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Abstract

Background: Epidemiological interventions aim to control the spread of infectious disease through various mechanisms,
each carrying a different associated cost.

Methodology: We describe a flexible statistical framework for generating optimal epidemiological interventions that are
designed to minimize the total expected cost of an emerging epidemic while simultaneously propagating uncertainty
regarding the underlying disease model parameters through to the decision process. The strategies produced through this
framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic
given the current population state and updated parameter estimates.

Conclusions: Using simulation studies based on a classic influenza outbreak, we demonstrate the advantages of adaptive
interventions over non-adaptive ones, in terms of cost and resource efficiency, and robustness to model misspecification.
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Introduction

Epidemiological interventions generally remove susceptible

individuals or apply some form of treatment to infected individuals

in order to prevent further spread of a disease. The susceptible

population may be culled, as in the case of foot-and-mouth disease

[1,2], in which case the total population size is permanently

reduced. The infected population may be quarantined, as in the

case of SARS [3], in which case total population size is unchanged

but the fraction of infecteds that may be in contact with

susceptibles is reduced. Most commonly, susceptibles are vacci-

nated (cf influenza or smallpox [4,5]), in which case the total

number of susceptibles, but not the total population size, is

reduced.

Each of these interventions incurs a quantifiable cost: culling

results in additional deaths; medical treatments or quarantines

result in monetary expenses; vaccination incurs both monetary

expenses, and in some cases additional vaccine-induced infections.

Additionally, in many situations the costs associated with each of

these actions can depend upon the state of the disease within the

population of interest. For example, per-dosage prices of vaccine

can increase as resources become scarce as a result of an aggressive

vaccination campaign. Similarly, vaccine efficacy can decrease as a

result of selection for drug resistance. Such observations raise the

question of how to find optimal interventions that adaptively

depend on the state of the epidemic.

A key challenge to calculating optimal intervention strategies

involves devising ways to characterize and explore the space of

intervention policies. Most existing work on optimal intervention

has required various limiting assumptions about the forms of such

strategies. Ball and Lyne [6] considered optimal vaccination in

terms of the allocation of vaccine doses to households of various

sizes in an explicitly structured population model. Patel et al [7]

considered optimal vaccination in terms of the allocation of

vaccine doses to different age classes in an explicitly age- and

geographically- structured population model. Tildesley et al [1]

describe optimal vaccination strategies for a foot-and-mouth

epidemic in which the optimized parameter is the size of the

radius surrounding a point of infection within which all livestock

are to be vaccinated. These methods are primarily concerned with

pre-emptive interventions that can be completed before the arrival

of the pathogen. Under such scenarios, there is no need to

consider adaptive or sequentially updated interventions because as

soon as the intervention policy is triggered, the threat of epidemic

is eradicated. In real scenarios, such widespread vaccination may

not be achievable. Moreover, these methods traditionally involve

calculations that assume no uncertainty in key model parameters

such as transmission rate, recovery rate, and mortality rate.

Recently Elderd et al [8], using Bayesian methods, demonstrated

the importance of explicitly quantifying such underlying uncer-

tainty when forecasting the expected efficacy of trace versus mass

vaccination policies. Their findings demonstrate that accurate
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propagation of parameter uncertainty can sometimes reveal deep

and troubling consequences of a proposed vaccination strategy,

and they suggest that incorporation of such uncertainty could

impact policy decisions.

Here we address the question of how to dynamically propagate

uncertainty in order to respond to an emerging epidemic while

simultaneously and continuously learning about its underlying

transmission dynamics. Estimation of model parameters is

facilitated by regarding the transmission dynamics as stochastic

processes rather than deterministic solutions to a structural

equation model. This allows us to explicitly account for

uncertainty in both model parameters and disease transmission.

We consider a very general class of vaccination strategies defined

by a fraction of the current susceptible population to be targeted

for vaccination, and a threshold number of susceptibles such that

once the number of susceptibles falls below this threshold, the

vaccination campaign is called off. We demonstrate the calculation

and application of optimal strategies of this form when coupled

with iteratively updated parameter estimates using simulations

based on a well-studied influenza outbreak [9]. Our emphasis is

not on the realism of the underlying SIR model (though it has

been shown that even simplistic transmission models can provide

good fit to actual data [10]), but rather to describe an effective

approach for combining estimation and policy calculation.

