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Abstract. Growth is a fundamental biological process, driven by a multitude of intrinsic
(within-individual) and extrinsic (environmental) factors, that underpins individual fitness and
population demographics. Focusing on the comprehensive information stored in aquatic and
terrestrial organism hard parts, we develop a series of increasingly complex hierarchical models to
explore spatial and temporal sources of growth variation, ranging in resolution from within
individuals to across a species. We apply this modeling framework to an extensive data set of
otolith increment measurements from tiger flathead (Platycephalus richardsoni), a demersal
commercially exploited fish that inhabits the warmingwaters of southeast Australia.We recreated
growth histories (biochronology) up to four decades in length from seven fishing areas spanning
this species’ range. The dominant pattern in annual growth was an age-dependent, allometric
decline that varied among individuals, sexes, fishing areas, years, and cohorts. We found evidence
for among-area differences in growth-rate selectivity, whereby younger fish at capture were
generally faster growers. Temporal growth variation was partitioned into two main sources:
extrinsic year to year annual fluctuations in environmental conditions and persistent cohort-
specific growth differences, reflecting density dependence and/or juvenile experience. Despite low
levels of among-individual growth synchrony within areas, we detected a regionally coherent
signal of increasing average growth rate through time, a trend related to oceanic warming. At the
southerly (poleward) range limit, growth was only weakly related to temperature, but farther
north in warmer waters this relationship strengthened until closer to the species’ equatorward
range limit, growth declined with increasing temperatures. We partitioned these species-wide and
area-specific phenotypic responses into within- and among-individual components using a
reaction norm approach. Individual tiger flathead likely possess sufficient growth plasticity to
successfully adapt to warming waters across much of their range, but increased future warming in
the north will continue to depress growth, affecting individual fitness and even population
persistence. Our modeling framework is directly applicable to other long-term, individual-based,
data sets such as those derived from tree rings, corals, and tag–recapture studies, and provides an
unprecedented level of resolution into the drivers of growth variation and the ecological and
evolutionary implications of environmental and climatic change.
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INTRODUCTION

Detecting and attributing change in ecology can be

difficult due to the multitude of potential natural and

anthropogenic driving factors, as well as the underlying

complexity of responses at individual, population,

species, and assemblage scales (Harley et al. 2006,

Parmesan et al. 2011). Insight into ecological change is

therefore best achieved by collecting data on a scale

commensurate to its likely causes and consequences

(Hewitt et al. 2007) or through the development of an

understanding of the key physiological mechanisms that

underpin observed responses (Portner 2001, Kearney

and Porter 2009). Too often, however, inferences have to

be drawn from short-term and small-scale observational

studies and from experiments that are limited in scope

relative to the suite of potential interacting processes

and drivers. This is particularly true for marine

organisms and environments, for which long-term data

sets are relatively sparse (Richardson and Poloczanska

2008, Morrongiello et al. 2012) and detailed observa-

tional and experimental studies often logistically difficult

(e.g., for deep sea habitats and large-bodied fishes).

A complementary approach that can generate long-term

data sets against which hypotheses can be framed and

tested is the analysis of historical variability in individual

growth rates proxied in the hard parts of a diversity of

aquatic organisms, e.g., fishes (Thresher et al. 2007);

molluscs (Black 2009); corals (De’ath et al. 2009); turtles

(Avens et al. 2012); cetaceans (Dellabianca et al. 2012).

Analogous to tree-ring-based dendrochronology (Fritts

1976), the widths of periodically deposited increments in
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shells, bones, teeth, scales, and otoliths can provide

estimates of daily or annually resolved growth (reviewed

by Campana and Thorrold 2001). Large collections of

hard parts and associated data sets have been archived for

other purposes, e.g., fisheries (Campana and Thorrold

2001) and museums (Pyke and Ehrlich 2010), but their

value as archives of long-term ecological biochronologies

is generally underappreciated (Morrongiello et al. 2012).

Fish growth has traditionally been analyzed using two

techniques that utilize hard-part-derived information. The

first approach takes the age and length of multiple

individuals at capture and uses equations such as the von

Bertalanffy growth function to generate estimates of

maximum size (L‘) and the rate at which this is reached

(K ). While this approach generally has a population-

average and time-invariant focus, it can readily be

expanded to include individual-level effects (e.g., Sains-

bury 1980, Pilling et al. 2002, Eveson et al. 2007) and used

to explore environmental and temporal trends if time-

series data are available (e.g., Rowling and Reid 1992,

Shelton et al. 2013, Baudron et al. 2014). The second

approach, termed back-calculation, uses hard-part incre-

ment measurements in conjunction with the length at

capture to estimate an individual’s length at the time of

increment formation (Francis 1990). Back-calculation has

been successfully used in ecological contexts (e.g., Sinclair

et al. 2002a, b), although individual-specific variation is

generally ignored (but see Tonkin et al. 2011) and the

approach can result in significantly biased inference if not

correctly applied (Campana 1990). Accessing and appro-

priately analyzing these long-term, individual-based data

sets stored in archived hard parts could make possible

detailed analysis and attribution of spatial, temporal, and

individual sources of growth variability in aquatic

environments on unprecedented scale and coverage (for

terrestrial examples, seeClutton-Brock andSheldon2010).

In particular, allowing for among-individual growth

variation and investigating phenotypic plasticity through

individual reaction norms can provide a means of

decomposing population level variation into its

within- and among-individual components. This in turn

aids ecological and evolutionary interpretation of histor-

ical growth patterns and facilitates more accurate predic-

tion of biological responses to future environmental

change (Miner et al. 2005, Nussey et al. 2007).

Growth is a biological response that inherently inte-

grates the effects of many interacting intrinsic (e.g.,

ontogenetic or individual-specific differences) and extrinsic

(environmental or intra- and interspecific interactions)

components. Using proxied biochronological growth data

to address ecological and behavioral hypotheses therefore

requires an ability to attribute variance appropriately. Our

paper explores options for doing so, with the objective of

generating a more complete picture and understanding of

an organism’s response to environmental change, ranging

from within the individual to across the species. The

increment data in aquatic hard parts is inherently

hierarchical: repeated (daily, annual) measurements are

taken from each of many individuals that in turn span

overlapping years, cohorts, and populations. Our ap-

proach to analyzing this hierarchical time-series data

follows Weisberg (1993), then Weisberg et al. (2010), who

proposed the use of, first, fixed-effect and subsequently,

mixed-effectsmodels to analyze increment data as ameans

of capturing both intrinsic and extrinsic sources of growth

variation. Mixed-effect models are particularly useful as

random effect structures canmore accurately represent the

data’s hierarchy (Morrongiello et al. 2014) and are

sufficiently flexible as to allow testing of within vs. among

individual (Dingemanse and Dochtermann 2013) and

population-level (Leites et al. 2012) differences in pheno-

typic expression along environmental gradients. While

somewhat complex, such models potentially utilize all

available biological information encoded in the historical

proxy and allow for the concurrent exploration of

ecological, physiological, and evolutionary responses to

changing environmental conditions through time and

across a species’ range. Indeed, these are important points

of difference from the more traditional hard-part analysis

approaches (e.g., dendrochronology) that have focused on

maximizing the detection of environmental signals

through the minimization of ecological, physiological,

and genetic sources of noise using various detrending and

prewhitening techniques prior to data analysis (Cook and

Kairiukstis 1990).

