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Coarse spatial resolution satellites are capable of observing large swaths of the

planetary surface in each overpass resulting in image time series with high

temporal resolution. Many change-detection strategies commonly used in remote

sensing studies were developed in an era of image scarcity and thus focus on

comparing just a few scenes. However, change analysis methods applicable to

images with sparse temporal sampling are not necessarily efficient and effective

when applied to long image time series. We present a statistical framework that

gathers together: (1) robust methods for multiple comparisons; (2) seasonally

corrected Mann–Kendall trend tests; (3) a testing sequence for quadratic models

of land surface phenology. This framework can be applied to long image time

series to partition sources of variation and to assess the significance of detected

changes. Using a standard image time series, the Pathfinder AVHRR Land

(PAL) NDVI data, we apply the framework to address the question of whether

the institutional changes accompanying the collapse of the Soviet Union resulted

in significant changes in land surface phenologies across the ecoregions of

Kazakhstan.

1. Introduction

The response of the Earth system to natural variations and anthropogenic forcings

on the land surface has become an increasingly important question in recent years

due to progress in the numerical modelling of weather and climate. Several Earth

observation programmes have been launched as means to address significant

knowledge gaps about the dynamics of the Earth system. Today, a multitude of

space-borne sensors generate streams of imagery at various spatial, temporal and

spectral scales. The image time series record patterns generated by land surface

processes that have been affected by various biogeophysical processes and

disturbance events, both anthropogenic and otherwise, in addition to the typical

range of variability in meteorological forcings (Potter et al. 2003). To distinguish

change from variation, it is necessary to partition the variability observed in an

image time series into contributions attributable to sensor artifacts, inter-annual

climate variation and anthropogenic disturbances such as changes in policy or

institutions (de Beurs and Henebry 2004a).

Coarser spatial resolution sensors (e.g. the Advanced Very High Resolution

Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer

(MODIS), Medium Resolution Imaging Spectrometer (MERIS)) are able to observe
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7 large swaths of the planetary surface in each overpass, resulting in data records with

high temporal resolution. Many change-detection strategies commonly used in

remote sensing studies were developed in an era of image scarcity with relatively

high spatial resolutions and thus focus on comparing just a few scenes (Jensen 1996).

Change analysis techniques applicable to shorter image time series are not

necessarily efficient or effective when applied to longer image time series. For

example, a shorter image time series may consist of a chronosequence selected at

comparable phenological periods over the span of a few years. Disturbance events

may be poorly localized in time, if the gap between sequential images is too long or

the number of scenes is too few. Thus, discontinuities resulting from disturbance

events may become indistinguishable from trends, when there is a mismatch between

the pace of change and the frequency of image acquisitions. The risk of confounding

variability with change is high with shorter image time series.

In contrast, the long image time series can offer sufficient temporal sampling in

terms of duration and frequency that allow detection of changes amidst substantial

variation. Here, we present a statistical framework within which to discriminate

between discontinuities and trends in a long univariate image time series.

Frequently, changes in univariate image time series are summarized by regression

trend analysis (Fuller 1998, Kogan and Zhu 2001, Lee et al. 2002, Slayback et al.

2003). Typically, yearly integrated data are regressed against time and trend is

expressed as the slope of the regression curve. Other common methods are

autoregressive-moving average (ARMA) linear models (Piwowar and LeDrew

2002), Principal Component Analysis (PCA) (Eastman and Fulk 1993, Shabanov

et al. 2002) and Fourier analyses (Jakubauskas et al. 2001, Moody and Johnson

2001). However, stationarity assumptions, data quality, sensor noise and the

complicatedness of the methods can make it a challenge to quantify the separate

sources of information that influence the signal and to determine what constitutes a

significant change (Nightingale and Phinn 2003). Kaufmann et al. (2000) analysed

from theoretical and empirical perspective the Pathfinder AVHRR Land (PAL)

Normalized Difference Vegetation Index (NDVI) dataset to determine whether the

effects of orbital drift and sensor changes had sufficiently contaminated the PAL

NDVI data to render it useless for change analysis. While these analyses are

powerful, they are not readily adaptable to explore other sources of change and

variation, even within the same dataset. In summary, although a broad range of

methods have been developed to detect and describe changes in long image time

series, there is a dearth of general techniques to assess the statistical significance of

these identified changes.

We compiled a framework consisting of a suite of relatively straightforward

standard statistical analyses that can be applied to partition the sources of variation

in a long image time series and to assess the significances of detected changes. Two

questions motivate the framework:

1. Are there discontinuities in the image time series?

2. Are there trends in the image time series?

The second question distinguishes between (a) increasing and/or decreasing

trends that are independent of observed seasonality within the image time series

and (b) trends in phenology. These questions are addressed in § 5 and § 6 of this

paper, respectively. Phenological trends are here defined as shifts in phenological

patterns, such as changes in the onset and timing of events, as summarized by

1552 K. M. de Beurs and G. M. Henebry
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7 changes to model parameter coefficients rather than to the model structure. To

determine these changes, phenological models are fit for two observational

periods and their parameter estimates are compared to assess significant

differences.

The statistical framework we present here can be applied to a variety of long

image time series – it is not restricted to NDVI data. However, to demonstrate its

power, we apply the framework to the PAL NDVI data recorded for Kazakhstan.