Permitting greater flexibility in the form of the possible

intervention renders calculation of optimal intervention strategies

analytically intractable, thus requiring evaluation by Monte Carlo-

based methods. Once in a Monte Carlo-based framework, it

becomes straightforward to couple the evaluation of intervention

strategies with Bayesian procedures for performing on-line

estimation of parameters of the underlying epidemic model,

thereby propagating parameter uncertainty through to policy

decisions.

The policies produced by this framework are optimal in that

they minimize the expected cost of the epidemic and adaptive in

that the optimal policy changes as a function of the state of the

epidemic and the degree of uncertainty in underlying model

parameters. Using extensive simulation studies we compare the

distribution of costs accrued under adaptive intervention to those

arising from non-adaptive policies in a variety of scenarios. Our

studies show that adaptive policies perform similarly to nonadap-

tive policies based on perfect parameter estimates, and significantly

better than nonadaptive policies based on imperfect parameter

estimates. Additionally, we show that adaptive online estimation

affords the method some robustness to model misspecification.

These results further demonstrate the importance of accounting

for such underlying uncertainties in dynamic settings and indicate

the utility of adaptive policies in settings where perfect estimates

and a true model do not exist. All computational methods used

herein have been made freely available through the amei
(Adaptive Management of Epidemiological Interventions) R

package [11].

Results

A classic study of Murray’s [9] describes the spread of influenza

through the population of a British boarding school. During the

course of the epidemic, which was traced to the arrival of a single

infectious student, all 763 students were eventually infected. The

epidemic conforms to many standard assumptions of SIR models:

a population essentially closed to immigration and emigration,

recovery with immunity, and nearly homogeneous mixing of

susceptibles and infectives.

Viewing the transmission dynamics as a discrete time stochastic

process rather than a deterministic system of coupled differential

equations implies a distribution of possible outcomes for the

epidemic. By conditioning on parameter values and initial

conditions (S0~762, I0~1), Monte Carlo simulation can be used

to explore the distributions of numbers of susceptible, infected, and

recovered individuals, as well as total accrued cost, as functions of

time. Murray provides estimates of the transmission rate

(b̂b~0:00218) and recovery rate (v̂v~0:4), which we regard as the

‘‘true’’ underlying parameter values in our simulations. Additional

aspects of the transmission function are discussed in the Methods

section. We assume that all costs can be expressed in a common

monetary cost unit. Other choices of cost functions that address

the issue of nonconformable costs (e.g. lives vs dollars) are

mentioned in the Discussion.

Setting the unit cost to be that of maintaining a single infected

individual for one time step (cost per infected, ct~1), repeated

forward simulation of the epidemic (Figure 1) indicates that the

mean total cost over 40 time steps is approximately 2100 cost units

(Figure 2), attributable entirely to the cumulative cost of

maintaining a large population of infected individuals until

recovery.

Variable Stop Time Vaccination
We consider a relatively simple but flexible class of intervention

strategies that involve vaccinating a target fraction (a) of

susceptible individuals at each time step. After a round of

vaccination, if the number of remaining susceptibles is less than

a designated threshold (c), the vaccination campaign is discontin-

ued. Policies defined in this way provide effective target population

sizes, to which post-hoc corrections can be applied in light of

knowledge of the population structure.

We assume that in a single time unit there is an upper bound on

the maximum targetable fraction of susceptibles. In our simula-

tions we set this bound to be 30%, so that several time units are

Figure 1. Simulated epidemics. (2.5,50,97.5)-% quantiles for
numbers of susceptible, infected, and recovered individuals over 1000
simulations of the epidemic without intervention.
doi:10.1371/journal.pone.0005807.g001

Adaptive Interventions
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required to vaccinate the majority of susceptibles. We also assume

there is a period of time after the arrival of the initial infection

before intervention can begin. In our examples, we assume this lag

time to be 7 time units. These values are chosen purely for the

purpose of demonstration, and can be assigned any value in the

amei software.

The optimal variable stop time vaccination strategy can be

found by searching the policy space (i.e. pairs of fractions-to-

vaccinate a and stopping thresholds c) for the policy that most

frequently produces the lowest expected cost. The calculation of

the optimal policy therefore explicitly accounts for uncertainty

associated with the disease transmission and recovery processes

(see Methods) under a given valuation of the model parameters.