We develop and apply to a test species a series of

increasingly complex mixed-effect models and assess at

each stage the extent to which the model adequately

partitions growth variability among a series of intrinsic

(individual, age, sex, cohort) and extrinsic (time,

temperature, fishery activity, spatial structure) compo-

nents. From this analysis, we develop model structures

that facilitate interpretation of biochronological infor-

mation in an ecological context (sensu Morrongiello et

al. 2012). We then expand these ecological models to

investigate evolutionary sources of variability that

would not have been evident in simpler approaches.

Our test species is a commercially exploited fish, tiger

flathead (Platycephalus richardsoni ), for which we

developed a database of otolith increment measurements

from across its range in southeast Australia. Otoliths are

biogenic carbonate structures in the inner ear equiva-

lents of fishes that serve in the detection of movement

and orientation. Otoliths are well validated across

diverse fish species to form annual growth increments

and are widely used by fisheries scientists and fish

ecologists for purposes of studying age and growth in

fishes (Campana 2001). As tiger flathead is a commer-

cially exploited species, we were able to access a very

large data set of high-quality otolith increment mea-

surements taken as an integral part of a fisheries

management program, which we supplemented to fill

in data gaps for specific regions and times. We also

chose this species for analysis on the basis that southeast

Australia has been identified as a climate change

hotspot, having experienced rapid recent warming above
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the global average (Ridgway 2007, Hobday and Lough

2011) and concordant ecological change (Johnson et al.

2011). This locally strong environmental signal could be

useful in disentangling the relative impacts of extrinsic

and intrinsic components of growth as recorded in the

otolith biochronologies.

METHODS

Study species

Tiger flathead are a common, carnivorous, dermersal

species inhabiting the continental shelf (range 30–350 m,

most common ,200 m) of southeast Australia (Fig. 1;

FIG. 1. (a) Map of southeast Australia showing locations of the seven fishing areas used in this study and spatial patterns in
mean bottom temperature (30–250 m depth) over the period 1970–2011. (b) Temporal trends in mean bottom temperature for the
seven fishing areas. (c) Spatial and temporal range of fish samples used in analyses. Each line represents an individual tiger flathead
Platycephalus richardsoni (uniquely identified by a number, the FishID variable, F ); the left end starts when they were spawned
(i.e., year class) and the right when they were sampled. Line length therefore represents the temporal extent of data. NC, Newcastle
region; NSW, New South Wales; EBS, eastern Bass Strait; ETAS, eastern Tasmania; WTAS, western Tasmania; WBS, western
Bass Strait; and CBS, central Bass Strait.
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Gomon et al. 2008, Woodhams et al. 2011). Individuals

grow ;65 cm in length, weigh up to 2.5 kg, and live to

28 years (Table 1; see Gomon et al. 2008). Sexual

maturity is reached after 4–5 years, and spawning occurs

during the austral spring to summer months (Septem-

ber–February; Woodhams et al. 2011), with a birth date

of 1 January assigned for aging purposes. Tiger flathead

have been targeted by commercial fishers since 1915,

with the fishery developing first in the waters off New

South Wales then spreading farther south (Tilzey and

Rowling 2001). The stock structure for tiger flathead

remains poorly understood: there is some evidence for

regional differences in morphology, age, growth, and

timing of reproduction (Sahqvist et al. 2012), and

tagging studies and trawl catches suggest minimal

along-shelf movement (,50 nautical miles [92.6 km] or

;18 latitude; reviewed in Rowling 1994). No formal

stock identification studies have been carried out, and

thus a single continuous stock is assumed for manage-

ment purposes (Sahqvist et al. 2012).

Biochronology development and analysis

Study area and sample collection.—The continental

shelf waters inhabited by tiger flathead are divided, for

the purpose of fishery stock assessments, into six

Commonwealth fishing areas (Fig. 1a): New South

Wales (NSW, zone 10), eastern Bass Strait (EBS, zone

20), eastern Tasmania (ETAS, zone 30), western

Tasmania (WTAS, zone 40), western Bass Strait

(WBS, zone 50), and central Bass Strait (CBS, zone

60). Fisheries observers routinely collect tiger flathead

otoliths from commercial operations in each of these

areas to provide age estimates of the commercial catch

for stock assessment modeling (Knuckey et al. 1999).

Port of landing information is only available for some

samples, and thus we assign a fish’s geographic origins

only to a fishing area. While this results in geograph-

ically conservative estimates of where fish resided, it

better reflects underlying uncertainty of where fish have

been throughout their lives due to any seasonal,

ontogenetic, or permanent movement. The northern

extent of tiger flathead’s range is managed by NSW

State fisheries and otoliths are opportunistically collect-

ed from these fish, with adequate samples only available

from fish collected in the Newcastle region (NC; Fig.

1a). Overall, we accessed archived increment measure-

ments from 5781 fish and supplemented these with

measurements from an additional 362 fish. In total,

24 661 increments from 6143 tiger flathead collected

across the seven fishing areas, representing the majority

of this species’ range, were analyzed (Fig. 1a, c, Table 1).

For the reasons noted above, the NC data set was

restricted in temporal scope and age range compared to

other areas.

Increment width measurements.—The flathead otoliths

were prepared and aged by experienced staff for the

Commonwealth fishery by the Central Ageing Facility

(CAF; Morison et al. 1998) and Fish Ageing Services

(FAS) and for the NSW state fishery by the Cronulla

Fisheries Research Centre (Barnes et al. 2011). All

otoliths were embedded in resin and sectioned trans-

versely at a width of between 300 and 500 lm through

the primodium. Sections were then mounted on a glass

microscope slide, viewed under transmitted light, and

aged along a consistent axis on the ventral lobe of the

otolith (Fig. 2a). Aging precision (reproducibility of

repeated measurements), measured by the coefficient of

variation, averaged 2.9% for CAF and FAS, and 7% for

Barnes et al. (2011) samples; ;90% of aging discrepan-

cies between repeated readings were within one year

(unbiased to either younger or older ages). Increment

widths are routinely recorded during this aging process

using image analysis software and archived along with

sample information. The use of otolith increment data

to reconstruct growth histories assumes otolith growth is

proportional to somatic growth (Campana 1990, Fran-

cis 1990). We tested and satisfied this assumption by

correlating otolith size to fish size (Appendix A).

Average annual bottom temperature.—We estimated

average annual temperature (Temperature) at the

seafloor (depth 30–250 m) for each area (Fig. 1a, b)

over the period 1970–2011 using a combination of

SynTS (synthetic temperature and salinity; Ridgway et

al. 2006) and HadISST1 (Rayner et al. 2003) modeled

products (Appendix B). Bottom Temperature for the

period 1970–2011 displayed coherent interannual vari-

ability within an area and latitudinal variability among

areas (Fig. 1a, b). Bottom temperatures significantly

TABLE 1. Summary of tiger flathead samples used in this study.

