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Abstract

We develop a statistical framework to study the relationship between chromatin features and gene expression. This
can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the
prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our
framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin
features to the overall prediction of expression levels.

Background

In eukaryotes, nuclear chromosomes are organized into

chains of nucleosomes, which are in turn composed of

octamers of four types of histones wrapped around

147 bp of DNA. Modifications of these core histones are

central to many biological processes, including tran-

scriptional regulation [1], replication [2], alternative spli-

cing [3], DNA repair [4], apoptosis [5,6], gene silencing

[7], X-chromosome inactivation [8] and carcinogenesis

[9,10]. Among them, transcriptional regulation is one of

the most important and thereby intensively investigated

processes [1,11,12]. Histone modifications have been

demonstrated to regulate gene transcription in positive

or negative manners depending on the modification site

and type [13-18]. For example, a genome-wide map of

18 histone acetylation and 19 histone methylation sites

in human T cells indicates that H3K9me2, H3K9me3,

H3K27me2, H3K27me3 and H4K20me3 are negatively

correlated with gene expression, whereas most other

modifications, including all the acetylations, are corre-

lated with gene activation [18,19]. As an extreme case,

histone modifications play critical roles in X-chromo-

some inactivation in females to equalize the expression

of X-linked genes to those in male animals [19,20]. His-

tone modifications are thought to affect transcription

through two mechanisms: modifying the accessibility of

DNA to transcription factors by altering the local chro-

matin structure; and providing specific binding surfaces

for the recruitment of transcriptional activators and

repressors [11,17,21-23].

The large number of possible histone modifications

has led to the ‘histone code’ hypothesis, which states

that combinations of different histone modifications spe-

cify distinct chromatin states and bring about distinct

downstream effects [24-26]. Moreover, one histone

modification may influence another by recruiting or

activating chromatin-modifying complexes [27]. How-

ever, a study in yeast revealed only simple and cumula-

tive functional consequences for combinations of

histone H4 acetylation rather than a complicated syner-

gistic histone code [28]. Two other studies, one in yeast

and the other in Drosophila, also demonstrated that his-

tone modifications are highly correlated with each other

and are partially redundant in function [13,17], presum-

ably conferring robustness in relation to epigenetic regu-

lation [29]. Alternatively, the high correlation between

histone modifications may have been overestimated as a

result of differences in nucleosome density or other

unknown biases [29]. So far, knowledge about the effect

of histone modifications on transcriptional regulation is

still limited, and the degree of complexity of the histone

code is far from clear. To further understand the rela-

tionship between histone modifications and gene expres-

sion, we require a systematic analysis that integrates

histone modification maps with other genome-wide

datasets.
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The model organism encyclopedia of DNA elements

(modENCODE) project was launched in 2007 for the

purpose of generating a comprehensive annotation of

functional elements in the Caenorhabditis elegans and

Drosophila melanogaster genomes [30]. By using

recently developed genome-wide experimental techni-

ques such as ChIP-chip, ChIP-seq and RNA-seq [31,32],

modENCODE has generated a large amount of data,

including gene expression profiles, histone modification

profiles, and DNA binding data for transcription factors

and histone-modifying proteins. This large compendium

of datasets provides an unprecedented opportunity to

investigate the relationship between chromatin modifica-

tions and transcriptional regulation using an integrative

approach.

In this study, we endeavor to construct a general fra-

mework for relating chromatin features with gene

expression. We apply a multitude of supervised and

unsupervised statistical methods to investigate different

aspects of gene regulation by chromatin features. Lever-

aging the rich data generated by the modENCODE pro-

ject, we use C. elegans as a primary model to illustrate

our formalism. Nevertheless, we tested the generality of

our methods using a variety of species ranging from

yeast to human. More specifically, we show that chro-

matin features can accurately predict the expression

levels of genes and collectively account for at least 50%

of the variation in gene expression. We also study the

importance of individual features, examine the combina-

torial effects of chromatin features, and investigate to

what extent the histone code hypothesis is valid. By

applying the chromatin-based model to predict the

expression of coding genes and microRNAs at different

developmental stages, we further address the develop-

mental stage specificity of chromatin modifications and

suggest that chromatin features regulate transcription of

coding genes and microRNAs in a similar fashion.

As more and more genome-wide ChIP-Seq and RNA-

Seq data are going to be generated via the modEN-

CODE project and the ENCODE project [2] in the near

future, the methods of data integration proposed in this

work have various potential applications.

Results

Chromatin features show distinct signal patterns around

genic regions

To systematically study the genome-wide properties of

various chromatin features, we collected more than 50

ChIP-chip and ChIP-seq profiles of histone modifica-

tions and DNA binding factors in C. elegans from the

modENCODE project (see Materials and methods). We

divided the DNA regions around (± 4 kb) the transcrip-

tion start site (TSS) and transcription termination site

(TTS) of each transcript into small 100-bp bins and

calculated the average signal of the chromatin features

in each bin. As a result, each bin was assigned a matrix

whose elements are the average signals of different fea-

tures in different transcripts (Figure 1). Figure 2a shows

the rich spatial pattern of 16 features in the early

embryonic (EEMB) stage, where the signals are averaged

over all transcripts. We first observed that the upstream

and downstream regions of TSSs and TTSs are clearly

distinct. Most chromatin features have higher signals in

the transcribed regions (downstream of TSSs and

upstream of TTSs). Interestingly, we found that RNA

polymerase II (Pol II) has the strongest binding signal in

regions right after the TTS, rather than within the tran-

scribed region (Figure 2a). The enriched binding signals

right after the TTS may indicate the importance of anti-

sense transcription as a regulatory mechanism for gene

expression [14,33]. Strong Pol II signal was also

observed at regions before the TSS in some other devel-

opmental stages (Figure S1 in Additional file 1), which

was also reported previously in C. elegans by [34], and

was thought to be related to the accumulation of TSS-

associated RNAs in mouse and human [35,36]. The sig-

nal pattern of histone H3 suggests that nucleosomes

have lower occupation density in regions around the

TSS and TTS than within the transcribed regions.

H3K4me2 and H3K4me3 are enriched upstream of the

TSS, consistent with their reported role as histone

marks for active promoters [14]. On the other hand, sig-

nals for H3K9me2 and H3K9me3 are depleted around

TSS compared to neighboring regions, which may

reflect the low density of nucleosomes around the TSS

of genes [28].