We show that it is possible to distinguish between the several sources of variation

embedded in the PAL dataset and to attribute some of the variation to the

institutional changes following the independence of Kazakhstan in 1991.

2. Image time series

Myriad space-borne sensors with high temporal resolutions (1–3 days) and relatively

coarse spatial resolutions (1–8 km), such as AVHRR, Along Track Scanning

Radiometer (ATSR) on ERS-1&2, Systeme Pour l’Observation de la Terre (SPOT)

Vegetation, MERIS on Envisat, and MODIS on Terra and Aqua, have been

recording comparable data over the planetary surface for several years. However,

most of these sensors have not been in operation long enough to record a sufficient

number of annual image times series to make long-term statistical change analysis

feasible. The AVHRR PAL image dataset provides one of the longer image time

series collected over the past two decades. The PAL NDVI dataset consists of

868 km global 10-day composite images for the period of July 1981 to October

2001. Thus, the PAL dataset provides a model image time series with which to

demonstrate a method of change analysis. Vegetation indices such as the NDVI

have been widely used in studies of land surface condition, including phenological

studies (Myneni et al. 1997, Chen et al. 2001, Tucker et al. 2001, Shabanov et al.

2002), crop development identification (Jakubauskas et al. 2001), weather impacts

on crop growth (Chen et al. 2001, Wang et al. 2001, Labus et al. 2002, Peters et al.

2002) and land cover fraction identification based on land surface phenology

(Moody and Johnson 2001, Lu et al. 2003).

Sensor systems are subject to wear and thus are only expected to be active for a

limited period. Aging satellites are generally replaced after a few years by newer

sensor generations and data producers try to maintain the accumulating dataset as

consistently as possible through calibration techniques. For example, the PAL

NDVI data from 1982 to 1999 were recorded by four different AVHRR sensors on a

sequence of National Oceanic and Atmospheric Administration (NOAA) satellites

(NOAA-7, NOAA-9, NOAA-11 and NOAA-14). When analysing satellite time

series collected by more than one sensor, it is important to ensure that detected

differences and inferred trends reflect land or ocean surface trends, not simply

discontinuities among sensors.

3. Methods

We propose a sequence of three distinct methods to partition the sources of

variation that are captured by the PAL NDVI image time series. The first phase tests

for discontinuities, which we call step changes, in the time series. Specifically, the

suggested tests can evaluate whether average values from multiple periods are

significantly different (figure 1, A). The second phase tests for trends within periods

(figure 1, B). We suggest a powerful and robust alternative to the common practice

Statistical framework for long image time series 1553
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of trend identification via simple linear regression. The third phase tests for

changes in land surface phenology by modelling NDVI as a quadratic function of

accumulated growing degree–days (AGDDs). By accounting for seasonal (intra-

annual) variation, it is possible to test for significant differences in the onset and

tempo of phenological development.

There are two types of errors that can occur when testing hypotheses. Rejecting

the null hypothesis when in fact it is true is called a type 1 error (a). The error made

when the test does not reject the null hypothesis when in fact it is false is called a

type 2 error (b). The power of a test, 1–b, signifies the probability of correctly

rejecting the null hypothesis in favour of the alternative hypothesis (Zar 1984,

Conover 1999).

4. Are there discontinuities (step changes) in the image time series?

Step changes in image time series may be visualized as different averages of the time

series for two or more periods. Discontinuities can occur due to differences in

sensors and/or can be caused by sudden events in the land surface environment.

Independent of the cause for the step changes, it is to be expected that the variances

change with the average values. Furthermore, the data in an image time series often

do not follow a normal distribution and they are not always divisible into periods of

equal duration; thus, statistical methods employed must be capable of handling non-

normal data and unequal numbers of observations.

The following three general assumptions influence both the type 1 and type 2

error rates of standard parametric tests (Dunnet 1980, Day and Quinn 1989,

Keselman et al. 1998).

Figure 1. Discontinuities and trends in responses among generic sensors. There is a step
change (A) between observing periods of sensors 1 and 2. Sensor 2 exhibits a linear trend
during the observation period (B).

1554 K. M. de Beurs and G. M. Henebry
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7 1. Equal population variances. The variance of each period should be more or less

equal. The greater the variance differences between periods, the greater the

type 1 error.

2. Normality. The data should follow a normal distribution. If the data do not

follow a normal distribution an appropriate data transformation might be

applied. An alternative solution is to apply a non-parametric test. However,

since parametric tests generally are more powerful than non-parametric tests,

data transformation is preferable to using a non-parametric test simply to

avoid testing for a normal distribution.

3. Equal sample size. Periods should have an equal number of observations, so

the periods should be of equal duration. Violation of this assumption is only

damaging in the case of unequal population variances and/or non-normality

of the data.

To avoid distorted results when testing for significant differences between

multiple periods of an image time series, it is necessary to select methods that are

robust against all three violated assumptions. If the data follow a normal

distribution, we propose use of the C-method, a parametric method that is robust

for unequal variances and unequal sample sizes. When the data are not normally

distributed and a data transformation fails to yield the desired results, we suggest the

Fligner–Policello test.