Area
Central

latitude (8S)
Central

longitude (8E)
No. sample

years
No.
fish

No. increment
measurements

Age
range (yr)

No. year
classes

Biochronology
length (yr)

Range
of years

NC 33 152.2 2 498 640 2–6 6 6 2001–2006
NSW 35.4 150.9 7 700 1 899 2–18 21 29 1981–2009
WBS 37.9 141.3 2 75 310 2–14 12 13 1996–2008
EBS 39.2 149.0 14 3915 15 786 2–25 38 38 1972–2009
CBS 39.6 145.8 2 344 1 454 2–13 11 13 1997–2009
ETAS 42.3 147.4 6 402 2 822 2–21 28 30 1980–2009
WTAS 42 145.1 2 208 1 735 3–28 22 27 1982–2008

Note: NC stands for Newcastle region, NSW stands for New South Wales, EBS stands for eastern Bass Strait, ETAS stands for
eastern Tasmania, WTAS stands for western Tasmania, WBS stands for western Bass Strait, and CBS stands for central Bass
Strait.
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increased through time across most fishing areas at a

rate of between 0.0058C per year and 0.0198C per year

(Appendix B).

Catch data.—Commercial trawl fishery catch and

effort data were used to calculate an index of relative

abundance (based on catch per unit effort [CPUE] kg/h)

for the six Commonwealth fishing areas following the

methods of Haddon (2011; Appendix C) and published

mean CPUE estimates for the whole state of NSW for

NC (state-managed fishery; Rowling et al. 2010).

Abundance estimates for areas NSW, EBS, CBS,

WBS, and ETAS were available from 1986 onward.

Tiger flathead are never caught in large numbers in

WTAS, so abundance estimates for this area were only

available from 2000 onward. Temporal trends in

abundance estimates varied considerably among fishing

areas (Appendix C).

Growth statistical analyses.—We developed a series of

mixed-effects models to investigate intrinsic and extrin-

sic sources of tiger flathead annual growth (increment

width in mm) variation within and among fishing areas.

We provide an overview of model parameters and

general model structure. Specific hypotheses and model

formulations are described and examined in more detail

in Results and Discussion. Fixed intrinsic predictors of

annual growth were fish Age, Sex, and Age at capture

(Table 2). The latter term tests for bias and differential

selectivity in the data (Ricker 1969, Morrongiello et al.

2012; see Nehrbass-Ahles et al. [2014] for discussion of

potential biases in dendrochronology studies) and is

similar in purpose to the length term in Hagen and

Quinn’s otolith-based growth model (1991). Although

we only fit a linear Age-at-capture term and explore

potential directional (positive and negative) selection;

quadratic or nonlinear terms could potentially also be

fitted to explore other types of selection, such as

stabilizing or disruptive or a combination of these

(e.g., Sinclair et al. 2002a). Fixed extrinsic predictors

included temporal growth trends (Year), water temper-

ature at the seafloor (Temperature) fitted as linear and

quadratic terms to investigate any curvilinear growth

responses, and potential density-dependent effects on

growth (relative Abundance; Table 2)

A likely inherent property of the data is that repeated

increment measurements within a fish will be more

similar to each other than to those of other fish because

of individual-specific differences in growth rates. It is

also possible that there is some form of temporal

correlation among individual measurements within a

fish due to measurement error (an overestimate of

increment width in year one will necessarily mean the

measurement of year two is lower and vice versa). The

fish sampled are also seen as a random draw of all

possible fish in a population. To accommodate these in

the model, we include a random intercept for FishID

(aFi , i¼ 1, . . . , I ), where F is FishID and i is fish, which

induces a correlation among increment measurements

within a fish and allows each individual to have higher

FIG. 2. An example from ETAS of the data analyzed in
this study. (a) Transverse section of a sagittal otolith from a
five-year-old ETAS tiger flathead from the 2004 cohort,
caught in 2010. Fish are aged and their increments (annuli )
measured along an axis ventral to the sulcus (open circles). (b)
Increment measurements for selected cohorts of ETAS fish
(different line shades; 1979–1982, 1985, 1989, 1993, 1997,
2003) plotted by year of formation (birth year plus age). (c)
Box and whisker plots of increment measurements by age of
formation for all ETAS fish. The bar represents the median;
box height is the interquartile range (IQR; 25th to 75th
percentile); whiskers are the highest and lowest measurements
within 1.5 3 IQR of the 75th and the 25th percentiles,
respectively; circles are outliers.
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or lower growth than average (i.e., model’s overall

intercept). These individual-specific deviations can be

due biological and/or measurement error processes.

Unless otherwise noted, all models include the FishID

random intercept and an Age fixed effect. Likewise,

extrinsic factors are expected to exert similar effects on

all individuals experiencing a common set of environ-

mental conditions. Including a random intercept for

Year (seen as random draw of all possible years; crossed

with FishID) induces a correlation among increments

from different fish deposited in the same year. The Year

(Y ) random intercepts (aYk , k ¼ 1, . . . , K ), where k is

year, are the simplest population biochronology, anal-

ogous to outputs from classical dendrochronology, as

they pool the effects of different extrinsic sources of

growth variation after effects of intrinsic factors (Age,

Sex, Age at capture) are explicitly accounted for. These

coefficients provide temporally resolved estimates of

whether conditions were good or poor for growth in a

given year as compared to the long-term average (i.e.,

model’s overall intercept). We do not assume any

temporal directionality in these year to year growth

deviations but do assume they are random draws from a

normal distribution. A random intercept for Cohort (acl ,

l ¼ 1, . . . , L; FishID nested within Cohort), where C is

cohort, induces a correlation among the growth of

individuals spawned in the same year, l. Cohort also

provides a temporally resolved estimate of combined

intrinsic and extrinsic growth variation (again, no

directionality assumed), but rather than being annual,

it captures systematic deviations in growth for groups of

fish across their lifetime. We also explored whether the

addition of random Age slopes (b) for FishID (bF
1i), Year

(bY
1k), and Cohort (bC

1l) improve model performance.

Among-area models additionally include a random

intercept for Area (aA
m, m ¼ 1, . . . , 7), where m is site

and A is area, within which FishID, Year, and Cohort

can be nested, as well as random slopes for Age and Age

at capture by Area (bA
1m and bA

2m, respectively). A

descriptive summary of random effects is presented in

Table 2, and a presentation of models fitted in Table 3.

All analyses were performed using the lme4,

AICcmodavg, and effects packages in the statistical

program R 3.0.2 (R Development Core Team 2013).

Annual growth, Age, and Age at capture were natural

log-transformed to satisfy model assumptions, and all

predictor variables were mean-centered to facilitate

model convergence and interpretation of interaction

and polynomial terms. The lme4 package only allows for

a compound symmetric correlation structure. This

assumes that the residual correlation between any two

observations within a group (e.g., FishID) is the same

regardless of the time difference. Compound symmetry

does have applicability in models with short time series

per group (as is generally the case here for each fish;

Pinheiro and Bates 2000:228), although perhaps a more

appropriate method (not available in lme4) would be an

autoregressive process (e.g., AR-1). The addition of a

crossed Year random intercept can account for some

autocorrelation in the data (e.g., Morrongiello et al.

2011), and model estimates are generally robust to the

choice of covariance structure (Zeger and Liang 1986,

Weisberg et al. 2010). Another potential issue with

likelihood-based models such as those presented here is

that they do not allow for measurement error in the

predictor variable (e.g., aging error). In this instance,

aging precision was high, and there was no directional

bias so errors will likely just add noise to any existing

biological patterns. Other time-series-based approaches

such as Bayesian state-space modeling offer an attractive

TABLE 2. Description of parameters used in the analysis of tiger flathead annual growth.