Assuming a value of 2 cost units per dose of vaccine (cv~2), we use

Monte Carlo simulation to estimate the expected cost surface

associated with variable stop time policies based on the true

parameter values (Figure 3). The minimum expected cost is

achieved under a policy of maximum (30%) vaccination and a

stopping threshold of 150 individuals. Repeated simulation of the

epidemic under this policy shows that in the average case (dashed

line), the policy amounts to 4 time units of maximum vaccination

as soon as the initial lag is over (Figure 4). In situations where the

number of susceptibles remaining after the lag is already below

150 individuals, no policy is implemented. The 95% central

interval for the final distribution of total vaccine units dispensed is

(339,581), representing variation in the total size of the epidemic at

the time of the vaccination sweep, and the numbers of new

infections after vaccination begins. Figure 5 shows the distribution

of total costs accrued under this policy. After the end of the

vaccination campaign, the uncertainty bands widen, representing

variations in the costs associated with maintaining the remaining

population of infected individuals until their natural recoveries.

The mean total cost at time 40 is 1652 cost units, approximately a

21% reduction in total cost compared to no-intervention.

Figure 2. Expected costs under nonintervention. (2.5, 50, 97.5)-%
quantiles for total cost accrued over 1000 simulations of the epidemic
without intervention. The mean total cost after 40 days is 2100 cost
units, with quantile bounds (1949,2263).
doi:10.1371/journal.pone.0005807.g002

Figure 3. Expected cost surface for static interventions. The
heatmap depicts the expected cost surface associated with variable
stop time vaccination strategies based on the true parameter values.
The minimum expected cost (1640 cost units) is achieved by a strategy
of vaccinating 30% of susceptibles at each time step, until the number
of susceptibles falls below 150. The maximum expected is realized
through inaction (top row and left column policies are never
implemented).
doi:10.1371/journal.pone.0005807.g003

Figure 4. Simulated epidemics under static intervention. (2.5,
50, 97.5)-% quantiles for the numbers of susceptible, infected,
recovered, and vaccinated individuals over 1000 simulations of the
epidemic under the optimal variable stop time strategy based on true
parameter values. The mean number of vaccine units dispensed is 442,
with quantile bounds (339,580).
doi:10.1371/journal.pone.0005807.g004

Adaptive Interventions
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Adaptive Management
The intervention calculated in the previous section represents a

gold-standard for this particular scenario because the vaccination

strategy was calculated using the same parameter values and the

same SIR model formulation as the simulated disease process. In

most settings it will be natural to regard the transmission model

parameters as unknowns to be estimated from incoming count

data describing the sizes of the susceptible, infected, and recovered

subpopulations. In this section we describe the procedure for

performing adaptive management of an emerging epidemic, in

which we account for parameter uncertainty and its impact on

vaccination strategies.

An epidemic can be effectively summarized by the disease state

of the population (i.e. the current numbers of susceptible and

infected individuals) and by the SIR model parameters that define

the dynamics of transmission, death, and recovery. In adaptive

management, the former is used to perform inference on the latter.

Each time new data are collected, Markov chain Monte Carlo

(MCMC) is used to sample from the current posterior distribution

on model parameters. The optimal variable stop time strategy

associated with each set of sampled parameter values is calculated,

and the policy that most frequently minimizes the total expected

cost (over all sampled parameter values) is enacted at the next time

step. The fundamental difference between the adaptive policies

calculated here and those calculated in the previous section is that

here, the vaccination policy is a dynamic function of the current

disease state and the current distribution of each parameter,

whereas before, the policy was a static function of the initial

disease state and the initial point estimate of each parameter.

The effectiveness of this approach can be similarly explored by

repeated simulation of epidemics under adaptive management. As

before, we assume an initial lag time of 7 time units before

vaccination begins. Here we also introduce a cost associated with

deaths (cd~4). Even though the ‘‘true’’ model does not include

mortality, the fitted model includes a mortality parameter (m). This

allows examination of the degree to which adaptive management

strategies are robust to model misspecification.

