ 1
for all i 2 � do

A set of R-nearest elements to i

" diameterðAÞ
if " < "min then

"min ¼ "

L ¼ A

end if

end for

� ¼ � n L
C ¼ C [ fLg

end while

5 ENABLING ASSUMPTION

The choice of image descriptors obviously has a direct
impact on the overall efficiency of the system. Indeed,
performance critically depends on the extent to which
“closeness” in the system metric (the L1 distance between
two feature vectors) coheres with “closeness” in the
objective sense of semantic identity as well as “closeness”
in the subjective sense of the user. Having a significant
degree of coherence is the central “enabling assumption.”

As described in Section 4.2, we use global image
descriptors, mainly because they have a small memory
impact and scale well to large image repositories. In this
section, we report two experiments for quantitatively
measuring the extent to which our enabling assumptions
are satisfied.

First, we measure the extent to which the system metric
discriminates between a semantic class S and a random
sample of size jSj from the database. Second, we estimate
the probability that the user chooses the lth closest image in
the system metric.

5.1.1 Experiment One: Quantifying the Semantic Gap

Suppose we fix a semantic class S (chosen from the ground
truth classes). Intuitively, we hope that elements of S will be
much “closer” to each other in system metric compared
with those in a set of size jSj sampled randomly from �. For
each element k 2 S, define:

zklðSÞ ¼ 1 if lth closest image to k in � is also in S
0 otherwise

�

and let

zlðSÞ ¼
1

jSj
X

k2S
zkl:

Of course, zlðSÞ is the estimated probability that, for an
image k chosen at random from S, the lth closest image to k

is also in S.
The ideal case is when there is a perfect match between

the system’s metric and the semantic class S: For each
element k 2 S, all jSj � 1 nearest neighbors of k belong to S:

zlðSÞ ¼ 1 for l ¼ 1; . . . ; jSj � 1

0 for l ¼ jSj; . . . ; j�j:

�

The baseline hypothesis is that there is no connection
between the system metric and the structure of S. That is,
the behavior of this statistic is the same if S is randomly
sampled from �, in which case zlðSÞ � jSj=j�j.

In Figs. 6 and 7 we present the results obtained for our
two test databases (Corel and Alinari) and l ¼ 1; . . . ; 8 (the
size of the display). For each semantic class S from the
ground truth we compute zlðSÞ as described above and then
we average over all classes. The baseline is zl � 0:0017 for
Corel (jSj � 100, j�j ¼ 60;000) and zl ¼ 0:005 for Alinari
(jSj � 100, j�j ¼ 20;000). We see that the values of zl, while
far from unity, do provide between one and two orders of
magnitude improvement over the baseline case. As we shall
see in Section 7, this is enough to allow very reasonable
search times for relevance feedback.
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Fig. 5. Sample clusters of size 8: Some are very coherent semantically

(top rows) whereas others are less so (bottom rows).



Let dl, l ¼ 1; 2; . . . ; N � 1, be the expected value of the
distance from k to the lth closest image to k, estimated over
all images k in the union of the ground truth classes. Fig. 8 is
a plot of zl versus dl. The shape of curve is explained by the
fact that fdlg is an increasing sequence whereas fzlg is
roughly decreasing. As l grows large, we would expect that
zl ! jSj=j�j, which indeed happens. In fact, the limiting
value is approximately reached as soon as dl reaches the
interval ½0:30; 0:35	. In other words, for images this far or
farther from the target class representative k, the system
metric acts no better than random sampling. This value of d
agrees very well with the value we estimate in Section 6 for
the parameter �1 for the positive answer model (�̂1 ¼ 0:35).
Recall that this parameter represents a “saturation” thresh-
old: The user is assumed to have no preference among
displayed images lying more than �1 units away from k 2 S
in system metric.

5.1.2 Experiment Two: Quantifying System-User

Synchronization

Let fðin; Dn; SnÞgn¼1;...;M be the outcomes of M feedback

interactions collected from the users during various search

sessions, where in denotes the user’s response to display Dn

for target class Sn. Let p
ðuÞ
l be the probability that the users

select the lth closest image to the target relative to the
system metric, l ¼ 1; . . . ; jDj, estimated from these data. The
baseline is the “random user” who selects an image from D
at random; for jDj ¼ 8, the baseline probabilities are
1=8 ¼ 0:125.