Parameter Description

Fixed effects

Age Age (yr) when otolith increment was formed.
Sex Male or female.
Age at capture Final age (yr) at time of capture. Measure of potential selectivity on growth.
Year Year (1 Jan–31 Dec) in which increment was formed. Used to quantify temporal trends in growth.
Temperature Annual average temperature (8C) at seafloor.
Abundance Annual catch per unit effort (CPUE).
AvTemp Area-specific temperature normal (long-term average). Quantifies spatial differences in Temperature.
TempAnom Area-specific annual departures from AvTemp. Quantifies a region’s temporal Temperature stochasticity.
bA Coefficient for an individual’s average lifetime Temperature experienced. Quantifies systematic among-

individual (subscript A) differences in temperature response.
bW Coefficient for individual-specific annual departures from bA. Quantifies the average within-individual

(subscript W) phenotypic plasticity in thermal reaction norms.

Random effects

FishID (F ) Unique identifier number for each fish (i ¼ 1, . . . , I ).
Year (Y ) Year (1 Jan–31 Dec; k ¼ 1, . . . , K ) in which increment was formed. Quantifies inter-annual growth

variability.
Cohort (C ) Group of individuals spawned in the same year (l ¼ 1, . . . , L).
Area (A) Fishing area (m ¼ 1, . . . , 7).
Age Random Age slope on each of FishID, Year, Cohort, and Area random intercepts.
bW Random within-individual reaction norm slope on FishID. Facilitates exploration of among-individual

variation in individual reaction norms.
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and more flexible alternative for this kind of hierarchical

analysis, as they allow for the joint estimation of both

process stochasticity and measurement error in both the

predictor and response variable and the incorporation of

prior knowledge (for tree and fish growth examples, see

Clark et al. 2007 and Shelton et al. 2013).

Analyses of random effects were performed by fitting

the desired model structure using restricted maximum

likelihood estimates of error (REML). Models with

increasing fixed-effect complexity were fitted using

maximum likelihood estimates of error. Methods to

select among competing hierarchical models (in both

likelihood and Bayesian paradigms) is an area of active

research, with no general consensus among statisticians

as to what approach is best to adopt (Bolker et al. 2009,

Wang and Gelman 2014, Hooten and Hobbs 2015).

Nonetheless, the ultimate aim of virtually all model

selection methods is to choose the model that would

have the best ability to predict out of sample data. We

assessed the relative support for each candidate set of

the models using Akaike’s information criterion cor-

rected for small sample size (AICc; Burnham and

Anderson 2002). AICc values were rescaled as the

difference between each model and the model with the

lowest AICc (DAICc). Best models were then reanalyzed

using REML to produce unbiased parameter estimates

(Zuur et al. 2009).

An issue with applying our approach to mixed-effect

model selection is that AIC requires a count of model

degrees of freedom (df ) to apply a penalty for model

complexity; how random effects are treated depends on

the level of inference being made. If model selection is

occurring on fixed effects (with a constant random-

effects structure across models), then inference is being

made at population or marginal level and each random

effect can be assigned one df. Traditional, or marginal

AIC, as applied here is appropriate (Vaida and

Blanchard 2005), and random effects can be seen as

just modeling underlying correlation structures (Claes-

kens and Hjort 2008:270). If, however, one wants to

select and interpret random effects themselves, then

conditional inference is being made (Vaida and Blan-

chard 2005), and the number of df for a random effect is

somewhere between 1 and N� 1, where N is the number

of clusters within a random effect. It has been proposed

that the conditional AIC be used to select among

different random effect structures (Vaida and Blanchard

2005), although its calculation is nontrivial (Greven and

Kneib 2010) and not currently implemented in the lme4

package. Other random-effect model selection options

include standard likelihood-based hypothesis tests (con-

servative; Bolker et al. 2009) and out of sample or cross-

validation techniques (Hooten and Hobbs 2015). The

latter two options are appealing, as they provide an

assessment of a model’s predictive ability, but extracting

predicted values from models with complex random-

effects structures is not currently possible with lme4, and

there is some conjecture over how holdout data is

selected (Wang and Gelman 2014). We therefore

acknowledge that our application of the marginal AIC

to select among random-effects structures will lead to a

bias toward smaller models without random effects

(Greven and Kneib 2010) and that other options may

result in better multimodel inference, such as prediction.

Here, the importance of each random effect is likely to

be underestimated, and we therefore consider our results

conservative.

We estimated the degree of correlation among growth

increments from individuals (temporal growth synchro-

ny) for Year and Cohort by calculating the intraclass

correlation coefficient (ICC) for random intercept-only

models (Appendix D: Eq. D.1). The amount of variance

explained by models was assessed using two R2 metrics

(calculated on models fit with REML) defined for

mixed-effects models by Nakagawa and Schielzeth

(2013). The first, called the marginalR2 (R2

LMMðmÞ), where

LMM is linear mixed-effects model, describes the

proportion of variance explained by fixed effects alone.

The second, called the conditional R2 (R2

LMMðcÞ),

describes the proportion of variance explained by fixed

and random effects combined (see Appendix D:

Eqs. D.2 and D.3 for definitions).

Each area’s data set was broken into two time periods

for analysis based on the temporal extent of predictor

variables. The first data set, encompassing the full

growth record (Table 1), was used to partition growth

variation among intrinsic and extrinsic components and

to investigate temporal trends and temperature effects

within and across areas. The second data set spanned a

shorter period, corresponding to the availability of

Abundance estimates (Methods: Biochronology develop-

ment and analyses: Catch data), and was used to

investigate the relative importance of Abundance and

Temperature on annual growth within regions. We

provide R code and example data sets in the Supple-

ment.

RESULTS AND DISCUSSION

Intrinsic sources of growth variation

Across all specimens and increments, the most

important factor determining growth rate variation in

tiger flathead, as in almost all fish species, was Age (i.e.,

growth rates decline with increasing Age; Fig. 2). All

other ecological and physiological implications derived

from a growth rate proxy are based on interrogating the

remaining variance.

As a first step to represent the data’s underlying

hierarchical structure and accurately partition growth

variance among its intrinsic and extrinsic sources, we

adopted a mixed-modeling framework and included a

random intercept (FishID) for each fish (Table 3;

model 1a). This model allows for and quantifies the

magnitude of individual-specific deviations from aver-

age growth, but still assumes that age-dependent

growth declines in the same manner across individuals.

Hence, model 1b (Table 3) allows for individual-
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TABLE 3. Description of hierarchical models used to partition growth variation into its intrinsic and extrinsic components.