Initial uncertainty regarding parameter values is expressed in

the form of vague/noninformative prior distributions, as specified

in the Methods. The choice of prior distributions in Bayesian

models is of fundamental importance, and other possible choices

are mentioned in the Discussion section. At each time step, the

state of the epidemic is advanced one time step using the same

‘‘true’’ parameter values used in the previous section. Intervention

strategies, however, are calculated based on the current parameter

estimates.

Figures 6 and 7 show the distributions of susceptible, infected,

recovered, and vaccinated individuals, and total accumulated costs

for repeated simulation of the epidemic under adaptive manage-

ment. These dynamics can be compared to those in Figures 4 and

5 in order to explore the effect of propagation of parameter

uncertainty on efficacy of control measures. Compared to Figure 4,

the central 95% region associated with the total number of vaccine

units dispensed over the course of the intervention is more

compact: (351, 536) with mean of 428 units for the adaptive policy

versus (339, 580) with a mean of 442 units for the nonadaptive

policy. The tighter bound about a smaller mean is due to the

ability of the adaptive strategies to methodically diminish the

vaccination campaign as a function of the epidemic state. This can

be seen in Figures 8 and 9, which display the distributions of

implemented vaccination strategies for each time step during the

course of adaptive management. In the average case (dashed line),

the maximum policy is enacted for 3 time steps, followed by a

round of 20% vaccination. The uncertainty surrounding the

implemented strategies indicates the degree to which the the

adaptive policies are adjusted in light of data. In epidemics

associated with the upper 97.5 percentile of vaccination strategies

(top solid line in Figures 8 and 9), the adaptive policy calls for 4

rounds of maximum vaccination followed by a round of 20%

vaccination, followed by a final round of 5% vaccination. In this

way, the adaptive nature of the interventions enables more

efficient use of vaccine resources than achieved under nonadaptive

policies.

The distribution of total cost associated with the adaptive

intervention simulations (Figure 7) is essentially equivalent to the

distribution of costs achieved under static intervention with perfect

information (Figure 5), indicating that even the short period of

data collection prior to action produces parameter estimates that

are sufficient for accurate prediction of the disease dynamics.

Figure 10 shows the final posterior distributions on the four model

parameters estimated from the data during one simulation of the

epidemic under adaptive management. True values are indicated

with a circle, mean values are indicated with an ‘x’, and the central

95% region of each distribution is shaded. The prior densities of

each parameter for the same interval are shown in red. As

mentioned above, the inference model is misspecified relative to

the model being used to simulate the epidemic, in that the

inference model includes a mortality parameter (m, see Methods),

even though no deaths were observed in the simulated outbreaks.

By coupling the policy calculations with an inference framework,

the effect of such model misspecification appears to be reduced.

We can further demonstrate the utility of the adaptive approach

in situations of more severe model misspecfication. To do so, we

construct a simulation experiment in which the inference model

upon which the adaptive management is based is as described

here, but in which the underlying transmission model through

which new infecteds are generated is an entirely different, non-

Figure 5. Expected costs under static intervention. Costs under
optimal (2.5, 50, 97.5)-% quantiles for the total cost accrued over 1000
simulations of the epidemic under the optimal variable stop time
strategy based on true parameter values. The mean total cost is 1652
cost units, with quantile bounds (1440,1846).
doi:10.1371/journal.pone.0005807.g005

Adaptive Interventions
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nested transmission model with a latent infective resevoir (see the

amei vignette on CRAN [11] for details). This situation more

closely resembles one that may be encountered in practice, where

new infections are arising from an actual disease transmission

process whose dynamics are at best approximated by any

mathematical characterization. Table 1 compares summaries of

the posterior distribution of cumulative cost arising under adaptive

management to those predicted under the optimal static policy

using parameters estimated for the misspecified model based on a

completely observed epidemic. It is important to recognize that the

adaptive policy is at a severe disadvantage, basing its actions on

parameter estimates produced simultaneously during the course of

a single epidemic (and using vague prior distributions) while the

static policy conditions on parameter estimates obtained from a

completely observed epidemic. In spite of this, the adaptive policy

achieves nearly identical costs.