We collected data points from 12 users, with M ¼ 1;616
for the Corel database and M ¼ 1;124 for the Alinari
database, using jDj ¼ 8. The values of p

ðuÞ
l ; l ¼ 1; . . . ; 8, are

given in Figs. 9 and 10.
In neither case is the metric induced by the image

descriptors highly consistent with mental matching by real
users. For example, the probability the user selects the
closest image to the target class is 0.27 for the Corel
database and only roughly 0.19 for the Alinari database.
Nevertheless, the departure from the uniform distribution
is sufficiently large to convey enough information to yield
very reasonable search times (see Section 7). Also, these
results substantiate our impression that, although smaller,
the Alinari database is more “difficult” in the sense
that users’ choices are visibly less coherent with the
system metric.
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Fig. 7. Alinari database: The probability that for an image k chosen at

random from a ground truth class S, the lth closest image to k also

belongs to S.

Fig. 8. Alinari database: plot of the pairs fdl; zlg; l ¼ 1; 2; :::, where dl is
the average distance from an image k to to its lth nearest neighbor and
zl is the estimated probability that the lth nearest neighbor to an image k
is in same semantic ground truth class. The horizontal line is the
baseline case.

Fig. 9. Corel database: The estimated probability that a user selects the

lth closest image to the target class among eight displayed images.

Fig. 6. Corel database: The probability that for an image k chosen at

random from a ground truth class S, the lth closest image to k also

belongs to S.



6 PARAMETER ESTIMATION

Recall that our answer models, pþðijk;DÞ ¼ P ðXD ¼ ijYk ¼
1Þ and p�ðijk;DÞ ¼ P ðXD ¼ ijYk ¼ 0Þ, depend on the para-

metric functions �þ and �� (see Section 3.2). The

parameters �1 and �2 are chosen to minimize the difference

between how similarity is perceived by the users and by the

system metric. The meaning of the parameters in psycho-

visual terms was explained in Section 3.2; basically, �1 is a

“saturation” parameter and �2 controls the coherence

between subjective decisions and the system metric.

6.1 Estimation of �þ1 (Positive Model)

Estimation of �þ1 is based on a statistical hypothesis test. Fix

� 2 f0:05; 0:1; . . . ; 1g, the possible values of �þ1 , a ground

truth class S, a member k 2 S, and select two images i; j 62 S

such that dði; kÞ � � and dðj; kÞ is chosen uniformly in ½�; 1	.
Now, display a summary of the target class S to a user, as

well as the two images i; j, and ask the user to choose which

one, i or j, is closer to the target class S in his opinion.

Consider the following two hypotheses:

. H0: No Preference: The two displayed images, i and j,
are equally close to the target in user’s opinion;

. H1: Preference for the Closer: The user has a preference
for image i, the one closer to the target exemplar.

Basically, we want to choose the largest value of �þ1 for

which the null hypothesis is rejected at the 0.05 significance

level.
To determine p-values for the various values of �, for

each possible value of �, we repeat the experiment 20 times

for each of 12 users, each time with a different S and choice

of i; j; k, yielding a sample of n ¼ 240 user choices. Let Nð�Þ
be the number of times that the users choose image i. Under

H0 (and assuming independent selections), Nð�Þ has a

binomial distribution with parameters n ¼ 240 and p ¼ 1=2.

Setting pð�Þ ¼ P ðBinðn; 1=2Þ 
 Nð�ÞÞ and appealing to the

central limit theorem,

pð�Þ � 1� �
Nð�Þ � n

2
ffiffiffi

n
p

=2

� �

;

where �ð�Þ is the standard normal cumulative distribution
function. The results are presented in Table 1, which gives
�̂þ1 ¼ 0:35, the largest value with p < 0:05.

6.2 Estimation of �þ2 (Positive Model)

Recall that (5) gives the model probability, given k 2 S, that
a user chooses a displayed image i which is extremely close
to k 2 S if all the other m� 1 displayed images are at least
�þ1 units from k. Since P ðXD 6¼ ijYk ¼ 1Þ ¼ 1 �pþðijk;DÞ, it
follows that

�þ2 ffi
1

m� 1

1� pþðijk;DÞ
pþðijk;DÞ

: ð8Þ

Consequently, in order to estimate �þ2 , we collect data
as follows:

1. Randomly choose a target class S from the ground
truth and an image k 2 S.

2. Construct a display D for which there is an image
i 62 S with dði; kÞ � 0 and the other m� 1 images are
at least �þ1 units away from k in the system’s metric.