4.1 The C-method

The C-method is an extension of Cochran’s test under unequal variances and is

considered the best way to describe comparison problems with large sample sizes

(Dunnet 1980, Stoline 1981, Day and Quinn 1989). The critical value for the test

should be calculated for each pair of periods separately. If the difference between

two means is larger than the critical value, the null hypothesis is rejected. The critical

value of the C-method is given by:

Critical value~ Qa m,dfð Þs
2
i

�
nizQa m,dfð Þs

2
j

.
nj

h i� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 s2

i

.
nizs2

j

.
nj

� �r
ð1Þ

The test incorporates the variances (si
2 and sj

2) and the sample sizes (ni and nj) of

both periods (i, j). The critical value is based on the ‘Studentized range’, Qa(m,df),

and is dependent upon the a-level, the total number of means that are being tested

(m) and the error degrees of freedom (df ) of the analysis. Qa(m,df ) follows the

q-distribution and tables can be found in most standard statistical software packages

and texts (e.g. Zar 1984).

4.2 The Fligner–Policello test

Non-normal data should be submitted to the Fligner–Policello (FP) test. The FP test

is a non-parametric test for unplanned comparisons and unequal sample sizes. It is

one of the few tests that permits unequal variances. The test statistic of the FP test is

given by:

Test statistic~
X

Pi{
X

Pj

� ��
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Pi{Pi

� �2
z
X

Pj{Pj

� �2
zPiPj

q� 	
ð2Þ(2)

Statistical framework for long image time series 1555
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7 The test statistic should be calculated with period i longer than j. This test statistic

is based completely on the ‘placement’ (P) of observations within the two periods,

i.e. the rank of that observation for the combined sample of both periods. With large

sample sizes, as is usually the case when we test differences of long image time series,

the critical values are based on the standard normal distribution. To maintain an

exact a-level, the test should be corrected for the total number of comparisons

performed with the Dunn–Sidák method (Fligner and Policello 1981, Day and

Quinn 1989), where we set the significance levels as:

b~1{ 1{að Þ1=m ð3Þ

where m is the number of comparisons. With a50.05 and six comparisons,

b50.00851, so that (1–0.00851)650.95. With an adjusted significance level of

b50.00851 we manage to keep the a-level of all six tests simultaneously at 0.05.

5. Are there linear trends in the image time series?

Many authors report trends in image time series as the slope parameter resulting

from regression analysis (Fuller 1998, Chen et al. 2001, Kogan and Zhu 2001,

Tucker et al. 2001). Linear regression always results in parameter estimates but these

parameters are not always significantly different from zero. Many studies that

report the slope parameter fail to report the associated error and the overall error of

the linear regression model. Furthermore, there are four assumptions that are

generally violated when trend lines are estimated from long image time series using

regression:

1. All Y values should be independent of each other.

2. Residuals should be random, follow a normal distribution, and be

independent of the explanatory (independent) variable.

3. The mean of the residual distribution should be zero.

4. The variance of the residuals should be an equal constant for all values of X.

Parameter estimates generated by linear regression generally remain unbiased and

linear even if these assumptions are violated; however, the calculated significance of

the estimated parameters becomes unreliable. For long-term image time series this

translates into an increased probability of falsely rejecting the null hypothesis of no

trend.

Statistical trend tests provide a more appropriate way to describe trends in long

time series (Dietz and Killeen 1981, Hirsch and Slack 1984). However, most image

time series are dependent on processes that are temporarily correlated, causing the

failure of standard trend tests (von Storch and Navarra 1999). Serial dependence is

often referred to as temporal autocorrelation (rk), which is the correlation between

residuals of observations of the same variable at different points in time. To test for

significant trends in satellite time series, it is crucial to use a test that is corrected for

serial dependency. The seasonal Mann–Kendall trend test is completely rank-based

and therefore robust against non-normality, missing values, seasonality and, if

corrected, serial dependence as well.

Hirsch and Slack (1984) provide a test with correction for serial dependence in

seasonal data. The time series is first decomposed into a series of non-overlapping

1556 K. M. de Beurs and G. M. Henebry
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7 subsets of equal length (here, 10-day periods) and an X-matrix is generated in the

following form:

X~

X11 X12 . . . . . . X1p

X21 X22 . . . . . . X2p

. . . . . . . . .

. . . . . . . . .

Xn1 Xn2 Xnp

2

6666664

3

7777775

ð4Þ

where p is the number of observations within one year, or the number of subsets,

and n is the number of years.

The Mann–Kendall test statistic for a particular subset g is based on the

observation ranks of that same subset across all years in the time series. The test

statistic is calculated by summing the number of times a particular year has a higher

value than any previous year. With

sgn xð Þ~z1 xw0

sgn xð Þ~0 x~0

sgn xð Þ~{1 xv0

ð5Þ

the Mann–Kendall test statistic for each subset g has the form

Sg~
X

ivj

sgn Xjg{Xig

� �
g~1,2, . . . ,p ð6Þ

where i and j are respectively the ith and jth year in the time series (i51 … n21;

j52 … n). For example, to calculate the Mann–Kendall test statistic for a particular

10-day period based on five years of observations (n55), we determine the number

of times that the observations of all the years are larger than any previous year. A

positive trend with all observations increasing would yield a maximal value for the

Mann–Kendall test statistic (Sg510 for n55).