Model no. Formulation Parameter descriptions

a) Within-area

1a: random FishID
intercept

yij ¼ a0 þ aFi þ b1xij þ f ð�Þ þ eij

aFi ;Nð0;r2

FÞ; eij ;Nð0;r2Þ

yij, annual growth y for fish i
at age j; a0, overall mean
annual growth intercept;
aFi ,random intrinsic effect
for fish i; b1, fixed-effect
Age coefficient; f(�),
additional fixed effects (e.g.,
Sex or Age at capture); N,
normally distributed; e,
error

1b: random Age slope
and intercept for each
FishID

yij ¼ a0 þ aFi þ b1xij þ bF
1ixij þ f ð�Þ þ eij

aFi
bF
1i

� �

;Nð0;RiÞ; eij ;Nð0;r2Þ

bF
1i, random Age slope for fish
i, correlated with aFi ; R,
covariance matrix between
random intercept and
random slope

2a: random Age slope
and intercept for each
FishID and random
Year intercept

yijk ¼ a0 þ amFi þ aYk þ b1xij þ bF
1ixij þ f ð�Þ þ eijk

aFi
bF
1i

� �

;Nð0;RiÞ;a
Y
k ;Nð0;r2

YÞ; eijk ;Nð0;r2Þ

yijk, annual growth y for fish i
at age j from year k; aYk ,
random extrinsic
environmental effect for
year k

2b: random Age slope
and intercept for each
FishID and random
Cohort intercept

yijl ¼ a0 þ aFi þ aCl þ b1xij þ bF
1ixij þ f ð�Þ þ eijl

aFi
bF
1i

� �

;Nð0;RiÞ;a
C
l ;Nð0;r2

CÞ; eijl ;Nð0;r2Þ

yijl, annual growth y for fish i
at age j from cohort l; aCl ,
random intercept for cohort
l

3a: random Age slopes
and intercepts for each
FishID and Year

yijk ¼ a0 þ aFi þ aYk þ b1xij þ bF
1ixij þ bY

1kxjk þ f ð�Þ þ eijk

aFi
bF
1i

� �

;Nð0;RiÞ;
aYk
bY
1k

� �

;Nð0;RkÞ; eijk ;Nð0;r2Þ

bY
1k, random Age slope for
year k, correlated with aYk

3b: random Age slopes
and intercepts for each
FishID and Cohort

yijl ¼ a0 þ aFi þ aCl þ b1xij þ bF
1ixij þ bC

1lxjl þ f ð�Þ þ eijl

aFi
bF
1i

� �

;Nð0;RiÞ;
aCl
bC
1l

� �

;Nð0;RlÞ; eijl ;Nð0;r2Þ

bC
1l, random Age slope for
cohort l, correlated with aCl

4a: random Age slopes
and intercept for each
FishID, and random
Year and Cohort
intercepts

yijkl ¼ a0 þ aFi þ aYk þ aCl þ b1xij þ bF
1ixij þ f ð�Þ þ eijkl

aFi
bF
1i

� �

;Nð0;RiÞ;a
Y
k ;Nð0;r2

YÞ;a
C
l ;Nð0;r2

CÞ; eijkl;Nð0;r2Þ

yijkl, annual growth y for fish i
at age j from year k and
cohort l

4b–4d: random Age
slopes and intercept
for each FishID, with
combinations of
random Age slopes for
Year and Cohort
intercepts. Shown is
4d (most complex)

yijkl ¼ a0 þ aFi þ aYk þ aCl þ b1xij þ bF
1ixij þ bY

1kxjk þ bC
1lxjl

þ f ð�Þ þ eijkl

aFi
bF
1i

� �

;Nð0;RiÞ;
aYk
bY
1k

� �

;Nð0;RkÞ;
aCl
bC
1l

� �

;Nð0;RlÞ;

eijkl ;Nð0;r2Þ

b) Across area

5: random Age slopes
for each FishID;
FishID, Year and
Cohort nested within
random intercept for
Area

yijklm ¼ a0 þ aFi þ aAm þ aYkm þ aClm þ b1xij þ bF
1ixij þ f ð�Þ

þ eijklm

aFi
bF
1i

� �

;Nð0;RiÞ;a
A
m ;Nð0;r2

AÞ; a
Y
km ;Nð0;r2

YÞ;

aClm ;Nð0;r2

CÞ; eijklm ;Nð0;r2Þ

yijklm, annual growth y for fish
i at age j from year k,
cohort l and site m; aAm,
random intercept for area
m; aYkm, random extrinsic
environmental effect for
fishing area m at year k; aClm,
random intercept for cohort
l from site m

6: random Age slopes
for each FishID, Year,
and Cohort nested
within Area; random
Age and Age at
capture slopes for each
Area

yijklmq ¼ a0 þ aFi þ aAm þ aYkm þ aClm þ b1xij þ bF
1ixij þ bA

1mxjm

þ bY
1kmxjkm þ bC

1lmxjlm þ b2xmq þ bA
2mxmq þ f ð�Þ þ eijklm

aFi
bF
1i

� �

;Nð0;RiÞ;
aAm
bA
1m

bA
2m

2

4

3

5;Nð0;RmÞ;
aYkm
bY
1km

� �

;Nð0;RkmÞ;

aClm
bC
1lm

� �

;Nð0;RlmÞ; eijklm ;Nð0;r2Þ

b2, fixed-effect Age at capture
coefficient q; bA

1m, random
Age slope for area m,
correlated with aAm and bA

2m;
bY
1km, random Age slope for
area m at year k, correlated
with aYkm; b

C
1lm, random Age

slope for area m cohort l,
correlated with aClm; b

A
2m,

random Age at capture
slope for area m, correlated
with aAm and bA

1m
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specific differences in age-dependent growth (correlated

random slope and intercept). Adding this random Age

slope is equivalent to the time-series-based dendro-

chronological method of detrending each individual’s

increments to remove age-related trends prior to

further analysis (Black 2009), although in our analyses,

this information is retained in the model and available

for interpretation. Other intrinsic fixed effects such as

Sex and its interaction with Age and Age at capture can

also be added to Model 1a or 1b to explain increment

variation.

Fig. 3 compares the proportion of variance ex-

plained by intrinsic effects alone in a series of

increasingly complex models. The mixed-effects mod-

els all explained ;5% more of the data’s total variance

(R2

LMMðcÞ) compared to the simple linear regression of

increment width against Age, most of which was

attributed to individual differences in mean increment

widths (FishID). Allowing each individual to have a

unique growth–age slope (Age jFishID) only explained

an additional 0.5% of the total variance, but resulted

in a major improvement in AICc (DAICc ¼ 541.33).

The most complex model (which included Age3 Sexþ
Age at capture) was overall preferred (DAICc ¼ 5.12)

and represented the effective partitioning of the

sources of variance otherwise attributed to the FishID

term alone and thus provides usable information as to

why individuals actually differ in their growth rates.

We now approach the formalized hierarchical analysis

of fish growth by developing increasingly complex (more

inclusive) models of the intrinsic and extrinsic sources of

growth variation within areas, using these results to

define an optimal model for each area, which we then

use to address sources of growth variation across areas,

and incorporating within- and among-individual vari-

ability through the analysis of individual reaction norms

along temperature gradients. Growth model structures

are presented in Table 3 and referred to sequentially in

the text.

Within-area growth variation

Hypotheses related to intrinsic drivers of within-area

growth variation.—For each fishing area, we developed

and compared a series of increasingly complex random-

effect structures that reflected the data’s underlying

hierarchy (all fitted with the maximal fixed-effects

structure of Age 3 Sex þ Age at capture). Once an

optimal random effect structure was selected, we

subsequently fitted models of increasing fixed-effect

complexity to attribute growth variation into its intrinsic

and extrinsic components.