3. Display D and a summary of S and ask the user to
select the image that in his opinion is closest to S.

4. Record user’s decision: XD ¼ i or XD 6¼ i.
5. Repeat these steps p times for each user.

For each of 14 users and with jDj ¼ 8, we performed the
above experiment 40 times collecting 560 data choices. Of
these, 385 corresponded to XD ¼ i and 175 corresponded to
XD 6¼ i. From (8), we obtain �̂þ2 ¼ 0:065. For the situation of a
uniquematch (i.e., onedisplayed imagevery close to k andall
others “far” away), the estimated probability of selecting the
good match is therefore 1=ð1þ 7 � 0:065Þ � 0:69.

The estimates for both parameters compare reasonably
well with those in [12] based on a subset of 20,000 images
from Corel using straightforward maximum likelihood.
This is not altogether surprising for �þ2 in view of the
invariance principle for maximum likelihood estimates. We
prefer the method here; it provides more insight into the
answer model because the parameters are estimated in the
context of their psychological interpretation.

6.3 The Negative Model

We tried to estimate the parameters for the negative answer
model in the same fashion as for the positive model. For
example, ��1 would be estimated following Section 6.1, but
selecting k 62 S and H1 to be the hypothesis “preference for
the more distant image j.” However, the data we obtained
from the users produced estimates rather sensitive to S and
k. Indeed, a user will likely correctly prefer an image that is
close to an element of S to one farther away, but the
“inverse” is not necessarily true. Indeed, an image “far”
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TABLE 1
Estimation of �þ1 , the Saturation Parameter

We choose �þ1 ¼ 0:35 because this is the largest value for which a “no
preference” hypothesis is rejected at significance level 0.05.

Fig. 10. Alinari database: The estimated probability that a user selects

the lth closest image to the target class among eight displayed images.



from k 62 S may be nowhere near S in either the system

metric or the user’s mind and no more suitable than an

image near k. See Fig. 11.
Such observations suggested that perhaps the negative

model had a limited impact on the performance of the

system, certainly less than we initially thought. To confirm

this, we performed several tests measuring the number

of feedback iterations until the user identifies a target,

comparing several values for ��1 and ��2 with the uniform

negative model (i.e., ��1 ¼ 0 and ��2 ¼ 1). The results were

very similar and we chose p�ðijk;DÞ � 1
m .

7 PERFORMANCE EVALUATION

In order to estimate the distribution of the search time, we

collected data from a group of 12 individuals not familiar

with the system. For each individual and each ground truth

class, the user was first presented with a visual summary of

the class. Once the user considers that he has a good grasp

of the target class, the feedback session starts and the user

can no longer consult the class summary, assuring that

matching and decision making are purely from memory. A

relevance feedback session starts with a random display. A

session ends when an element of the target class is

identified by the user. Every (nonterminal) click provides

a “data item” in the sense of a triple ðS;D; iÞ corresponding
to a target class, set of displayed images, and user’s

response. We set m ¼ jDj ¼ 8; displaying many fewer or

many more images has adverse consequences with real
users. The experimental interface is shown in Fig. 12.

We measure the performance of the system by the
number of iterations T required to locate an instance from

the target class. We estimate P ðT � tÞ, the cumulative
distribution of T , from the data collected over M search
sessions. Evidently, the faster P ðT � tÞ grows, the more
efficiently the system is operating.

In addition to real users, we also present the results of
two simulations under the same experimental settings
(same ground truth classes, etc.) representing two extreme
cases: the “ideal user” and the “random user.” The ideal
user always chooses the image closest to the target class in
the system metric (using the average distance between an
image and a set). Notice that this “ideal user” is not exactly
the same one considered in Section 3.3, who matches to a
randomly selected exemplar from his class rather than to
the whole class. Matching to the entire class is clearly more
efficient; indeed, this is the optimal performance we can
hope to attain. The other extreme is a random response—
the user selects one of the eight displayed images at
random. The results are presented in Figs. 13 and 14.
Obviously, the proposed model far out-performs a random
response. More importantly, the absolute performance is
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Fig. 12. The interface used for experiments.

Fig. 13. Corel database: Distribution of the search time for real, ideal,

and random users.