The seasonal Kendall test statistic for the complete time series is defined as the

sum of all Mann–Kendall statistics from each subset:

S0~
Xp

g~1

Sg ð7Þ

where S9 is asymptotically normal with a mean of 0 and the variance is defined as

the sum of the variances of every subset plus the sum of the covariances of every

combination of subsets:

var S0½ �~
X

g

s2
gz

X

g,h
g=h

sgh ð8Þ

where g and h are defined as subsets in the time series. If the data from all subsets are

mutually independent, the covariance is zero. However, in the case of dependency

between the subsets, the covariance between the subsets is defined (Dietz and Killeen

1981) as

ŝgh~
Kgh

3
z

n3{n
� �

rgh

9
ð9Þ

Statistical framework for long image time series 1557
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7 where

Kgh~
X

ivj

sgn Xjg{Xig

� �
Xjh{Xih

� �
 �
ð10Þ

n is the number of years in the time series, rgh is Spearman’s correlation coefficient

for subsets g and h, and i and j represent the years. Larger sample sizes generate

more conservative tests but only five years’ data with 12 observation per year

(60 observations, n55, p512) can generate reliable results (Hirsch and Slack 1984).

6. How does the phenology of a landscape change? Are there changes in seasonality?

Many authors have found relationships between NDVI, temperature and

precipitation (Di et al. 1994, Richard and Poccard 1998, Potter and Brooks 2001,

Wang et al. 2001, Foody 2003, Ji and Peters 2003). Several studies have found

significant relations between climate variables and NDVI globally (Myneni et al.

1997, Kawabata et al. 2001, Potter and Brooks 2001, Potter et al. 2003), while others

have monitored the relationship between climate variables and NDVI in specific

regions, such as Australia (Hill and Donald 2003, Nightingale and Phinn 2003),

China (Chen and Pan 2002, Li et al. 2002), and Central Asia (Lee et al. 2002, Suzuki

et al. 2003). In every study the authors found significant relationships of both

temperature and precipitation with NDVI.

We accept the relation between NDVI and climate as amply demonstrated; what

we are interested in here are land surface phenology changes through time. We make

the distinction here between a change in phenology and a phenological change. The

former relates to change in the kind of model used to describe the phenological

pattern, such as a change from woodlands to croplands. The latter refers to shifts in

the parameter coefficients of the model used to describe the phenological pattern.

These shifts can result in significant differences in the onset and timing of pheno-

logical events, but the general shape of the phenological pattern remains the same.

Plant phenology models relate thermal regimes of the growing season with events

in plant development (Schwartz 2003). The thermal regime of the growing season

can be measured as accumulated growing degree-days (AGDDs) by summing

growing degree–days from some consistent start date until a specific subsequent

date. For most wheat varieties a base temperature of 0uC is chosen (Rickman

and Klepper 1991). Assuming a standard Northern Hemisphere start date of 1

January and an effective temperature threshold of 0uC, AGDDs are calculated as

follows:

GDD~
TmaxzTminð Þ

2

AGDD~
X31 Dec

01 Jan

GDD, if GDDw0

ð11Þ

Thermal-based regression models using AGDDs as the explanatory variable have

been regularly used in crop phenology studies to describe and predict the green-up,

flowering, fruiting and senescence stages of crops and grasslands and to compare

multiple crop varieties (Goodin and Henebry 1997, Mitchell et al. 2001, Smart et al.

2001, Davidson and Csillag 2003). Here, we propose to use this method to analyse

changes in long image time series using AGDDs instead of calendar dates. This

allows us to align the imagery using a temporal metric that is relevant to land

1558 K. M. de Beurs and G. M. Henebry
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7 surface phenology instead of an arbitrary anthropocentric calendar. Although we

demonstrate how to compare quadratic models, the method of comparison is

generic and can be easily applied to higher order or more complicated models and it

is not restricted to the regression of NDVI with AGDDs.

We summarize the development of NDVI as a function of AGDD using a

quadratic model:

NDVI~azbAGDDzcAGDD2 ð12Þ

where NDVI is a vector with all NDVI values for a certain period and AGDD is a

vector with all AGDD values for the same period. The intercept parameter a
measures the greenness expressed as NDVI at low AGDD. An increased intercept

points to an increase in greenness at the beginning of the observational season. (It is

important to distinguish between the beginning of the growing season and the

beginning of the observational season as they may not coincide, as is the situation in

the case study presented below.) The slope parameter b measures the sum of

growing degree–days necessary to reach the seasonal peak of NDVI. The quadratic

parameter c determines the shape of the model with smaller c values producing

broader curves and a longer season.

Quadratic phenology models (equation (12)) regressing NDVI with AGDD have

been demonstrated to provide a parsimonious model to describe seasonal NDVI

variability (Goodin and Henebry 1997, de Beurs and Henebry 2004a). Furthermore,

each model parameter has a ready ecological interpretation. Phenology regression

models can only reveal changes in phenological pattern between periods if the model

explains a significant proportion of NDVI variation. The fraction of all variance in

NDVI that is explained by multiple regression models can be expressed by the

coefficient of determination adjusted for model complexity (R2
adj). Once a model

with a good statistical fit has been identified, values of the parameter coefficients can

give insight into the processes that drive land surface phenology.

We propose to fit the given model (equation (12)) for each period of interest so

that the parameter estimates from the models enable detection of change in the

pattern of land surface phenology. The testing sequence to compare parameter

coefficients begins with a standard F-test for equality of the highest order

parameters of two periods. The test procedure ends when a significant difference

between the parameter coefficient estimates for two periods is found. If a pair of

parameter coefficient estimates is found to be not significantly different, the two

parameter coefficients are weighted by the sum of squares of the observations from

both periods and this new single coefficient is used to re-estimate the lower order

parameter coefficients in each period. The test procedure is followed until the lowest

order parameter coefficient, typically the intercept, is tested. If no significant change

is found for any parameter coefficient, we can conclude that the estimated

phenology models for both periods are statistically equivalent. This method can be

applied to higher order polynomials; however, we found that second-order

polynomials explain the variation sufficiently.