Chromatin features exhibit distinct spatial correlation

patterns with gene expression levels

The different chromatin features display distinct spatial

patterns. It is thus worthwhile to explore the relationship

between these patterns and the level of gene expression.

Making use of RNA-seq data obtained from the different

stages of C. elegans, we quantified the expression level of

each gene. For each bin, we then calculated the correlation

between the gene expression levels and the average signals

of each chromatin feature of the bin. Figure 2b shows the

spatial variation of these correlation coefficients around

TSSs and TTSs. According to the correlation patterns,

there are two main types of chromatin features: ones that

are positively correlated with gene expression (such as

H3K79me1, H3K79me2 and H3K79me3); and ones that

are negatively correlated with gene expression (such as

H3K9me2 and H3K9me3). While some features show lar-

gely uniform correlations across the 16-kb regions, some

others are more variable across the regions. For example,

H3K79me2 has a high correlation coefficient (0.65) near

the TSS, but rather a low correlation (0.10) downstream of
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the TTS. It is interesting to observe that the negative fea-

tures tend to have more uniform spatial patterns while the

positive features tend to show greater variation. In addi-

tion, for chromatin features such as H3K79me2, although

the average signal intensity decreases with distance

downstream from the TSS, the correlation between the

feature signal and the expression level remains high. This

pattern suggests that, while some chromatin features have

the strongest average signals only at some highly specific

regions, the differences of their signals between genes with

Figure 1 Schematic diagram of our data binning and supervised analysis. (a) DNA regions around the transcription start site (TSS) and
transcription terminal site (TTS) of each transcript were separated into 160 bins of 100 bp in size. Average signal of each chromatin feature was

calculated for all transcripts, resulting in a predictor matrix for each bin. These predictor matrices were used to predict expression of transcripts

by support vector machine (SVM) or support vector regression (SVR) models. The genome-wide data for chromatin features and gene expression

were generated by the modENCODE project using ChIP-chip/ChIP-seq and RNA-seq experiments, respectively. (b) A summary of datasets used in
our analysis. L, larval; TF, transcription factor; YA, young adult.
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low and high expression levels remain strong over much

broader regions.

We chose the long window size of 4 kb in order to

inspect how fast the signals of the chromatin features fade

out as we move away from the TSS and TTS. Indeed, the

correlations of some chromatin features (for example,

H3K9me3) remain strong a few kilobases away from the

TSS and TTS, and the fading could only be observed at

the 4-kb boundaries. To make sure that our conclusions

are not affected by short genes with some bins having

both the identities of being within 4 kb downstream of the

TSS and within 4 kb upstream of the TTS, we also did the

correlation analysis only on transcripts longer than 8 kb,

and found that the correlation patterns are the same

(Figure S2 in Additional file 2). Also, as the C. elegans gen-

ome is quite compact, the region 4 kb upstream of a TSS

or downstream of a TTS could be overlapping with

another gene. We thus repeated the analysis using tran-

scripts that are at least 4 kb away from any other known

transcripts, and again obtained similar correlation patterns

(Figure S3 in Additional file 3). Furthermore, analysis

based on bins within intergenic regions again resulted in a

similar correlation pattern. Therefore, the high correlation

of gene expression with feature signal at distant locations

does reflect the long-range effects of their regulation,

instead of an artifact caused by chromatin structure of the

nearby genes.

Furthermore, to assess whether the trends we

observed are universal to all developmental stages rather

than specific to the EEMB stage, we repeated the analy-

sis in other stages, including late embryo, larval stages

and young adult. Although the exact values of correla-

tion coefficients vary across stages, the spatial patterns

are consistent in all stages (Figure S4 in Additional file

4). In addition, a large number of genes are associated

with multiple transcripts corresponding to different

alternative splicing isoforms. In many cases, the overlap

between these transcripts is substantial, which might

affect the correlation patterns between chromatin fea-

tures and expression. We thus repeated the correlation

analysis using only genes with a single transcript,

and obtained the same qualitative results (Figure S5 in

Additional file 5).

Among the chromatin features shown in Figure 2,

MES-4 and MRG-1 are factors associated with

X-chromosome inactivation [37,38]. These factors are

supposed to have different binding patterns in the X

chromosome than in autosomes. We therefore analyzed

their correlation patterns in X genes and autosomal

genes separately. As expected, we found that MES-4 and

MRG-4 associate predominantly with autosomal DNAs,

while the dosage compensation complex (DCC) subunits

bind specifically with X-chromosomal DNAs (data not

shown), which is in line with previous reports [19].

Figure 2 Chromatin feature patterns. (a,b) Signal pattern (a) and correlation pattern (b) of each chromatin feature in the 160 bins around the

TSS and TTS (from 4 kb upstream to 4 kb downstream) of worm transcripts at the EEMB stage. In (a), the signal of each chromatin feature for
each bin is averaged across all transcripts. In (b), the Spearman correlation coefficient of each chromatin feature with gene expression levels was

calculated for each bin. Ab1 and Ab2 represent experimental results using different antibodies for a chromatin feature. DNA region from 2 kb

upstream of the TSS to 2 kb downstream of the TTS is shown in the rectangle.
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Consistent with this finding, MES-4 and MRG-4 show

stronger positive correlation with autosomal gene

expression.

Unsupervised clustering reveals general activating and

repressing chromatin features for individual genes

As some chromatin features are positively correlated

with gene expression levels and some are negatively cor-

related, the two groups potentially represent general

active and repressive marks of gene expression. Yet

since these correlations capture only the average beha-

vior across all genes, it is still not clear if these features

are strong indicators of the expression levels of indivi-

dual genes.

In order to examine the relationship between chroma-

tin features and the expression levels of all individual

genes, we performed a two-way hierarchical clustering

of both the chromatin features and the annotated genes,

according to the feature signals at the TSS bins (bin 1).