We have now shown the near equivalence of the adaptive and

static policies in two different scenarios. These situations indicate

that the proposed methodology is efficiently and with sufficient

accuracy estimating the parameters of the transmission model,

such that adaptive strategies based on these on-line estimates

produce equivalent outcomes to those static strategies based on full

retrospective analyses. Moreover, it is simple to demonstrate that

static control measures based on reasonable but imperfect

parameter estimates can lead to substantially worse outcomes/

higher costs than the adaptive policies (Table 2). In real situations,

where actions must be based on parameter estimates made from

incomplete or limited information, the practice of iterative

refinement of estimates and policies is likely to result in

significantly improved outcome.

Discussion

We have demonstrated a novel adaptive management strategy

based on a relatively simple characterization of the underlying SIR

model and the epidemiological cost function. In principle, this

methodological framework can readily accommodate more

complicated disease dynamics such as immigration, latent infected

states, missing data, and vector-communicated diseases, as well as

more complicated intervention strategies that allow combined

vaccination and quarantine. However, the incorporation of such

Figure 6. Simulated epidemics under adaptive management.
(2.5, 59, 97.5)-% quantiles for the numbers of susceptible, infected,
recovered, and vaccinated individuals over 100 simulations of the
epidemic under optimal adaptive management. The mean number of
vaccine units dispensed is 428, with quantile bounds (351,536).
doi:10.1371/journal.pone.0005807.g006

Figure 7. Expected costs under adaptive management.
(2.5,50,97.5)-% quantiles for total cost accrued over 100 simulations of
the epidemic under optimal adaptive management. The mean total
cost is 1665 cost units, with quantile bounds (1450,1888).
doi:10.1371/journal.pone.0005807.g007

Figure 8. Vaccination levels under adaptive management. (2.5,
50, 97.5)-% quantiles for the fraction of susceptibles vaccinated at each
time step over 100 simulations of the epidemic under optimal adaptive
management.
doi:10.1371/journal.pone.0005807.g008

Adaptive Interventions

PLoS ONE | www.plosone.org 5 June 2009 | Volume 4 | Issue 6 | e5807



features is likely to impose a heavy computational burden, and so

model complexity should only be increased when additional

parameters are supported (and identified) by the data and

demanded by the biology. As in all Bayesian analyses, care must

be taken when choosing prior distributions. In this study, our

primary interests required the use of vague/noninformative prior

distributions, in order to demonstrate the estimability of model

parameters. In practice, informative, even pessimistic priors (i.e.,

overestimated infectiousness and mortality, underestimated recov-

ery) may provide useful reference points for the adaptive policy

calculations, especially in situations of acute infections for which

the duration of the epidemic may be too short for incoming data to

dominate the prior information. In such situations, the adaptive

approach still provides the opportunity for data to inform

parameter values if it becomes available, while basing interven-

tions on current parameter estimates as determined by their prior

distributions.

There is an important choice to be made in assigning costs to

the various actions that comprise an intervention strategy. A

monetary valuation scheme is the most straightforward, but it may

be difficult to construct such a scheme that adequately represents

all aspects of the decision. One alternative would be a valuation in

which each cost is chosen to represent a probability of mortality.

In this way, the cost to be minimized would be the expected total

loss of life for the epidemic under a given intervention strategy. By

assuming that the removal rate can be expressed as r~mzv,

where m is the rate of disease-induced mortality and v is the rate of

natural recovery from the infected state, we can set ci~ 1{erð Þ m
r,

so that the cost associated with maintaining a given number of

infected individuals for a unit of time is the number of infected

individuals that are expected to die in a unit of time. Similarly,

situations exist where it is reasonable to assign a probability of

mortality to the removal of susceptibles, as in the cases of smallpox

vaccination or the culling of livestock.

A related extension to this framework would involve applying

a monetary constraint to a loss-of-life cost function. If we were

to assume pi and pr to be, respectively, the probabilities of

mortality associated with untreated infected individuals and the

removal of susceptibles, and define d to be the monetary

resources available for the intervention, then within this

framework it is possible to find the intervention that minimizes

the total loss-of-life subject to the total spending constraint d.

Similarly, it would be possible to optimize with respect to some

selective criterion in order to preserve vaccine efficacy rather

than select unnecessarily for drug-resistant pathogens. Also note

the possibility of calculating policies based on minimization of

some quantile of the realized cost rather than the mean cost.

This would lead to minimization of costs associated with worst

case scenarios, rather than that associated with the average case

scenario. These and other alternative formulations of the

underlying optimization problem can be easily accommodated

in the framework presented here.