Fig. 11. Analysis of the negative answer model: Knowing only k 62 S, an

image j “far” away from k is not necessarily preferable to a user than an

image i close to k

Fig. 14. Alinari database: Distribution of the search time for real, ideal,

and random users.



quite reasonable, with a mean search time EðT Þ � 8 for the
Corel database and EðT Þ � 7 for the Alinari database. In the
latter case, an instance of the target is discovered in fewer
than four iterations in approximately one-half of the
searches and in fewer than 10 iterations in more than
80 percent of the searches. The results are similar for Corel.
It should be emphasized that, after setting the two
parameters for the positive model as described in the
preceding section, the system is fully determined. In particular,
there are no other parameters to tune.

Returning to the page zero problem, the baseline case is a
random display of images, without replacement, until a
member of the target class appears. Computing the average
number of screens necessary is then relatively straightfor-
ward. LetN;L;m be the sizes of the database, target class and
display, respectively. Imagine the N images are laid out in a
row at random. Some of these slots are filled by the L images
from the target class. The expected value of the position of the
first such example is approximately N=ðLþ 1Þ. Since
random displays corresponds to exploring the images from
left to right in groups of m, we obtain EðT Þ ffi N=mðLþ 1Þ.

In our experiments for the Corel and Alinari databases,
L ¼ 100, m ¼ 8; hence the average is around 75 iterations
for the Corel database and 25 iterations for the Alinari
database. Accounting for the fact that we eliminate at each
iteration the cluster containing the user’s selection would
lower this average, but not nearly by half since the clusters
are so visually coherent, which works against rapid
discovery. Indeed, a displayed cluster is not a random
subset from the database and is not independent of the
preceding display. In fact, for a cluster size of eight (Fig. 13),
the mean search of the random user for the Corel database
is EðT Þ ¼ 72:2, barely smaller than the baseline mean of
approximately 75 due to the coherence of the clusters.

The mean search time is almost the same for the two
databases even thoughCorel is three times larger. TheAlinari
database seems to bemore difficult in the sense of presenting
a much higher visual diversity of images that match a given
concept, which works against efficient search because the
system uses global visual descriptors to update the model.

7.1 Peaking of the Posterior Distribution

To illustrate how the posterior distribution changes over
time, we present the values of the largest 1,000 values of
ptðkÞ for two search sessions: one relatively efficient (class
“Space Scene” in Fig. 15) and one more difficult (class
“Lion” in Fig. 16). The horizontal axis shows the image
index and the vertical axis shows the normalized posterior
ptðkÞ. The thick dots mark images that belong to the target
class. Note that images that are close on the x-axis are not
necessarily close in system’s metric.

For both search sessions, we see that after one iteration,
no image from the target class belongs to the 1,000 with the
highest posterior mass. However, at later rounds, the
distribution becomes much more “stable” in the sense that
an increasing number of elements of the target class have
posterior probability in the top 1,000, which makes them
more likely to be chosen by the display algorithm.

The class “Space Scenes” is obviously “easier” than the
class “Lion.” For “Space Scenes,” after seven feedback
iterations there are 65 images (out of 100) that belong to the
top 1,000, whereas for the class “Lion” there are only
28 images (after 15 iterations). This is explained by the fact

that images in the class “Space Scenes” usually show a

luminous object on a black background. Even though this

particular visual pattern is matched by other images (for

example “fireworks” or “night scenes”), the visual descrip-

tors we use discriminate this class from others much better

than in the case of the “Lion” class, which contains images in

which the background is very diverse and the subject

(“lion”) has a similar low-level representation to other

animals (for example “tiger”).
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Fig. 15. Evolution of posterior ptðkÞ for the class “Space Scenes”
(100 images). Dots represent the members of the class. Horizontal axis:
The 1,000 images k 2 � (Corel database) with the highest posterior
mass. Vertical axis: ptðkÞ after t ¼ 1; 3; 5; 7 (top to bottom). T ¼ 8 for this
search session.



7.2 Discussion

In this section, we describe a number of issues we

encountered during our experiments with users of the

system.

7.2.1 Image Similarity

Image similarity has been a lively topic of debate and an

active subject of research in recent years [1]. Whereas

similarity can be more or less formalized for some

specialized databases (e.g., fingerprints and faces), this is

certainly not the case for generic databases, where similarity
is strongly context-dependent and involves the expectations
of the user. Even though global image descriptors are not
suitable for matching specific objects, they scale well to
large databases and have proven to be quite coherent with
the ground truth we used for evaluating our system (see
Section 5). However, they certainly fail for search concepts
that are likely to be localized, in which case local descriptors
would likely provide better results, albeit at the price of far
more computation, and might allow the system to exploit
information from the user about parts of the image which
match his concept.