As shown in Figure 3a, genes can be divided into two

clusters (labeled as H and L, respectively) based on the

signals of the 16 features. We found that the two clus-

ters roughly correspond to genes with high expression

levels (H) and genes with low expression levels (L),

respectively (Figure 3b). These two clusters are charac-

terized by complementary patterns of chromatin fea-

tures. Cluster H is characterized by high signals of 11

features (the right component of the upper dendro-

gram), and low signals for the other 5 features. We note

in particular that highly expressed genes tend to have a

strong H3K36me3 signal, which is consistent with the

role of H3K36me3 as a chromatin mark that activates

transcription of associated genes. Similarly, the well-

known repressive mark H3K9me3 shows a low signal.

Compared to cluster H, genes in cluster L show the

opposite pattern of chromatin signals.

To explore which regions around the TSS and TTS

provide the greatest power in determining gene expres-

sion levels, we repeated the two-way clustering proce-

dure for each of the 160 bins around TSSs and TTSs.

Figure 3c shows the resulting t-statistics. We observe

that the signals slightly downstream of TSSs are the

most informative. In general, the t-statistics decrease as

the distance from the TSS or TTS increases. The decay

is steeper at the region downstream of TTSs.

The above integrative analysis involves all chromatin

features. To examine how each feature individually

affects gene expression, for each feature we performed

hierarchical clustering of the genes based on the collec-

tive signals of the feature at all 160 bins. An example is

shown in Figure 3d, in which signals of the single fea-

ture H3K79me2 at the different bins were used to clus-

ter the genes. As in the case when all chromatin

features were used, the signals from single chromatin

features can divide genes into two clusters (that are not

exactly the same as, but similar to, the ones obtained

from all features) with a significant difference in expres-

sion level (Figure 3e). Again we quantified the power of

each feature in distinguishing genes with high and

low expression levels using t-statistics. As shown in

Figure 3f, apart from a few exceptions (black bars), most

features are informative. The most informative features

are H3K79me2, H3K79me3 and H3K4me2. The infor-

mative features can be further grouped into two classes.

Activating features are those that are positively corre-

lated with gene expression (cyan) and repressive features

are those that are negatively correlated (blue).

Chromatin features can statistically predict gene

expression levels with high accuracy using supervised

integrative models

The above analyses suggest that gene expression levels

can be at least partially deduced from chromatin fea-

tures. To examine how much of gene expression is

determined by chromatin features, we tried to predict

gene expression levels using the features. We started

with the simplified task of distinguishing highly

expressed and lowly expressed transcripts, where the

two classes of transcripts were constructed by discretiz-

ing gene expression levels (see Materials and methods).

We divided all the transcripts into training and testing

sets, and learned a support vector machine (SVM)

model from the signals of all 13 chromatin features of

the training transcripts at a certain bin (Figure 1). The

model was then used to predict to which class each

transcript in the testing set belongs. We repeated the

procedure for all 160 bins, and 100 different random

splitting of the transcripts into training and testing sets

for each bin (see Materials and methods). We repre-

sented the overall performance of the model using the

receiver operating characteristic (ROC) curve and

further quantified the accuracy using the area under the

curve (AUC). Figure 4a shows the ROCs corresponding

to the prediction performance of five different bins.

Compared to random ordering, which would give a

diagonal ROC curve on average with an expected AUC

of 0.5, we observed that all five curves are much better

than random but with diverse performance, which indi-

cates that all the bins are useful to classify gene expres-

sion but they are not equally informative. This result is

consistent with what we have observed using the unsu-

pervised method described above (Figure 3f). Instead of

using SVM, we also learned support vector regression

(SVR) models using similar procedures (see Materials

and methods) to predict expression values directly.

Figure 4b shows that there is a high positive correlation

(0.75) between the predicted levels from an SVR model

and the actual expression levels measured by RNA-seq.

Cheng et al. Genome Biology 2011, 12:R15

http://genomebiology.com/2011/12/2/R15

Page 5 of 18



Figure 3 Hierarchical clustering using either chromatin feature profiles (a-c) or bin profiles (d-f) discriminates highly and lowly

expressed genes. (a) Hierarchical clustering of 16 chromatin features in bin 1 (0 to 100 nucleotides upstream of a TSS). The resulting tree is

split at the top branch, which divides genes into two clusters, cluster H and cluster L, as labeled. (b) Distributions of expression levels of genes

in cluster H (red) and cluster L (green). Expression levels are significantly different between the two clusters according to t-test (P = 3E-202).

Expression levels were measured by RNA-seq (see Materials and methods). (c) T-scores for the differential expression of the top two gene
clusters based on hierarchical clustering of chromatin features in each of the 160 bins. For each bin, hierarchical clustering was performed to

separate genes into two clusters. Expression levels between the two clusters were compared and a t-score calculated to measure the capability

of the bin to discriminate between genes with high and low expression levels. (d) Hierarchical clustering of the genes based on the signal

profiles of H3K79me2 across the 160 bins. The resulting tree is also split at the top branch, leading to two gene clusters. (e) Distributions of
expression levels of genes in the two clusters in (d). The expression levels are significantly different according to t-test (P = 4E-93). (f) T-scores for

the differential expression of the two gene clusters based on hierarchical clustering of bin profiles for each individual chromatin feature. Cyan

and blue colors indicate a significant positive and negative correlation between a chromatin feature and gene expression levels, respectively.
Black color indicates that a chromatin feature could not significantly discriminate between genes with high and low expression levels. To

visualize the clustering, 2,000 randomly selected genes are shown. The data for gene expression levels and chromatin features are from the

EEMB stage.
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This analysis suggests that chromatin features explain at

least 50% of gene expression variation (see Materials

and methods).

We then compared the prediction accuracy of all 160

SVM models learned from the different bins. As shown

in Figure 4c, the models learned from regions around

the TSS (-300 to 500 bp) and upstream of the TTS

(-200 bp to 0 bp) have highest accuracy, with AUC

values greater than 0.9. Prediction accuracy decreases

gradually as we move away from these regions, which

confirms the spatial effects that we observed from the

unsupervised analysis (Figure 3c).

We have also tested more comprehensive models that

combine the chromatin features in 40 bins around the

TSS (-2 kb to 2 kb). These comprehensive models achieve

slightly higher prediction accuracy than those based on

single bins, yet the enhancement is not dramatic, with an

average AUC of 0.94 for the classification model (SVM)

and an average correlation coefficient of 0.75 for the

regression model (SVR) (Figure 6 in Additional file 6).