The base within-area model included just a random

intercept for FishID (Table 3; model 1a). In this model,

the Age fixed effect quantifies the area-average variance

associated with the prominent, allometric decline in

otolith increment width as an individual got older (e.g.,

Fig. 2b, c). Model 1a was extended to include a random

Age slope for each FishID (Table 3; model 1b). Model

1b was preferred over 1a in all areas (model 1a, df ¼ 7;

model 1b, df¼9; DAICc for each area: NC, 24.51; NSW,

86.48; WBS, 1.29; EBS, 396.88; CBS, 19.42; ETAS,

52.51; and WTAS, 26.51). Further, in all areas there was

a positive correlation between the random FishID

intercept and the Age slope (range 0.25–0.93), indicating

that individuals with a larger FishID effect tend to have

a more weakly negative Age effect, which together can

lead to greater variation in growth across individuals.

A fundamental focus of biochronological studies,

regardless of analytical method, is determining how and

why growth varies through time. Generally, this

variation is assessed on an interannual basis (good vs.

poor growth years), with mixed-effect modeling (Weis-

berg et al. 2010), dendrochronology (Black et al. 2011),

or Bayesian hierarchical modeling (Helser et al. 2012).

TABLE 3. Continued.

Model no. Formulation Parameter descriptions

c) Within and among individual

7: extrinsic effect (temperature)
partitioned into within- and
among-individual
components. Update of
Model 2a.

yijk ¼ a0 þ aFi þ aYk þ b1xij þ bF
1ixij þ bWðxik � x̄iÞ þ bA x̄i þ f ð�Þ

þ eijk

aFi
bF
1i

� �

;Nð0;RiÞ;a
Y
k ;Nð0;r2

YÞ; eijk ;Nð0;r2Þ

bW, within-individual
temperature slope; bA,
among-individual
temperature slope

8: random within-individual
slopes for each FishID

yijk ¼ a0 þ aFi þ aYk þ b1xij þ bF
1ixij þ bWðxik � x̄iÞ

þ bF
Wiðxik � x̄iÞ þ bA x̄i þ f ð�Þ þ eijk

aFi
bF
1i

� �

;Nð0;RiÞ;
aFi
bF
Wi

� �

;Nð0;RiÞ; a Y
k ;Nð0;r2

YÞ;

eijk ;Nð0;r2Þ

bWi, random within-individual
temperature slope

Note: R code for models is available in the Supplement.
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Temporal variation in growth could, however, also

reflect and/or be magnified by intrinsic differences in the

systematic response of individual cohorts to environ-

mental variability. From a fish perspective, differences in

cohort strength may influence competition among same-

aged individuals (Whitten et al. 2013), fishery manage-

ment can impose time-varying selectivity on cohorts

(Hagen and Quinn 1991, Sinclair et al. 2002a), or good

or poor conditions experienced as a juvenile (growth–

survival hypothesis) may be carried over to later in life

and influence future growth and survival (Anderson

1988, Murphy et al. 2013). Similar cohort effects are

likely present, and perhaps stronger, in other organisms,

such as trees or corals for which biochronologies are

developed because individuals cannot move to escape

density dependent competition. Furthermore, the

strength and direction of age-dependent growth can

also vary not only among individuals but across years or

cohorts. These varying growth–age relationships may

reflect age-dependent responses to environmental vari-

ation (e.g., a warm year is good for juveniles but not

adults) or that the impacts of competition are differen-

tially manifest for younger and older individuals

(Weatherley and Gill 1987). Furthermore, growth

differences may only become evident on decadal rather

than annual scales (e.g., Thresher et al. 2007, Cooper et

al. 2012).

To test for and quantify these possibilities, we

extended the base growth model by adding a Year or

Cohort random intercept (Table 3; model 2a, 2b),

random Age slopes to these intercepts (model 3a, 3b),

both Year and Cohort random intercepts (Table 3;

model 4a), or some combination of random Age slopes

to both Year and Cohort random intercepts (Table 3;

model 4b–4d); see, e.g., Morrongiello et al. (2014). The

random Age slopes for Year and Cohort are akin to

fitting an age by environment interaction in multiple

regression, except that here the Year or Cohort random

effect can still be interpreted as overall average yearly or

systematic growth even when an interaction is present

(Weisberg et al. 2010). Analysis and comparison of

models comprised three steps. Firstly, we calculated the

intraclass correlation coefficient (ICC), representing the

degree of correlation among growth increments from

individuals in a Year or Cohort group for model 2a and

2b (intercept-only models to ensure the interpretability

of variance components; Goldstein et al. 2002). Second-

ly, we explored the best models including either a Year

or Cohort random intercept (models 2a–3b). Thirdly, we

compared the performance of all models (models 1b–4d)

and calculated their conditional R2 (R2

LMMðcÞ variance

explained by fixed and random factors).

There was generally very low levels of among-

individual correlation for a given Year (ICCYear,

0.002–0.216) or from a given Cohort (ICCCohort,

0.000–0.245), especially compared to those developed

for sessile marine organisms such as molluscs (geoduck,

ICC 0.62–0.72; Helser et al. 2012), corals (interseries

correlation [analagous to ICC] 0.53–0.65; Carilli et al.

2010), and site-attached marine fish (rockfish, interseries

correlation 0.54–0.65; Black 2009; parore, 0.51; Gil-

landers et al. 2012; rock and longhead flathead, 0.62–

0.64; Coulson et al. 2013; but see western blue groper,

0.112; Rountrey et al. 2014). The low intraclass

correlations observed in tiger flathead could be brought

about in a number of ways. The spatial resolution

around the capture location of each individual fish is

coarse (fishing areas up to 93 000 km2 or four degrees of

latitude in size; Fig. 1a) meaning that only large-scale

environmental synchronizers will be readily detected.

Small-scale variation in habitat quality or population

density that may actually be driving the majority of

growth variation (e.g., Lough and Cooper 2011) is

subsequently homogenized because we do not have a

finer spatial resolution, thus increasing unexplained

variation. Furthermore, the model assumes that indi-

vidual movement is random and independent of

environmental variation. Any movement of individuals

across their lifetime (up to 50 nautical miles; Rowling

1994) may result in them experiencing a range of

microhabitats and thus a reduction in temporal

FIG. 3. Proportion of variance explained by a series of
increasingly complex intrinsic linear mixed-effects models
(LMM) fitted to the pooled tiger flathead data set. Marginal
R2 (R2

LMMðmÞ) is the proportion of variance explained by a mixed
model’s fixed-effect component, conditional R2 (R2

LMMðcÞ) is the
variance explained by the entire model. Model terms are defined
in Table 2. Note that the Age-only model (simple linear
regression) is inappropriate for repeated measures data and
the R2 value only shown to provide context for the other
models.
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among-individual growth correlation. Such factors have

less impact for sessile or strongly site-attached species

(Black 2009, Neuheimer et al. 2011, Helser et al. 2012).

Other sources of variation that will dampen the strength

of among-individual growth correlations and increase

the amount of unexplained variance in the model (1–

R2

LMMðcÞ; Table 4) include measurement error and aging

error, although in this instance, these are unlikely to

introduce large amounts of variation due to relatively

high aging precision (Campana 2001) and large sample

sizes.