The utility of adaptive interventions is especially evident in

situations of an emerging pathogen with which the host

population has no previous experience. In such a situation,

vaccines will not be immediately available at the onset of the

epidemic, and so a methodology for combining currently

available actions while anticipating the future availability of

vaccines would be of great use. Effective epidemiological

intervention requires swift decision in consideration of the various

direct and indirect costs of intervention. The methodological

framework described here provides a decision theoretic basis for

automating this process.

Materials and Methods

All statistical and computational methodology described here

has been implemented in a freely available R package called amei
(Adaptive Management of Epidemiological Interventions), which

can be downloaded at http://cran.r-project.org/web/packages/

amei/index.html [11].

SIR Model
We consider a standard Susceptible-Infected-Removed (SIR)

model [10,12] with no loss of immunity but with mortality. In this

model, the dynamic variables at time t are the number of

susceptible individuals, S(t); the number of infected individuals, I(t);

the number of recovered individuals, R(t); and the number of

removed/dead individuals, D(t). We assume that the population is

closed to immigration such that S(t)+I(t)+R(t)+D(t) = N is constant,

and any three of the dynamic variables define the fourth.

To characterize the transmission of the disease, we adopt the

negative binomial form for the transmission function [13], so that

the model parameters are the transmission rate b, the over-

dispersion parameter k, the death rate m, and the rate of recovery

to the immune class n. Under these assumptions, the SIR model is

described by the following system of differential equations [12,13]:

dS

dt
~{kSlog 1z

bI

k

� �
ð1Þ

dI

dt
~{kSlog 1z

bI

k

� �
{ vzmð ÞI ð2Þ

dR

dt
~vI ð3Þ

Figure 9. Stopping times under adaptive management.
(2.5,50,97.5)-% quantiles for the policy stop time at each time step
over 100 simulations of the epidemic under optimal adaptive
management.
doi:10.1371/journal.pone.0005807.g009

Adaptive Interventions
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Figure 10. Online parameter estimates. Final posterior density estimates for the transmission rate (A), overdispersion parameter (B), recovery
rate (C), and mortality rate (D). ‘‘True’’ parameter values are indicated by a dot, mean posterior values are indicated by an ‘x’, and the central 95%
region of the distribution is shaded. Prior densities on the same regions are shown in red.
doi:10.1371/journal.pone.0005807.g010

Table 1. Expected costs under model misspecification.

2.5%-ile Mean Median 97.5%-ile

Adaptive 1910 2091 2089 2311

Nonadaptive 1888 2085 2085 2295

Comparison of adaptive and nonadaptive policy costs when the inference
model is misspecified. Even though the static policy is based on parameter
estimates obtained after a completely observed epidemic, the costs associated
with adaptive management are similar.
doi:10.1371/journal.pone.0005807.t001

Table 2. Expected costs under imperfect parameter
estimates.

2.5%-ile Mean Median 97.5%-ile

Adaptive 1451 1665 1657 1888

Nonadaptive 1938 2103 2100 2264

Comparison of adaptive and nonadaptive policy costs when static management
is based on imperfect parameter estimates (b~0:001,v~0:9,k~10,m~0).
doi:10.1371/journal.pone.0005807.t002

Adaptive Interventions
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dD

dt
~mI ð4Þ

The negative binomial transmission function implies that disease

transmission occurs following a Poisson process in which

encounters between infected and susceptible individuals are

Poission distributed with the encounter rate varying according to

a gamma distribution with coefficient of variation k{1=2. Via the

parameter k, the negative binomial transmission function can

account for social interactions and/or network factors in disease

transmission, without requiring explicit characterization of the

population structure.