We then learned SVM models using only features of

individual types. As shown in Figure 5a, the AUC

obtained by using all features (black) is comparable to

the AUCs obtained from models using only particular

subsets of features. Strikingly, the model involving only

the 9 histone modification features is almost as accurate

as the model involving all 16 features. We further

divided the histone modification features into four sub-

sets: modifications on K4, K9, K36 and K79, respec-

tively. While the integrated model with all histone

modifications achieves an AUC value of 0.9, using just

one of the subsets can yield an AUC higher than 0.8

(Figure 5b). In particular, the set H3K79 is found to be

most predictive, which again confirms our previous find-

ing of the importance of these histone modifications in

regulating gene expression (Figure 3f).

The results of the supervised analysis suggest that

chromatin features are not only correlated with expres-

sion but are also predictive of the expression levels of

individual genes with good accuracy and could explain a

large portion of the expression differences between dif-

ferent genes. We note that histone modifications may

have other regions of enrichment that are informative

about gene expression: for instance, the percentage of

Figure 4 Prediction power of the supervised models. (a) ROC curves for five different bins based on the results of the SVM classification

models. (b) Predicted versus experimentally measured expression levels. The SVR regression model was applied to bin 1 for predicting gene
expression levels. (PCC, Pearson correlation coefficient). (c) The prediction accuracy of SVM classification models for all the 160 bins. For each bin,

we constructed an SVM classification model and summarized its accuracy using the AUC score. The AUC scores were calculated based on cross-

validation repeated 100 times for each bin. The red curve shows the average AUC scores (mean of 100 repeats) of the bins and the blue bars

indicate their standard deviations. The positions of the TSS and TTS are marked by dotted lines.
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gene length with strong histone modification signals.

We therefore examined the power of using these fea-

tures for predicting gene expression levels. Specifically,

we calculated the percentage of transcribed regions with

strong signals (>10%) for all genes. Using them as pre-

dictors, we obtained high prediction accuracy (AUC =

0.90). However, a combination of these percentage fea-

tures with the original chromatin features does not lead

to obvious improvement in prediction accuracy, indicat-

ing that they are redundant.

Combination of chromatin features contribute to gene

expression prediction

Both the unsupervised and supervised analyses above

suggest that chromatin features possess a certain level of

redundancy. In the unsupervised clustering (Figure 3a),

different chromatin features show similar signal patterns

around the TSS regions of genes. In the supervised pre-

dictions (Figure 5), high accuracy was achieved by multi-

ple features as well as feature subsets. Though the SVR

model offers good prediction power, it may be instruc-

tive to build a simpler linear regression model to

explore to what extent the chromatin features are

redundant, and to what extent they are interacting in a

combinatorial fashion. Specifically, for each bin, we

modeled the expression level y as a linear combination

of the effects of individual histone modification features

xi and their products xixj:

y x x xi i j

i j

~ +

<

∑∑

We found that among the 66 (12 × 11/2) possible

interactions between the 12 distinct histone modification

features, many interactions are statistically significant.

For example, for bin 1, we detected 12 significant inter-

actions (P < 0.001, linear regression) between the his-

tone modifications (Table S7 in Additional file 7).

To quantify the importance of these interactions in

determining gene expression levels, we compared the

above regression model with a singleton model that

does not contain the interaction terms:

y x i~ ∑
By evaluating the prediction power of the two models

using a cross-validation method, we found that with

respect to the singleton model the interaction model

improves prediction accuracy by 4%. Thus, the contribu-

tion of interactions among chromatin features to gene

expression prediction is not substantial.

We further examined each pair of modifications indivi-

dually to see if there is any redundancy between any of the

modifications. Using simplified models each involving only

two modification features, we found that no two histone

modifications are completely redundant (Table S8 in Addi-

tional file 8). These results were confirmed by a similar

analysis based on mutual information (Figure S9 in Addi-

tional file 9). Two examples are shown in Figure 6. In each

example, we considered a specific pair of histone modifica-

tion features, and divided all genes into four categories

based on the signals of the two features at their TSS bins.

In the first example (Figure 6a), expression levels are the

lowest when both H3K4me3 and H3K36me3 are low but

moderate if either one of them is high. This suggests that

both features are activators. When both features have high

signals, an even higher expression level is observed, show-

ing that the two are not totally redundant. In the second

example (Figure 6b), H3K9me3 is found to repress gene

expression in general, while H3K79me3 is found to activate

Figure 5 Prediction power of the SVM models using the signals from different subsets of chromatin features in the 100 nucleotides

around the TSS (bin 1). The results are based on cross-validation with 100 trials. (a) ALL, all 21 chromatin features; H3, the two H3

features; HIS, the 11 chromatin modification features; XIF, the seven binding profile features for X-inactivation factors; POLII, the binding profile
feature for RNA polymerase II. (b) HIS, the 11 chromatin modification features; H3K79ME, H3K79me1, H3K79me2 and H3K79me3; H3K9ME,

H3K9me2, H3K9me3(Ab1) and H3K9me3(Ab2); H3K36ME, H3K36me2(Ab1), H3K36me2(Ab2) and H3K36me3; H3K4ME, H3K4me3 and H3K4me3.
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gene expression. As expected, a combination of high

H3K9me3 signal and low H3K79me3 signal results in a

lower expression level than when both signals are low.

When the signals of both features are high, we observe a

significant difference in gene expression compared to the

other three cases, indicating that the features contribute to

gene expression regulation in a collective manner.

Our analyses of the interactions between the above

chromatin features only considered binary interactions

between two features. For higher-order relationships invol-

ving more features, it is infeasible to perform the same

type of analyses, as the number of feature combinations

would become intractable. Also, the above analyses only

suggest which features interact with each other, but do

not explain how the features interact. In particular, the

complex correlations between features and gene expres-

sion make it difficult to extract directional relationships

between them (Figure S10 in Additional file 10). We there-

fore used Bayesian networks to study the higher order

relationships between the chromatin features and gene

expression (see Additional file 11 for details).