The coefficients of two quadratic models can differ in 15 distinct ways from one

period to the next. We divide these 15 possibilities into four overall change

behaviours (Type I, II, III and IV in figure 2). First, we have the possibility that

there is no phenological change from one period to the next (Type I). In the second

case (Type II), we only find a change in the intercept coefficient between the two

Statistical framework for long image time series 1559
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periods. The intercept can increase or decrease between periods, resulting in two

change options within Type II. Type III supports differing intercepts and linear

coefficients with a constant quadratic coefficient. Since two coefficients can increase

or decrease, there are four options within Type III. The last change behaviour (Type
IV) presents the possibility that all coefficients change from one model to the next.

Three variable coefficients yield eight change options within Type IV.

7. Residual analyses

Residuals of regression models are good indicators of model fit. Well-fit models

produce normally distributed random errors with zero mean that exhibit no patterns

of relationship with the independent variables. Well-fit models produce no

significant differences in average residuals and no trend in any period.

Figure 3 gives the complete scheme of our analysis framework, which we divided

into a sequence of three sections. The first section (a) demonstrates the statistical

method used to analyse significant differences in averages from multiple time series.

There are n groups of input data for which normality is first evaluated. If all input

data are normally distributed, the C-method is applied. If the data are not normally

distributed, the FP test is applied. If there is a significant difference between two

groups, we call this a step change. The second section (b) demonstrates the

application of the trend test. The p-values give an indication of the significance of
detected trends. The last section (c) demonstrates the testing sequence to determine

phenological differences between two time series. First, a phenological model is fit

Figure 2. Four possible phenological change behaviours: Type I, no change; Type II, overall
increase in NDVI; Type III, increased NDVI at lower AGDD and earlier peak; Type IV,
increased NDVI at lower AGDD, earlier peak and longer period of elevated NDVI.

1560 K. M. de Beurs and G. M. Henebry
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Figure 3. Schematic diagram of the complete analysis to partition sensor-driven variation, weather-driven variation and institutional change. (a) The
statistical method used to analyse significant differences in averages from multiple time series. (b) Application of the trend test. (c) The testing sequence used
to determine phenological differences between two time series.
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7 for each time series separately. If the phenological model fits well, the parameter

coefficients of the models are compared. The residuals of each phenological model

are then submitted to a residual analysis to confirm correct model fits.

8. Case study

8.1 Background

Kazakhstan is the ninth largest country in the world covering the area from the

Caspian Sea in the west to the Chinese border in the east, Uzbekistan in the south

and Russian Siberian in the north. The total surface area is 2.72 million km2, divided

into nineteen terrestrial ecoregions according to the World Wildlife Fund (Olson

et al. 2001).

During the Virgin Lands Programme, between 1953 and 1956, Kazakhstan’s

principal export products became cereal grains (mostly wheat), wool and meat. This

continued to independence in 1991, at which time Kazakhstan supplied 27% of the

Russian demand for wheat (Kaser 1997). Most of the wheat supply was spring

wheat. Until the 1980s, most of the cultivated area belonged either to collectives or

state farms, but the management was always highly centralized (Johnson and

McConnel Brooks 1983). Most decisions were developed from Moscow, based on

annual and five-year plans. This centralized planning led to large inter-annual

variation in agricultural output (Johnson and McConnel Brooks 1983, see also

Brada 1986).

As a result of the collapse of the Soviet Union in 1991, centralized planning

ceased, inter-governmental trade agreements were postponed, and there was a

decline in Russian demand of goods from Kazakhstan. The agricultural sector

responded to these shocks with a decrease in wheat area cultivated, sharp declines in

cattle and sheep numbers, large decreases in pesticide and fertilizer use, and an

eventual decline in agricultural machinery (Baydildina et al. 2000).

8.2 Data preparation

PAL NDVI data have been corrected for changes in sensor calibration, ozone

absorption, Raleigh scattering and sensor degradation after pre-launch calibration,

and have been normalized for changes in solar zenith angle (Kaufmann et al. 2000).

Additionally, cloud contamination was minimized using the maximum value

compositing technique by generating 10-day composites. A version of the modified

best index slope extraction algorithm (Lovell and Graetz 2001) was applied to the

data to remove remaining cloud contamination and artifacts left by the maximum

value compositing technique. We selected the NDVI composites for Kazakhstan

during the growing season from the last 10-day period of April through September

from two sensors: NOAA-9 (1985–1988, n564 images) before institutional change

and NOAA-14 (1995–1999, n580 images) after institutional change. Composites

from NOAA-7 and NOAA-11 were excluded because of documented sensor

artifacts that could result in the detection of spurious trends (de Beurs and Henebry

2004b). From these data we arbitrarily selected 19 continuous representative subsets

of 1600 km2, one for each ecoregion in Kazakhstan (figure 4). We averaged the

pixels within each subset to create 19 separate time series each spanning 144 image

composites. Ecoregions as defined by the WWF reflect the potential vegetation

(Olson et al. 2001); however, vegetation can change within a region under

1562 K. M. de Beurs and G. M. Henebry
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anthropogenic influence and, indeed, croplands are the dominant land cover in

certain ecoregions.