The best model including a Year random effect was

model 2a ( just Year intercept) for WBS, CBS, and

WTAS, and model 3a (Year intercept and Age slope) for

NC, NSW, EBS, and ETAS (Table 4). Model-extracted

patterns in annual growth showed considerable long-

term variation within and across areas (Fig. 4a–g). A

common feature in the four longest biochronologies

(NSW, EBS, ETAS, and WTAS) was a pronounced

increase in growth rates from the mid- to late-1990s.

There were significant positive pairwise correlations

among the Year random-effect conditional modes (best

linear unbiased predictors [BLUPs]) for the four longest

biochronologies (r ¼ 0.425–0.842), and overall the

strongest relationships were generally between adjoining

areas (Table 5, Fig. 1a). The random Age slope was

positively related to the Year random intercept in NSW,

EBS, and ETAS (correlation: 0.37, 0.49, and 0.47,

respectively) indicating that in good growth years the

slope of the growth–age relationship was shallower (i.e.,

older fish grew proportionally better), whereas in poor

growth years it steepened. In NC, this relationship was

negative (correlation,�0.36) indicating that younger fish

grew proportionally better in good growth years and less

TABLE 4. Random effect model selection for each fishing area.

Model, by fishing area df DAICc LL R2

LMMðcÞ Model, by fishing area df DAICc LL R2

LMMðcÞ

NC CBS

1b 9 37.62 424.04 0.855 1b 9 0 �67.59 0.647
2a 10 38.57 424.59 0.847 2a 10 1.03 �67.09 0.652
2b 10 0.73 443.52 0.869 2b 10 2.03 �67.59 0.647
3a 12 20.43 435.74 0.843 3a 11 3.06 �67.09 0.655
3b 12 1.17 445.37 0.855 3b 12 4.87 �66.98 0.647
4a 11 0 444.91 0.859 4a 12 6.09 �67.59 0.652
4b 13 4.15 444.92 0.859 4b 13 6.91 �66.98 0.655
4c 13 3.26 445.37 0.855 4c 13 7.13 �67.09 0.652
4d 15 7.92 445.13 0.862 4d 15 10.99 �66.98 0.655

NSW ETAS

1b 9 470.02 �51.46 0.774 1b 9 36.62 0.50 0.833
2a 10 32.78 168.17 0.795 2a 10 7.05 16.29 0.833
2b 10 40.8 164.15 0.793 2b 10 36.54 1.55 0.829
3a 12 7.8 182.68 0.810 3a 12 0 21.83 0.829
3b 12 16.7 178.23 0.796 3b 12 38.4 2.63 0.828
4a 11 23.28 173.93 0.795 4a 11 9.07 16.29 0.833
4b 13 0 187.59 0.804 4b 13 2.02 21.83 0.829
4c 13 10.45 182.37 0.796 4c 13 10.98 17.35 0.831
4d 15 12.99 183.13 0.829 4d 15 5.19 22.27 0.829

WBS WTAS

1b 9 4.16 11.45 0.774 1b 9 7.06 �35.89 0.770
2a 10 0 14.6 0.789 2a 10 2.53 �32.62 0.776
2b 10 5.89 11.65 0.776 2b 10 1.02 �31.86 0.771
3a 12 3.83 14.84 0.787 3a 12 4.18 �31.42 0.777
3b 12 9.36 12.08 0.783 3b 12 3.66 �31.15 0.770
4a 11 1.58 14.89 0.791 4a 11 0 �28.31 0.774
4b 13 5.46 15.12 0.789 4b 13 0.66 �30.67 0.777
4c 13 5.00 15.35 0.798 4c 13 1.87 �29.25 0.775
4d 15 27.21 6.44 0.812 4d 15 2.31 �27.43 0.779

EBS

1b 9 1140.52 �86.75 0.738
2a 10 121.89 423.56 0.755
2b 10 144.9 412.06 0.728
3a 12 48.81 462.11 0.758
3b 12 48.57 462.22 0.738
4a 11 10 480.51 0.752
4b 13 3.76 485.63 0.756
4c 13 0 487.51 0.753
4d 15 71.63 453.7 0.758

Notes: The relative importance of each model was assessed using Akaike’s information criterion corrected for small sample sizes
(AICc); best models (DAICc ¼ 0, where DAICc is the difference between each model and the model with the lowest AICc) are
highlighted in bold. Model structures follow Table 2 and all include the fixed effects Age3SexþAge at capture. Abbreviations are:
LL, log likelihood; R2

LMMðcÞ, conditional R
2 (variance explained by fixed and random factors). For region abbreviations, see Table 1.
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so in poor years (vice versa for older fish). This

important ecological inference is not possible with

traditional analytical techniques.

A Cohort random intercept only model (model 2b)

was best for NC, WBS, CBS, ETAS, and WTAS, while

the addition of an Age random slope for the Cohort

intercept (model 3b) was best for NSW and EBS (Table

4). There was less evidence of directional variation in

Cohort-specific growth (Fig. 4h–n), although in all

areas, there were cohorts characterized by systematic

low or high growth across individuals’ lifetimes.

Prominent features in both NSW and EBS were

depressed growth in individuals spawned in the 1990s

and elevated growth in those spawned in the 2000s.

FIG. 4. Predicted time-dependent average growth variation (after accounting for intrinsic effects) for tiger flathead across seven
fishing areas back-transformed to the original scale. (a–g) Annual growth variation represented by Year random-effect conditional
modes (best linear unbiased predictors [BLUPs] 6 SE). (h–n) Systematic cohort-specific growth variation represented Cohort
random-effect conditional modes (BLUPs 6 SE). Dashed lines in each panel represent long-term average growth (fixed-effect
intercept for each zone’s model). Note different scales on the y-axes.
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There was also a positive correlation between the

random Cohort intercept and Age slope in both these

areas (NSW, 0.52; EBS, 0.80) This recent increase in

cohort-specific growth coincides with recent strong, but

variable, recruitment for the eastern tiger flathead

fishery (Klaer 2010) and may indicate a link between

the two (see Murphy et al. [2013] for empirical example).

There was considerable diversity in the best models

selected for each area, and despite the low levels of

growth synchrony among individuals, the best models

from six of the seven areas included a Year and/or

Cohort random intercept (Table 4; see Appendix E: Text

E1 for description). These models overall were a better

fit to the data and explained between 64.7% and 85.9%

of the total area-specific growth variance (Table 4). CBS

models consistently explained the lowest level of data

variation suggesting that other model structures or

covariates not captured here may be important. Overall,

our results indicate that individuals are not necessarily

displaying a uniform growth signal to within-area

environmental variation. This result is perhaps not

surprising given the underlying sampling protocol and

the fact that individual growth is very complex and

dependent on a wide range of processes operating at

different scales. The latter point is supported by the

presence of random Age slopes for either Year or

Cohort in four of the seven areas, which indicate that

ontogenetic interactions with the environment are an

important component of an individual’s lifetime growth

trajectory. Nonetheless, we did detect evidence of

region-wide growth synchrony, which we will address

in the across-area section.

To quantify and specifically test for explicit intrinsic

effects on growth rates at the within-fishing-area level,

we fitted six models of increasing fixed-effect complexity

to each area using the optimal random-effects structure

(from Table 4). The simplest included Annual growth

being log-linearly dependent on Age, with as necessary,

random Age slopes for each FishID, Year, and Cohort

random intercept. To this we added two additional

factors: Sex and, additively, Age at capture.