The chromatin model is developmental stage-specific

We have previously constructed an integrative model

using chromatin features at the EEMB stage of C. elegans

development and used it to predict gene expression levels

at the same stage. How well can we predict gene expres-

sion levels at other developmental stages using the

Figure 6 Co-regulation of transcription by pairs of histone modifications. (a) Categorization of genes into four groups based on signals of

H3K4me3 and H3K36me3: HH (magenta), HL (green), LH (cyan) and LL (blue). The signals of histone marks H3K36me3 and H3K4me3 exhibit a
bimodal feature. Signals are thus classified into H and L by a Gaussian mixture model. The distributions of expression levels of the four gene

groups are shown on the right. (b) Same as (a), based on signals of H3K9me3 and H3K79me3. Same as above, the signal of H3K79me3 is again

classified by a Gaussian mixture model. The signals of H3K9me3 do not display a bimodal feature; signals are classified into H and L based on
whether the value is higher than or lower than the median.
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chromatin feature data from EEMB? To answer this ques-

tion, we applied the model to predict gene expression at

EEMB, L1 (larva stage 1), L2, L3, L4, and adult. Specifi-

cally, the chromatin feature data from EEMB were com-

bined with expression data from a stage to train a SVM

model, which was then used to predict gene expression

levels of other genes at that stage. As shown in Figure 7,

the chromatin model based on EEMB data is able to pre-

dict the expression at other developmental stages with rea-

sonable accuracy (AUC = 0.8). However, the predictions of

gene expression levels in all these stages have lower accu-

racy than the predictions for EEMB itself. This result sug-

gests that signals from chromatin features are

developmental stage-specific and regulate biological pro-

cesses in a dynamic manner depending on the particular

stage. The stage specificity is more apparent when we

apply the model to genes that are differentially expressed

between stages. For example, we have identified 4,042

genes that differ in expression levels by at least four-fold

between EEMB and L3 stages. Using the EEMB stage

chromatin model to predict the expression level of these

genes, the prediction accuracy further decreases (AUC =

0.70).

Chromatin features show different correlation patterns

with different genes in an operon

In C. elegans some neighboring genes are organized into

operons. The genes in an operon are co-transcribed as a

polycistronic pre-messenger RNA and processed into

monocistronic mRNAs [39,40]. Here we investigate the

differential signals of chromatin features among genes

in operons and how this organization affects their

expression levels. We collected the first, second and last

genes in 881 C. elegans operons and calculated the sig-

nals of chromatin features in each of the 160 bins

around their annotated TSS and TTS. We observed

strong correlations between expression levels and chro-

matin feature signals for the first genes (Figure 8). In

comparison, the correlation patterns for the second and

last genes of the operons are not as apparent (Figure

S12 in Additional file 12). The weaker correlations

could be caused by the lack of signals for some histone

modification types. As we observed, the mark for active

promoters, H3K4me3, demonstrates strong signals

around the TSS of the first genes, which is the shared

promoter of genes in the same operon. In the upstream

region of the internal genes, the H3K4me3 signal is

often relatively weak. Alternatively, the weak correlation

for internal genes may also be explained by the inten-

sive post-transcriptional regulation of these genes,

which can not be captured by our chromatin feature

based model [41]. In fact there is only weak correlation

(Pearson correlation coefficient (PCC) = 0.10) between

the expression levels of the first and the second genes.

Moreover, on average the first genes are two-fold and

three-fold more highly expressed than the second genes

and the last genes, respectively. Taken together,

although genes in the operons are co-transcribed, they

are regulated post-transcriptionally to achieve distinct

expression levels [41].

Figure 7 Developmental stage specificity of the chromatin model. The EEMB model was constructed using the chromatin features and

gene expression data both at the EEMB stage. The model was then used to predict gene expression levels at the EEMB stage and five other

developmental stages: L1, L2, L3, L4 and adult. ROC curves are plotted based on the results of 100 trials of cross-validation. For each trial, the
dataset was randomly separated into two halves: one half as training data and the other as testing data to estimate the accuracy of the model.

The values in parentheses are AUC scores.
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Chromatin models learned from protein-coding genes are

able to predict microRNA expression levels with high

accuracy

Do chromatin features influence transcription of micro-

RNAs in the same way as they do with protein-coding

genes? As a way to study the similarity of the two

mechanisms, we investigated the effectiveness of the

chromatin model learned from protein-coding genes in

predicting microRNA expression. Since precise TSSs are

not available for most worm microRNAs, we calculated

the signals of chromatin features in the genomic regions

corresponding to pre-microRNAs, and used them as the

input features for our chromatin model.

We predicted the expression levels of 162 worm

microRNAs with genomic locations obtained from miR-

BASE [42]. We then compared our predictions with the

experimental measurements performed by Kato et al.

[43]. As shown in Figure 9, our predictions are in good

agreement with the experimental results in the EEMB

stage (see also the prediction results for the L3 stage in

Figure S13 in Additional file 13). Some microRNAs

locate within or near gene loci, which may confound the

prediction of microRNA expression. To address this

issue, we also checked the prediction accuracy using

only microRNAs that are away from any known gene,

and obtained similar prediction accuracy (PCC = 0.62).

Figure 8 Correlation patterns of H3K4me3 and H3K79me3 in the 160 bins around the TSS and TTS (from 4 kb upstream to 4 kb

downstream) with the expression levels of the first, second and last genes of 881 C. elegans operons.

Figure 9 Prediction of expression levels of microRNAs at the EEMB stage. (a) Predicted expression levels of the experimentally measured
highly and lowly expressed microRNAs based on small RNA-seq results. Expression levels of microRNAs at the EEMB stage were predicted using

an SVR regression model trained on data for protein-coding genes at the same stage. (b) Predicted versus experimentally measured expression

levels of microRNAs at the EEMB stage. R is the Pearson correlation coefficient.
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It is interesting to see that the expression of micro-

RNAs can be accurately predicted using a chromatin

model trained by data for protein-coding genes. Consis-

tent with previous reports on microRNA transcriptional

regulation [44,45], this result suggests that microRNAs

and protein-coding genes share a similar mechanism of

transcriptional regulation by chromatin modifications.

As with the prediction of expression levels of protein-

coding genes, the prediction accuracy of microRNA

expression also shows developmental stage specificity.

When the signals of the chromatin features from the

EEMB stage were used, the resulting model achieved the

best accuracy when predicting microRNA expression at

the same stage (PCC = 0.60), whereas for stages L1, L2,

L3, L4 and adult, the accuracy is much lower (PCC <

0.50) (Figure S14 in Additional file 14). Similarly, when

chromatin features at L3 were used to train the model,

the model achieved better prediction results in L3 than

in other stages.