In figure 4 the ecoregions are colour coded: dark green represents the ecoregion
with the highest average NDVI and yellow the ecoregion with the lowest NDVI. The

highest average NDVI occurs in the Altai Mountains of eastern Kazakhstan. The

largest ecoregions are desert regions in central and south Kazakhstan. While both

the ‘Pontic steppe’ and the ‘Kazakh steppe’ are steppe areas in Kazakhstan, much of

these grasslands have been converted to dryland agriculture.

8.3 Auxiliary climate data

Climate in several parts in the world is observable only through sparse networks of

weather stations. Kazakhstan is one such area. Many of the observational records at

available stations are short or patchy and fail to cover the entire observational
period from 1985 to 1999. Furthermore, most of the available data have been

summarized into monthly averages. There are not enough weather station data

available to fit phenological models reliably at finer (sub-monthly) resolutions. To

address this data gap, we used air temperature data from the National Center for

Environmental Prediction – National Center for Atmospheric Research (NCEP–

NCAR) Reanalysis Project (Kalnay et al. 1996, Kistler et al. 2001) as a surrogate

dataset. The NCEP–NCAR Reanalysis dataset provides daily maximum and

minimum temperature data (in K) at 2 m with global coverage, albeit at coarse
spatial resolution. The Gaussian grid for a global coverage consists of 192694

pixels, corresponding to a resolution of 1.875u61.91u, or roughly 2u by 2u lat/long.

Figure 4. Kazakhstan as partitioned into 19 WWF ecoregions. The larger ecoregions are
desert and steppe regions. The ecoregions are colour coded according to their NDVI values
with greener shades indicating higher average NDVI.

Statistical framework for long image time series 1563
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7 We summarized the daily data into 10-day composites that correspond to the 10-day

NDVI composites. We tested for significant differences using the FP test as well as

for trends.

9. Results

9.1 Is the average NDVI before and after institutional change significantly different?

We applied the C-method to the seven ecoregions that were log-normally

distributed; data from the remaining ecoregions were submitted to the non-

parametric FP test. Table 1 shows significances resulting from the comparisons

between data before and after institutional change. The ecoregions are rank ordered

from highest average NDVI to lowest average NDVI.

We found four ecoregions with significant differences (a50.10). There were no

ecoregions with significantly different growing degree–days between the two periods.

We concluded that temperature increases were not responsible for the observed

changes.

9.2 Is there a trend in the image time series?

Table 2 presents the p-values resulting from the corrected seasonal Mann–Kendall

test for NDVI. The ecoregions with significant trends in growing degree–days are

shown in bold font.

Table 1. Significant differences from the comparisons of NOAA-9 and NOAA-14 extracted
from the multiple comparisons of all sensors. In the case of a normal distribution of the data
in both periods, the C-method was applied. In the case of non-normality, the non-parametric

Fligner–Policello test (FP) was applied. (**5significant at 0.10 level)

Ecoregion Test Significance

1 Altai montane forest and forest steppe FP **

2 Altai steppe and semi-desert FP
3 Tian Shan montane conifer forest FP **

4 Altai alpine meadow and tundra FP
5 Kazakh forest steppe FP
6 Tian Shan montane steppe and meadow FP **

7 Kazakh upland FP
8 Kazakh steppe C
9 Gissaro-Alai open woodlands C **

10 Central Asian riparian woodlands FP **

11 Junggar Basin semi-desert FP
12 Emin Valley steppe C
13 Pontic steppe FP
14 Tian Shan foothill arid steppe FP
15 Alai-Western Tian Shan steppe C
16 Kazakh desert C
17 Caspian lowland desert C **

18 Central Asian northern desert C **

19 Central Asian southern desert C

Note: The Fligner–Policello test has a significance level with Dunn–Sidak correction,
b512(12a)1/m, with m the number of comparisons made. The a-level was chosen as 0.10, and
there were six comparisons, resulting in a significance level of b50.017. All p-values smaller
than the significance level were considered significant.

1564 K. M. de Beurs and G. M. Henebry
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We found four ecoregions with a significant trend either before or after

institutional change. There were two ecoregions with significant trends both before

and after: the Gissaro-Alai open woodlands and the Tian Shan foothill arid steppe.

These ecoregions also displayed trends in growing degree–days in one of the time

periods.

9.3 Did the land surface phenologies in Kazakhstan change after independence?

In this section we restrict our attention to the ecoregions for which the regression

models explained a significant proportion of NDVI variation (R2
adj.0.5) for at least

one of the periods (NOAA-9 or NOAA-14). Table 3 presents the final models with

R2
adj and the model type found for each ecoregion.

Not surprisingly, we found that the variability in the NDVI from ecoregions with

higher values is better explained by AGDDs than the variability of the NDVI from

desert and arid steppe regions. In contrast to the well-vegetated regions in northern

Kazakhstan, the arid regions in the south are usually moisture limited.