The SIR model formulation also leads immediately to a natural

discrete time approximation for the numbers of infections (~II ),

recoveries (~RR) and deaths ( ~DD) arising in the unit time interval from t

to t+1. Holding the total number of infected individuals I constant

and integrating Equation 1 over a unit time interval gives

S tz1ð Þ~S tð Þ k

kzbI tð Þ

� �k

ð5Þ

so that the fraction of susceptible individuals surviving a unit time

interval is k
kzbI tð Þ

h ik

: Viewed as a discrete time stochastic process,

the number of new infections occurring between time t and t+1

when S(t) = s and I(t) = i can be described by

~II
��s,i*Bin s,pi i,b,kð Þð Þ ð6Þ

where pi i,b,kð Þ~1{ k
kzbi

� �k

and Bin(n,p) is the standard binomial

distribution. Similarly, by integrating Equations 3 and 4, we have

that the numbers of recoveries and deaths occurring between time

t and t+1 can be described by

~RR*Bin i,prð Þ ð7Þ

~DD*Bin i{~rr,pdð Þ: ð8Þ

where pr~1{e{v and pd~1{e{m: The forward dynamics for

the total numbers of susceptible and infected individuals are

therefore individuals are therefore

S tz1ð Þ~S tð Þ{~II s,ij ð9Þ

I tz1ð Þ~I tð Þ{~RR i{~DD
�� ��i,~rrz~ii ð10Þ

Here lower case denotes the realized value of the associated capital

letter random variable. In this discrete time approximation we

have assumed a particular ordering of events, namely that

recoveries occur first, followed by deaths from among those

infected individuals who did not recover, followed by new

infections. Simulation studies indicated that these assumptions,

as well as other possible orderings, resulted in system dynamics

that were approximately equal in expectation to deterministic

solutions of the continuous time SIR model.

In all forward simulations of the disease dynamic (except where

noted) we assume the ‘‘true’’ underlying parameter values to be

those estimated by Murray [9], with the exception of the negative

binomial overdispersion parameter k. Thus, b = 0.00218, n= 0.4,

and m= 0 (no disease-related mortality). We set the overdispersion

parameter to be k = 0.1, in order to produce epidemics that,

without intervention, have run their course by 40 time units but

such that there is variation in the size of the outbreak.

Epidemiological Cost Function
We formulate the total expected cost of the epidemic in terms of

the underlying costs associated with maintaining infected individ-

uals until recovery, suffering death, and administering vaccina-

tions. Let c1 a,c,sð Þ denote the cost associated with interventions

involving susceptibles when S(t) = s. Here a is the fraction of

susceptibles that are moved directly into an immune/recovered

class, as by vaccination, and c is the threshold below which the

intervention is discontinued. Letting cv denote the cost per unit,

then

c1 a,c,sð Þ~
cvas if swc

0 if sƒc

�
ð11Þ

We let c2 ið Þ denote the cost associated with interventions involving

infecteds when I(t) = i. This component includes the costs

associated with maintaining the non-recovered infected individuals

and costs associated deaths, as in

c2 ið Þ~ctizcd
~dd ð12Þ

where ct is the cost per treatment/maintenance of a non-removed

infected individual, and cd is the cost per death.

Assuming the initial epidemiological state is S 0ð Þ~s0, I 0ð Þ~i0,
the expected total cost of the epidemic under intervention strategy

(a,c) can be expressed recursively as

E C0f g~c1 a,c,s0ð Þzc2 i0ð ÞzE C1f g ð13Þ

where E Ctf g denotes the expected cost accumulated from time t

onwards. The optimal intervention strategy (a,c) is the one that

minimizes the total accumulated cost over the course of the

epidemic. Two methods for calculating such strategies are as

follows.

Calculating Variable Stop Time Vaccination Strategies
The total expected cost depends on the parameter values and

the initial epidemiological state s0,i0ð Þ. Thus, conditional on a set

of parameter values, Monte Carlo simulation can be used to

search over values of a and c in order to find the combination that

minimizes E C0f g: For each combination of a and c, with a
ranging from 0 to 0.7 and c from 0 to 750 in increments of 50, we

conduct 100 simulations of the epidemic, using the true parameter

values, in order to estimate the mean cost associated with the

intervention (a,c). The strategy producing the lowest mean cost is

defined to be the optimal intervention.

Calculating Adaptive Management Strategies
As above, the expected cost surface associated with a given set of

parameter values (as obtained by MCMC, described below), can

be explored using standard Monte Carlo methods. At each time

step, MCMC is used to produce 10,000 samples from the current

posterior distribution on model parameters. These samples are

thinned to 100 samples, and for each of these 100 samples the

optimal variable stop time vaccination strategy is calculated as

described above. The adaptive strategy to be implemented at that
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time step is defined to be the most frequently optimal strategy for

the 100 posterior samples.