Application to other organisms

The models described above provide a useful tool to

integrate gene expression and chromatin data. Currently,

the C. elegans dataset is the best one to demonstrate the

utility of the method and we have focused on it here.

However, we know that further integrated genomic

datasets (comprising matched genome-wide histone fea-

tures and expression measurements) are coming in

many other organisms. Thus, to illustrate the broad uti-

lity of our method, we demonstrate here how readily it

can be applied in other contexts. Specifically, we have

packaged our methods as a tool and applied it to data

sets from four other organisms: yeast, fruit fly, mouse

and human. The results indicate that chromatin fea-

tures, in particular histone modifications, are highly cor-

related to gene expression levels in all these organisms

(Figure 10). More importantly, the relative statistical

contribution of each histone modification type to

expression is similar in tested organisms (and also in

different tissues, cell-lines, and developmental stages).

For example, H3K4me3 signals around the TSS of genes

show high predictive capability in all the analyses we

have performed. We also found that the models based

on expression levels measured by RNA-seq achieved

higher prediction accuracy than those by microarrays,

consistent with the higher measurement accuracy of

RNA-seq compared to microarrays. Our method can, of

course, be applied to multiple data sets in each species

Figure 10 Prediction accuracy of the chromatin model in four other species. (a-d) Expression levels of genes are predicted using the SVR

method. In yeast, average signals of chromatin features from the TSS to 500 bp upstream were used as predictors (a); in the other species,
signals of chromatin features within the bin at the TSS (bin 1) were used as predictors (b-d). E4-8 h: embryonic stage at 4 to 8 h; ESC, embryonic

stem cell.
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(for example, different developmental stages in fruit fly).

Figure 10 shows only a single illustrative example for

each species. We only show initial statistical analysis

here, further biological interpretation would, of course,

be the subject of future studies.

Discussion

In this study, we present a systematic analysis of the

genome-wide relationship between chromatin features

and gene expression. We have shown that, in terms of

gene expression prediction, information from different

histone modification features is considerably redundant.

Here in this paper, we use the modENCODE worm data

to exemplify our analysis. In fact, we have applied our

methods to two other histone modification data sets:

human CD4+ T-cell data [46] and mouse embryonic

stem cell deta [47]. In both data sets, we found that his-

tone modifications account for more than 50% of varia-

tion of gene expression and distinct modification types

were redundant for predicting gene expression levels.

This is consistent with a recent study by Karlic et al.

[48] performed in human CD4+ T cells.

The existence of a ‘histone code’ has been intensively

debated since the time that the hypothesis was first pro-

posed 10 years ago [24,25]. Previous studies have

demonstrated both pros and cons for the hypothesis

[11,28,49,50]. Indeed, for some specific genes, it has

been demonstrated that the patterns of a subset of his-

tone marks could be viewed as an accurate predictor of

gene regulation in non-trivial manners [50]. Neverthe-

less, the readout of these patterns is largely gene specific

and dependent on the cellular context, which makes it

difficult for these cooperative effects to be viewed as a

universal ‘code’. Therefore, by using the term histone

code, we might have underestimated the complexity and

over-generalized the meaning of chromatin modifica-

tions and their roles in biological processes. On the

other hand, at a global level, previous studies have

reported substantial correlations among distinct chro-

matin features [13,14,17,28,51]. These results, and the

information redundancy we observed, are consistent

with the simple ‘histone code’ argument [28], in which

the combinatorial effects are cumulative rather than

synergistic.

We have shown that chromatin features are strongly

correlated with gene expression. Nevertheless, it should

be noted that our models could not reveal if histone

modifications are the ‘cause’ or ‘consequence’ of tran-

scription. In fact, both directions of causality have been

previously reported. Some studies have proposed that

some histone modifications are the memory of past

transcriptional events resulting from previous active

transcription [52-54]. For instance, it has been shown

that phosphorylation in the tail of Pol II is required for

H3K4me3, revealing that it is a direct consequence of

Pol II passing through the TSS [55]. Other studies, how-

ever, have shown that chromatin modification changes

precede changes in gene expression [56]. A recent study

in human T cells suggested that, for both protein-coding

and miRNA genes, activating histone marks were

already in place before induction of expression, and

these marks were maintained even after the genes were

silenced [45]. This finding shows that histone modifica-

tion can be both cause and consequence of gene tran-

scription, and that a full explanation will require

incorporation of additional data. Generalizing our model

to follow a time course of changing histone modifica-

tions might be helpful for understanding this issue.

The supervised chromatin model trained from expres-

sion data for protein-coding genes can accurately predict

the abundance of both protein-coding genes and micro-

RNAs, which suggests that microRNAs and protein-cod-

ing genes share similar mechanisms of transcriptional

regulation by chromatin modifications [44,45]. To pre-

dict the expression levels of microRNAs, we used the

signal of chromatin features around the start sites asso-

ciated with pre-microRNAs, which might be several

kilobases from the actual TSS of microRNA genes.

Despite this caveat, our model still achieved high predic-

tion power. We expect to obtain more accurate predic-

tions if more precise annotation for microRNA genes

becomes available in the future.

In summary, we have presented a series of supervised

and unsupervised methods for analyzing multiple

aspects of the regulation of gene expression by chroma-

tin features. Apart from predicting gene expression,

these methods can be used to address important biologi-

cal questions such as combinatorial regulation and

microRNA transcription. These and other statistical

methods will be essential to gaining new understanding

of biological processes from the tremendous amount of

data that will soon be made available by large collabora-

tive projects such as modENCODE.

Materials and methods

Datasets and gene annotation

Expression levels for all annotated worm transcripts at dif-

ferent stages of development, including EEMB, mid-L1,

mid-L2, mid-L3, mid-L4 and young adult stages, were

quantified using RNA-seq. Pol II binding across the gen-

ome at different stages was profiled using ChIP-seq. All the

other chromatin features were profiled using ChIP-chip

experiments. These chromatin features include histone H3

occupation, histone methylations (H3K4me2, H3k4me3,

H3K9me2, H3k9me3, H3k27me3, H3K36me2, H3K36me3,

H3K79me1, H3K79me2 and H3K79me3), binding of

dosage compensation complex (DCC) proteins (SDC2,

SDC3, DPY27, DPY28 and MIX1) and other X-

Cheng et al. Genome Biology 2011, 12:R15

http://genomebiology.com/2011/12/2/R15

Page 13 of 18



chromosome inactivation factors (MES4 and MRG1). For

some chromatin features such as H3K9me3, biological

replicates using different antibodies were available. Profiles

of these chromatin features were measured for different

developmental stages, in particular at EEMB and L3 stages.