We were able to identify twelve ecoregions with well fitting models. Four

ecoregions followed Type IV behaviour with all parameter coefficients different

between the first and the second period (figure 5(a)–(d )). These ecoregions are

located in the foothills and higher elevations of the Altai Mountains in eastern

Kazakhstan and are the regions with highest average NDVI. Altai montane forest

and forest steppe was the only ecoregion that peaked at a later bioclimatological

time (+ 300uC AGDD) after institutional change. The other three ecoregions with

Type IV behaviour all peaked earlier (216uC, 263uC and 271uC). We found that all

four regions displayed an increased intercept (36%, 48%, 158% and 122%),

Table 2. The p-values of the corrected seasonal Mann–Kendall test from the periods of
NOAA-9 and NOAA-14 for all ecoregions. Values in bold font represent a significant trend
(p,0.05) in the growing degree–days from the same periods. There are only two ecoregions

with a significant trend in both NDVI and growing degree–days simultaneously.

Ecoregion
NOAA-9

(1985–1988)
NOAA-14

(1995–1999)

1 Altai montane forest and forest steppe 0.06 0.41
2 Altai steppe and semi-desert 0.10 0.38
3 Tian Shan montane conifer forest 0.12 ,0.01
4 Altai alpine meadow and tundra 0.09 0.30
5 Kazakh forest steppe 0.04 0.24
6 Tian Shan montane steppe and meadow 0.11 0.18
7 Kazakh upland 0.19 0.46
8 Kazakh steppe 0.22 0.19
9 Gissaro-Alai open woodlands 0.04 ,0.01
10 Central Asian riparian woodlands 0.22 0.13
11 Junggar Basin semi-desert 0.50 0.23
12 Emin Valley steppe 0.04 0.05
13 Pontic steppe 0.07 0.14
14 Tian Shan foothill arid steppe 0.02 0.02
15 Alai-Western Tian Shan steppe 0.25 0.11
16 Kazakh desert 0.06 0.11
17 Caspian lowland desert 0.19 0.01
18 Central Asian northern desert 0.06 0.16
19 Central Asian southern desert 0.15 0.43
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indicating higher NDVI values at the end of April when our seasonal observational

period commenced.

We found Type III behaviour for the three most northern ecoregions, Kazakh

forest steppe, Kazakh upland and Kazakh steppe (figure 5(e)–(g)). Estimates for the

quadratic coefficients were equal in both periods, while the linear coefficients

decreased and the intercepts increased. The lower linear coefficients resulted in a

peak NDVI at fewer AGDD (291uC, 2171uC and 2125uC, respectively) and the

intercepts increased (43%, 77% and 62%, respectively). These three ecoregions are

located in Kazakhstan’s spring wheat belt. Prior to institutional change there were

vast areas of dryland spring wheat cultivation throughout the region. Following

institutional change spring wheat cultivation was reduced and, in marginal lands,

abandoned. These areas were not directly added to the rangelands, since there was a

concomitant decline in livestock. We concluded that the seasonal advancement and

accompanying increase in NDVI at the beginning of the observed growing season is

Table 3. Phenological models for all ecoregions with well fitting quadratic models (R2
adj.0.5

in at least one period). The first model is based on NOAA-9 data and the second model is
based on NOAA-14 data. The models are divided into four change types from the period of
NOAA-9 to NOAA-14 (I5no change, II5intercept change, III5change in intercept and

slope, IV5 all parameters change).

Ecoregion Model (NOAA-9 and NOAA-14) R2
adj Type

1 Altai montane
forest and forest
steppe

0.285+1.08961023 AGDD25.95861027 AGDD2 0.86 IV
0.388+6.76761024 AGDD22.79161027 AGDD2 0.74

2 Altai steppe and
semi-desert

0.264+7.29761024 AGDD23.28861027 AGDD2 0.78 IV
0.391+4.90861024 AGDD22.24461027 AGDD2 0.69

4 Altai alpine
meadow and
tundra

0.111+9.70961024 AGDD24.06461027 AGDD2 0.77 IV
0.287+6.84161024 AGDD23.02461027 AGDD2 0.74

5 Kazakh forest
steppe

0.184+6.28461024 AGDD22.41261027 AGDD2 0.75 III
0.263+5.84661024 AGDD22.41261027 AGDD2 0.74

6 Tian Shan
montane steppe
and meadow

0.134+8.64761024 AGDD23.85561027 AGDD2 0.83 IV
0.298+6.16761024 AGDD22.93561027 AGDD2 0.64

7 Kazakh upland 0.150+5.79961024 AGDD22.00261027 AGDD2 0.72 III
0.243+5.29861024 AGDD22.00261027 AGDD2 0.84

8 Kazakh steppe 0.120+5.57961024 AGDD22.00261027 AGDD2 0.76 III
0.212+4.89461024 AGDD22.00261027 AGDD2 0.68

9 Gissaro-Alai
open woodlands

0.44622.83061028 AGDD2 0.73 II
0.49122.83061028 AGDD2 0.59

10 Central Asian
riparian wood-
lands

0.062+2.98161024 AGDD26.48061028 AGDD2 0.74 II
0.119+2.98161024 AGDD26.48061028 AGDD2 0.86

11 Junggar Basin
semi-desert

0.192+3.20761024 AGDD21.54061027 AGDD2 0.35 I
same model 0.76

14 Tian Shan
foothill arid
steppe

0.153+2.21261024 AGDD28.44061028 AGDD2 0.20 I
same model 0.60

15 Alai-Western
Tian Shan
steppe

0.30427.41861025 AGDD+8.30061029 AGDD2 0.67 I
same model 0.46
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Figure 5. Final models of ecoregions with well fitted models in at least one period
(R2

adj.0.5). The ecoregions are ordered by average NDVI with the high NDVI ecoregion first.
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a result of the decline in wheat area in the selected regions. In a related study we

focused on the land cover changes in agricultural areas of Kazakhstan (de Beurs and

Henebry 2004a) and, using a different spatial partitioning that divided Kazakhstan

into functional response regions, we demonstrated that there have been significant

changes in land surface phenology in northern Kazakhstan.