7.2.2 A “No Preference” Option

When none of the displayed images is semantically related
to the target class, or shares evident color or texture motifs,
users tend to spend noticeably more time making a
selection. Evidently, deciding which one is most similar is
somewhat arbitrary and even annoying. Some users have
reported a preference for rejecting all the displayed images.
This usually happened during a search session which got
off to a bad start in the sense that either the posterior
distribution remained very flat or actually concentrated on
a part of the database which does not meet the target class.

We attempted to remedy this problem by introducing a
new possible value for the user’s response, XD ¼ NP,
standing for “no preference.” We tried various modifica-
tions of the parametric forms of pþðijk;DÞ and p�ðijk;DÞ,
adding a third parameter in order to account for probability
of the answer NP .

None of these efforts were successful. Surprisingly, in
fact, the mean number of iterations needed to reach the
target class increased. We observed what appeared to be
“overuse” of the NP option, especially when none of the
displayed images was close to the target class. In the end,
the flow of information was reduced: Declaring which is
closest, even if none are very close, seems to convey more
information than rejecting them all.

7.2.3 Mental Matching versus Visual Matching

Another surprise was that constantly displaying the target
class only modestly improved performance. Recall that we
begin by presenting the user with a summary of the target
class, after which these images are no longer available to
the user. To measure the advantage of direct visual
matching, we performed a similar set of experiments, but
this time with the summary displayed throughout the
search session. The results are presented in Fig. 17 for the
Corel database. The near-identity of the two search
time distributions for early rounds might be explained
by the random nature of the first few displays. Later on,
when the system presents more pertinent candidates, the
user might use the summary to choose a better match. But
the improvement is very small, suggesting that, for most
people, the level of detail in mental representations is the
first-order effect in decision making.

7.2.4 Scalability

The posterior ptðkÞ is updated for every image k at every
feedback iteration t. The complexity of the update
algorithm is then linear in N , the size of the database.
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Fig. 16. Class “Lion” (100 images). Dots represent the members of the

class. Horizontal axis: the 1,000 images k 2 � (Corel database) with the
highest posterior mass. Vertical axis: ptðkÞ after t ¼ 1; 5; 10; 15 (top to

bottom). T ¼ 16 for this search session.



Our implementation is written in C++ and is not optimized
for speed. Still, for our two databases, the system returns
the results in less than one second on a standard PC.
However, there is still a potential bottleneck for databases
with millions of images. Since images are updated
independently, one solution is simply a parallel version of
the main algorithm.

8 CONCLUSION

We have presented a Bayesian framework for discovering
an instance of a semantic category residing in a large,
unstructured database using relevance feedback. Since the
category is known only to the user of the system and since
we assume no semantic annotation, the feedback is based
on mental matching at the image level. Our framework
centers on an evolving estimate of the probability that
each member of the database belongs to the user’s
category. A central feature is a new Bayesian model,
which includes a pair of positive and negative answer
models which are designed to account for subjectivity of
the user’s choices and their weak correlation with the
system metric. The performance of the system is validated
on two fairly large databases and very reasonable search
times are demonstrated.

It could be argued that semantic annotation of image
databases will eventually become feasible and allow for far
more efficient text-based search. In particular, searches
based on visual similarity will not be necessary. There are
at least two holes in this argument. First, “eventually” may
be a very long time; progress in automated image
interpretation is slow, especially at the level of multiple-
object detection and context labeling in unconstrained
scenes. Second, even if one is able to automatically annotate
image databases with keywords, it is unlikely that this
alone will solve the page zero problem for very large
databases. (Indeed, some users may not even be able to
express in words the nature of their mental pictures.) What
is more plausible is that keywords provided by the user
will serve to construct, online, a user-specific “prior
distribution,” effectively filtering a subset of images for
analysis based on visual similarity. In any case, for gigantic

databases, the number of images remaining as plausible

candidates after textual filtering may be on the order of the

sizes considered here.
Finally, our statistical framework depends only on the

metric between documents; the only input is a distance

matrix. Consequently, the system could, in principle, be

adapted to other media. For instance, one can imagine

trying to find a song in the mind of a user based on

choosing among acoustical snippets in a music database,

or a system for exploring a database indexed by multi-

modal descriptors.
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