A list of the data, with their Gene Expression Omnibus IDs

can be found in Additional file 15. All these data are avail-

able from the modENCODE website at [57]. Operon infor-

mation for C. elegans was obtained from a previous study

by Blumenthal et al. [39]. The dataset contains a total of

881 operons with 2.6 genes in each of them on average.

MicroRNA expression levels at different developmen-

tal stages of C. elegans were obtained from small RNA-

seq measurements performed by Kato et al. [43]. Anno-

tation of worm transcripts was downloaded from

WormBase at [58,59]. Annotation of nematode micro-

RNAs was downloaded from the microRNA database

miRBASE at [42,60]. Assembly version WS180 of C. ele-

gans was used for gene and microRNA annotations and

data processing of all the chromatin features.

Binning DNA regions

We obtained the genomic locations and structures of

27,310 protein-coding transcripts of C. elegans from

WormBase. The contribution of each chromatin feature

to gene expression is thought to be affected by many

factors, in particular its position relative to the TSS. We

therefore divided the DNA region from 4 kb upstream

to 4 kb downstream of the TSS of each transcript into

80 small bins, each of 100 bp in size. The DNA region

around the TTS of each transcript was also divided into

80 100-bp bins. For each bin, we calculated the average

signal of each chromatin feature across all transcripts.

Specifically, for chromatin features profiled by ChIP-

chip experiments, the signals of the probes that fall into

a bin were averaged. For features profiled by ChIP-seq

experiments, the number of reads that cover a bin was

counted and weighted according to their overlap with

the bin. We note that for short transcripts less than 8

kb in length, some bins around the TSS and TTS over-

lap, and for transcripts representing alternative splicing

isoforms of the same gene or located close to each other

in the genome, their bins can also overlap. To ensure

these issues do not affect our main findings, we have

performed analysis using only genes that are longer than

8 kb and genes that are far away from coding genes (see

main text). It should also be noted that the precise TSS

and TTS of worm transcripts are largely unknown and

the locations used here usually represent the start and

end positions of the protein-coding regions.

Hierarchical clustering

The data processing described above results in a matrix

An × m for each of the 160 bins, where n is the number

of transcripts and m is the number of chromatin fea-

tures. To make the signals for different chromatin fea-

tures comparable, we normalized the columns of A by

subtracting the median and then divided by the standard

deviation of each column across all transcripts. We per-

formed hierarchical clustering analysis using the normal-

ized matrix for a given bin. To evaluate the capability of

a bin to discriminate between genes with high and low

expression levels, we divided the transcripts into two

clusters by splitting the resulting hierarchical tree at the

top level. The expression levels of transcripts in the two

clusters measured by RNA-seq experiments were com-

pared using t-test. We repeated this procedure for all

160 bins, which resulted in a t-score for each bin. Those

t-scores reflect the capability of chromatin features in

these bins to separate genes with low and high expres-

sion levels.

Similarly, given a specific feature, we performed hier-

archical clustering using its signals across all 160 bins.

The clustering analysis was conducted for all chromatin

features, and the capability of each feature to predict

gene expression was evaluated and compared by their t-

scores calculated as described above.

Supervised models for gene expression prediction

We constructed supervised learning models to integrate

the chromatin features for gene expression prediction.

In principle, the chromatin features of each of the 160

bins could contribute to regulation of gene expression.

We therefore constructed the model in a bin-specific

manner to investigate the relative importance of each

bin for regulation of gene expression. We devised both

classification and regression models, implemented by

using the SVM and SVR [61] methods, respectively.

In the classification model the expression levels of

transcripts at a particular developmental stage (mea-

sured by RNA-seq and quantified as RPKM (reads per

kilobases per million mapped reads)) were discretized

into two classes, with high and low expression level,

respectively, by setting the median expression levels as

the cutoff values. The chromatin features in a given bin

were then used as classifiers to predict the two classes.

The prediction power of the classification model was

evaluated using cross-validation. Specifically, we split the

whole dataset into two halves, the training data and the

testing data. The SVM model was first trained on the

training data and then used to predict the classes of

expression levels of the transcripts in the testing data.

The predicted classes at various thresholds were com-

pared with their actual classes to calculate the sensitivity

(also called true positive rate, the proportion of actual

positives that are correctly identified) and specificity

(also called true negative rate, the proportion of nega-

tives that are correctly identified). The tradeoff between
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sensitivity and specificity can be best visualized as a gra-

phical plot of the sensitivity against 1 - specificity, which

is called a ROC curve. The area under the ROC curve

(AUC) is a frequently used summary statistic for mea-

suring the prediction power of classification models.

In the regression model, we directly predicted the expres-

sion levels of transcripts rather than classifying them into

two broad expression categories. The prediction power of

the regression model was also checked using cross-valida-

tion. The SVR model was trained on the training data and

applied to the testing data. Then the predicted expression

levels for transcripts in the testing data were compared

with their actual levels measured by RNA-seq experiment.

The correlation between predicted and actual expression

level indicates the prediction power of the model.

In a linear regression model, the square of the correla-

tion (R2) between the predicted values and the actual

values is equal to the fraction of total variance in the

observed data explained by the predictions. We used

this quantity to estimate how much variation of gene

expression can be explained by the chromatin features.

To estimate the predictive power of classification and

regression models for each of the 160 bins, we repeated

the cross-validation procedure 100 times. The mean and

standard deviation of the resulting 100 AUC scores

were calculated for each bin as a measurement of the

predictive power of the SVM classification model. Simi-

larly, the accuracy of the SVR model for a bin was

reflected by the mean and standard deviation of the 100

correlation coefficients.

Detecting combinatorial effects of chromatin features

using linear models

To investigate the interaction between chromatin fea-

tures, we constructed and compared the following two

linear models:

y x x xi i j

i j

~ ∑ ∑+ ( )
<

Interaction model

y x i~ ∑ ( )Singleton model

The Interaction model takes into account the interac-

tion terms. Based on the Interaction model, we identi-

fied significant interactions in each bin.