Both of the woodland ecoregions, Gissaro-Alai open woodlands and Central

Asian riparian woodlands, exhibit Type II behaviour (figure 5(h), (i)). We found an

increase in intercept after institutional change, while the other two parameter

coefficients remained constant. The intercept increase was only 10% in the Gissaro-

Alai open woodlands in contrast to 92% in the other region. The Central Asian

riparian woodlands are located around the Syr-Darya River in southern

Kazakhstan and are mostly used for irrigated rice and cotton cultivation.

We found Type I behaviour in Junggar Basin semi-desert, Tian Shan foothill arid

steppe and Alai-Western Tian Shan steppe, indicating no change in phenology

between the two periods (figure 5(j)–(l )). There were no significant differences in

average NDVI and no significant trends in these regions, except in the Tian Shan

foothill arid steppe. Although we interpret these models with caution because the

R2
adj is lower than in the agricultural areas, we suggest that the stability of these

phenological models supports the assumption of stable desert land cover in these

regions.

Well fitting regression models should result in no trends in the residuals and an

expected average residual value of zero. The residuals of the models from all

ecoregions and each period are slightly smaller in the middle of the growing season

around the peak NDVI. However, this decrease is very small and, since the residuals

Figure 5. (Continued.)

1568 K. M. de Beurs and G. M. Henebry



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
lb

er
ta

 L
ib

ra
ry

] A
t: 

18
:2

8 
24

 S
ep

te
m

be
r 2

00
7 are random for the rest of the growing season and have an expected mean of zero,

we concluded that the models fit the data well. Model fits of the two time periods

combined result in residuals that reveal patterns similar to what we have shown with

the phenological models. Further residual analyses did not reveal additional

information and therefore the results are not reported.

10. Conclusions

In this paper we have presented a statistical framework for the analysis of long

image time series. First, we have discussed the importance of the proper use of

parametric and non-parametric statistical methods for long image time series

analyses. We indicated that the probability of type 1 and type 2 inferential errors can

increase dramatically if the assumptions of commonly used statistical methods are

violated. We suggested both a parametric and a non-parametric method for the

analyses of discontinuities in the image time series, robust against unequal sample

sizes and unequal variances. Furthermore, we discussed the risks of trend analysis

by simple linear regression and offered an alternative procedure for trend testing

that is robust against serial dependence, seasonality and non-normality. We also

discussed a method to test for significant changes in phenological pattern between

time periods.

To demonstrate these methods, we applied the statistical framework to PAL

NDVI data over the ecoregions of Kazakhstan. The primary question in this

application was whether the institutional changes in Kazakhstan were of significant

magnitude to alter the land surface phenologies of the various ecoregions. The

ecoregions with significant phenological models for at least one time period revealed

only three general change types. Two ecoregions had a higher overall greenness,

three ecoregions displayed earlier peaks and higher greenness at low growing

degree–days, and three ecoregions displayed earlier peaks and higher greenness for

low growing degree-days with extended green periods. We argued that the changes

as revealed by the statistical framework do not result from temperature variability

or from sensor artifacts but are understandable from the available socio-economic

literature, as we have discussed for agricultural areas elsewhere (de Beurs and

Henebry 2004a).

Agricultural areas were expected to show the effects of institutional change most

clearly. As institutional changes affected agricultural policy and planning, the

resulting changes in the extent and intensity of cultivation would affect land surface

phenology. While a previous study used a functional partitioning of selected

agricultural regions (de Beurs and Henebry 2004a), here the ecoregional partitioning

of the entire country provided an equitable analysis of the differential effects on land

surface phenologies. Both studies have produced comparable findings, although in

this study we found that the changes were more dramatic in agriculturally

dominated ecoregions than in woodlands or deserts – a finding that is in accordance

with our expectations.

Yet, another piece of the puzzle remains. Precipitation is a key factor in most

ecoregions in Kazakhstan. Droughts have a major impact in land surface

phenology, especially in the spring wheat belt of northern Kazakhstan leading to

high inter-annual variation in grain production (Spivak et al. 1997, Morgounov et

al. 2000). Here we did not treat variability resulting from variation in precipitation

because available datasets generally did not have a fine enough spatial or temporal

resolution or did not extend over the entire period of study. As a result there is a

Statistical framework for long image time series 1569
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7 portion of the variation in the data that we cannot adequately explain, but which

could likely be explained in large part by seasonal and inter-annual variation in

growing season precipitation, were these data available.

Data limitations aside, the statistical framework we have presented in this paper is

capable of partitioning the variation observed in image time series into variations
due to sensor artifacts, inter-annual temperature variation and human-induced

variation such as policy change. Although we have restricted our demonstration of

the statistical framework to subsampled averages, it is possible to apply the

framework to other aspects of image time series, such as the spatial structure. In the

context of social debates on the pace and extent of global change and amidst the

confounding effects arising from a lack of observational continuity, it is critical that

studies of land cover and land use change follow statistical methodologies that are

able to discern with confidence the average from the unusual and expected variation
from significant change.
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