Notice that if we were to allow the fraction of the population

targeted for vaccination to be a function of future disease states,

rather than a static fraction and a stopping threshold, we could regard

Equation 13 as a stochastic iteration equation and use stochastic

dynamic programming [14] to calculate the optimal intervention

associated with a set of parameter values. Such an approach may be

useful for situations in which knowledge of the disease state is

available, but for whatever reason sequential inference is not possible.

In the situation considered here, in which the static strategy is

sequentially updated based on the current disease state and

parameter estimates, the adaptive strategy that emerges is similarly

flexible, in that it consists of a state-dependent sequence of target

fractions, but does not involve the additional computational burden

associated with stochastic dynamic programming.

Online Parameter Estimation
We use Markov Chain Monte Carlo (MCMC) [15] to learn

about the posterior distribution of of b, k, n, and m conditioned on

the evolution of the epidemic observed so far. The likelihood is

given recursively in Equations 6–8. Assume, at first, that no

intervention strategy is implemented. Let ~iit~S t{1ð Þ{S tð Þ be

the number of new infecteds at time T, and similarly for the newly

recovered and dead individuals ~rrt and ~ddt so that ~rrtz~ddtƒI t{1ð Þ:
Then, the likelihood up to T is given by

p ~ii
	 


, ~rrf g, ~dd
n o

. . .j
� �

~ P
T

t~1
Bin ~iit S t{1ð Þ,p I t{1ð Þ,b,kð Þj
� �

P
T

t~1
Bin ~rrt I t{1ð Þ,prjð Þ P

T

t~1
Bin ~ddt I t{1ð Þ{~rrt,pdj
� � ð14Þ

and we can see that it consists of three mutually independent

components.

Conditional conjugacy can be exploited for n and m via Beta

priors for pr and pd . A Beta ar,brð Þ prior for pr implies that

p vð Þ~ 1{e{vð Þar{1
e{vbr ð15Þ

Conjugate updating leads to the posterior conditional

pr . . .*Beta arz
XT

t~1

~rrt,brz
XT

t~1

I tð Þ{~rrtð Þ
 !����� ð16Þ

The form of the conditional posterior for n is similar to Equation

16 and can be simulated by first drawing pr via Equation 16 and

then applying the inverse transformation v~{log 1{pdð Þ.
Sampling for m proceeds similarly with

pd . . .*Beta adz
XT

t~1

~ddt,bdz
XT

t~1

I tð Þ{~rrtz~ddt

� � !����� ð17Þ

So it is possible to take Gibbs samples for n and m so long as

appropriate ar, br, ad , bd can be found to represent our prior

beliefs. In ignorance we simply set these to unity, leading to

uniform priors on pr and pd .

Obtaining samples for b and k requires the Metropolis–Hastings

algorithm. Our prior beliefs can be encoded with gamma

distributions, and conditional on a previous sample (b,k) the next

sample (b9,k9) can be obtained by Metropolis-within-Gibbs steps

using:

p b’ k, . . .jð Þ!C b’ ab,bbjð Þ P
T

t~1
Bin ~iit S t{1ð Þ,pi I t{1ð Þ,b’,kð Þj
� �

ð18Þ

p k’ b’, . . .jð Þ!C k’ ak,bkjð Þ P
T

t~1
Bin ~ii S t{1ð Þ,pi I t{1ð Þ,b’,k’ð Þj
� �

ð19Þ

For the prior settings, we currently use ab,bbð Þ~ ak,bkð Þ~ 1,3ð Þ
which (though seemingly informative at first glance) turns out be

uninformative on the scale of the support of the posterior. We find

that random walk uniform proposals on the positive real line, i.e.,

b9,U[3b/4,4b/3], gives reasonably good mixing from the Markov

chain, as evidenced by visual inspection of parameter traces and

other convergence diagnostics. More details pertaining to

technical issues such as MCMC convergence appear in the amei
vignette [11].

The presence of a vaccination strategy necessitates a simple

change to the above equations. Replace S(t21) with S t{1ð Þ{vt,

where 0ƒvtƒS t{1ð Þ is the number of susceptibles which have

been vaccinated. Then ~iit~S t{1ð Þ{v~iit{S tð Þ.
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