The power of the two models for predicting gene

expression was evaluated by cross-validation. Data were

randomly split into training and testing data sets. The

models were trained on the training model and then

applied to the testing data for validation. The accuracy of

the models was measured by the correlation between pre-

dicted expression levels and experimental measurement.

To investigate the interactions among pairs of chro-

matin features, we constructed the simplified models

involving only two features:

y x x x xi j i j~ + +

A significant interaction term would indicate that the

interaction between the two features has a significant

effect on gene expression.

Predicting expression levels of microRNAs

We downloaded the annotation of 162 C. elegans micro-

RNAs from the miRBASE database [42]. For most micro-

RNAs, the annotation provides no information about the

TSSs. Instead, only the start and end positions of the cor-

responding pre-microRNAs (about 100 nucleotides in

length) are available. To predict the expression levels of

microRNAs, we calculated the signals of all chromatin fea-

tures within the associated pre-microRNAs and applied

our model trained on chromatin features associated with

protein-coding genes. We applied both the SVM classifica-

tion and the SVR regression models to predict microRNA

expression. The resulting predictions were validated using

measured microRNA expression levels from small RNA

sequencing performed by Kato et al. [43].

Data sets for other organisms

In yeast, the expression levels of genes were measured

by microarrays and available from Wang et al. [62]; the

histone modification data are performed by Pokholok et

al. [63]. In fruit fly, the gene expression and chromatin

data at 12 different developmental stages were obtained

by using RNA-seq and ChIP-seq experiments, respec-

tively, which are available from the modENCODE web-

site at [57]. In mouse, the expression data for embryonic

stem cells and neural progenitor cells were from Cloo-

nan et al. [64]; and the histone modification data for

matched cell lines were obtained from Mikkelsen et al.

[47] and Meissner et al. [65]. In human, the gene

expression data in K562 and GM12878 cell lines were

performed by Mortazavi et al. [66], and chromatin data

were downloaded from the ENCODE project at [2,67].

Availability of our code

All the analysis described in this paper was performed

using the R package. The related R code and example

data sets are available for download from [68].

Additional material

Additional file 1: Signal patterns of Pol II around TSS and TTS

regions (from -4 kb to 4 kb) at different developmental stages. At
each stage, the signals were normalized by subtracting the average and
then divided by the standard deviation of the signals over all the 160
bins. The location of the TSS and TTS are marked as dotted lines.
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Additional file 2: Correlation patterns of chromatin features with

gene expression at the EEMB stage based on long transcript genes

only. Only genes longer than 8 kb were used for correlation
computations so that there is no overlap between the TSS and TTS bins.

Additional file 3: Correlation patterns of chromatin features with

gene expression at the EEMB stage based on transcripts that are

far away from any other transcripts. Only the transcripts that are at
least 4 kb away from any other transcripts were used for correlation
computations so that there is no overlap between bins of nearby
transcripts.

Additional file 4: Correlation patterns of chromatin features with

gene expression at the L3 stage. Correlation was calculated based on
long transcripts (>8 kb).

Additional file 5: Correlation patterns of chromatin features with

gene expression at the EEMB stage based on single-transcript

genes only.

Additional file 6: Prediction of gene expression using chromatin

features in all the 40 bins around the TSS (from -2 kb to 2 kb). (a)
ROC curve of the SVM classification model. (b) Predicted expression
levels versus actual expression levels measured by RNA-seq experiment.
PCC, Pearson correlation coefficient.

Additional file 7: Interaction between all possible pairs of histone

modifications. Interaction between all possible pairs of histone
modification as indicated by linear model in bin 1. For each pair, both
the results of linear models with the interaction terms (Interaction
models) and without the interaction terms (Singleton models) are
shown.

Additional file 8: The significant interactions between chromatin

features based on a linear model. The significant interactions between
chromatin features based on a linear model with 12 different chromatin
features and their pairwise interaction terms.

Additional file 9: Mutual information between expression and

pairwise histone modification signals. For each pair of histone
modifications (denoted as H1, H2), the heat map shows the normalized
mutual information I(E, H1 AND H2)/max(I(E,H1),I(E,H2)). For pairs such as
H3K4me2 and K4K36me3, the combination of two features gives a
higher predictive power than the two individual features.

Additional file 10: Interactions among chromatin features and

expression. (a) Node colors indicate the correlation of the
corresponding features with gene expression. Edge colors indicate the
correlation between the two connected features. Only interactions with a
strong correlation (|PCC| >0.3) are shown. (b) The directional
relationships inferred from Bayesian network analysis. Arrow sizes indicate
the confidence scores of the directed edges. Only interactions with a
confidence score (combined for both directions) of at least 80% are
shown.

Additional file 11: Supplementary documents about the Bayesian

network analysis and so on. The file contains additional information
about the Bayesian network analysis.

Additional file 12: Correlation patterns of chromatin features in 40

bins around the TSS and TTS (from -2 kb to 2 kb) of the first and

the second genes in 881 worm operons.

Additional file 13: Predicted expression levels of microRNAs at

stage L3. MicroRNAs are divided into high (red) and low (green) groups
based on their measured expression levels in small RNA-seq experiments.

Additional file 14: Stage specificity of chromatin models for

microRNA expression predictions. The chromatin model was trained
using the chromatin and expression data of protein-coding genes at the
EEMB stage. The model was then used to predict microRNA expression
levels at six stages. R indicates the Pearson correlation coefficient
between the predicted expression levels and the actual expression levels
from RNA-seq experiments.

Additional file 15: Gene Expression Omnibus accession ID of data

sets used in this work.

Abbreviations

AUC: area under the curve; bp: base pairs; ChIP: chromatin
immunoprecipitation; ChIP-chip: ChIP-on-chip; ChIP-Seq: ChIP-sequencing;
EEMB: early embryonic; modENCODE: model organism encyclopedia of DNA
elements; PCC: Pearson correlation coefficient; Pol II: RNA polymerase II;
RNA-seq: RNA-sequencing; ROC: receiver operating characteristic; SVM:
support vector machine; SVR: support vector regression; TSS: transcription
start site; TTS: transcription termination site.
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