The importance of explicit intrinsic effects on annual

growth variation differed across areas (Appendix E:

Table E1). As expected, growth was negatively related to

Age in all areas. There was also an indication of sex-

specific growth differences in EBS, ETAS, and WTAS

(males generally grew slower than females), with this

relationship varying with Age in EBS and ETAS, i.e.,

females grew faster than males over some age classes,

but not others (Table 6a; Appendix E: Fig. E1).

Individual growth rates were negatively related to Age

at capture in five of the seven areas and positively related

in one (NC; Table 6a; Appendix E: Fig. E1), suggesting

that growth rate-based selectivity occurs in parts of this

species’ range, whereby faster-growing individuals gen-

erally do not reach the same older ages as slower-

growing individuals. Several possible explanations for

this effect have been suggested in general, including life-

history trade-offs between growth rate, sexual maturity,

and longevity (Heino et al. 2002), higher vulnerability of

fast growers to fishery activities as these individuals

attain a catchable size at a younger age (Rosa Lee

phenomenon, Ricker 1969; fishery induced evolution,

Heino and Godo 2002, Jorgensen et al. 2007; see Hagen

and Quinn [1991] and Sinclair et al. [2002a] for otolith-

based growth selectivity examples), or because faster

growers have intrinsically greater energy requirements

and feeding activity rates (Werner and Anholt 1993) or

are bolder and thus are more likely to encounter fishing

gear (Biro and Post 2008). No Age at capture and

Annual growth relationship, however, was evident in

NSW, and a positive relationship was present in NC,

two areas that have historically experienced high levels

of commercial fishing (Tilzey and Rowling 2001, Klaer

2004). For NSW, this could mean that any fishery-

related selectivity has already stabilized, and for NC, the

lack of any fish older than six years in our samples may

have influenced results or could in itself reflect a fishery

or environmental impact. More generally, the patterns

observed may represent differences in sampling or gear

selectivity across fishing areas. Regardless of the

underpinning mechanism, including an Age at capture

TABLE 5. Pearson’s correlation coefficients (r) for pairwise comparisons of area-specific interannual growth variation (P values in
parentheses).

Fishing area NC NSW WBS EBS CBS ETAS WTAS

NC 1
NSW 0.132 1

(0.803)
WBS 0.243 0.396 1

(0.643) (0.180)
EBS �0.120 0.842 0.217 1

(0.821) (,0.001) (0.476)
CBS 0.086 �0.043 0.451 0.127 1

(0.871) (0.89) (0.142) (0.680)
ETAS �0.399 0.491 0.136 0.640 0.046 1

(0.433) (0.007) (0.657) (,0.001) (0.881)
WTAS 0.950 0.425 0.240 0.497 0.070 0.514 1

(0.004) (0.027) (0.429) (0.008) (0.828) (0.006)

Notes: Significant correlations (P , 0.05) are highlighted in bold. Best linear unbiased predictors (BLUPs) are presented in Fig.
4. See Table 4 for definitions of abbreviations.
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term in biochronology analyses helps to identify any

ecologically and evolutionarily relevant growth-based

selectivity that may occur in a species and corrects for

biases that may exist in the underlying sampling regime

that would otherwise compromise analyses (Morron-

giello et al. 2012).

Hypotheses related to extrinsic drivers of within-area

growth variation.—We tested for temporal directionality

in interannual and cohort-specific growth by adding a

linear Year covariate as a fixed effect to the optimal

intrinsic-effect model (Appendix E: Table E1). The

addition of a temporal trend improved model perfor-

mance in five of seven areas (Appendix E: Table E2).

While the addition of a Year term had little effect on the

amount of overall variance explained by each model

(R2

LMMðcÞ in Appendix E: Table E2), it did result in an

improvement in variance explained by fixed effects

(R2

LMMðmÞ) and make the model’s overall fit more easily

interpretable through the explicit attribution of growth

variation to a driver. Specifically, after taking into

account intrinsic factors, annual growth increased in

NSW, WBS, EBS, ETAS, and WTAS (Table 6b, Fig. 4)

from between 0.70% and 2.50% per year over the study

period. These increases are consistent with results from

biochronologies developed for four other shallow water

species in southeast Australia (Thresher et al. 2007,

Neuheimer et al. 2011), indicating that this is a regional,

rather than species or population-specific, response. The

two flathead biochronologies that did not display a

temporal trend were the shortest in length (NC, 6 yr;

CBS, 13 yr), and hence may not have been long enough

to detect the trend. To investigate possible environmen-

tal drivers of these temporal growth trends and residual

extrinsic variation, we replaced the Year fixed effect with

just Temperature (both as linear and quadratic terms)

for the full growth record, and then Temperature (linear

and quadratic) and Abundance (including an interaction

with Temperature to test for fishing and environmental

synergies; Planque et al. 2010) for the restricted data set.

Both extrinsic parameters were crossed with Age to

allow for age-dependent responses to environmental

variation.

Interannual variability in tiger flathead growth

correlated with annual bottom Temperature in most

areas, but we found no evidence of these patterns being

age dependent. Again, while the addition of another

fixed effect increased model complexity but made little

difference to overall levels of explained variance, it did

improve the model’s biological interpretability as

interannual growth variation could now be interpreted

in light of temperature changes. Based on the full,

longer-term, data set, the best models for NSW, WBS,

EBS, ETAS, and WTAS included a linear Temperature

parameter, for NC it included a quadratic Temperature

parameter, while for CBS, the best model included just

intrinsic effects (Appendix E: Table E3). The magnitude

and direction of temperature effects varied latitudinally

(Fig. 5). The southern, and thus cooler, areas experi-

enced modest increases in Annual growth with annual

temperature (þ7.29% per 8C in WTAS and þ7.74% per

8C in ETAS). In more northward areas, increases in

temperature of similar magnitude to those farther south

coincided with annual growth rates increasing by

14.29% per 8C in EBS and 41.21% per 8C in NSW, but

declined by 13.40% per 8C in WBS (the latter had wide

confidence intervals encompassing zero). Finally, in the

northernmost area (NC), growth rate initially increased

up to ;16.38C, whereafter it declined (Table 6c, Fig. 5).

Extrinsic-effects models developed using the restricted

data set were qualitatively similar to those from the full

TABLE 6. Parameter estimates (with SE) and test statistic t for best models from each fishing area.

Model and parameter

NC NSW WBS

Estimate (SE) t Estimate (SE) t Estimate (SE) t

a) Intrinsic-effects model

Intercept �1.567 (0.009) 53.49 �1.814 (0.034) 53.84 �1.884 (0.024) 77.44
Age �0.667 (0.035) 18.97 �0.907 (0.028) 33.92 �0.812 (0.041) 19.741
Age at capture 0.102 (0.037) 2.79 �0.110 (0.049) 2.22
Sex (male)
Age 3 Sex

b) Temporal trend model

Year 0.023 (0.002) 11.68 0.029 (0.010) 3.03

c) Temperature model

Bottom temperature �0.091 (0.030) 3.05 0.345 (0.123) 2.80 �0.144 (0.082) 1.75
Bottom temperature2 �0.435 (0.269) 1.62

d) Within- vs. among-individual variation

bW (within-individual effect) �0.105 (0.052) 2.01 0.286 (0.135) 2.12 �0.221 (0.076) 2.92
bA (among-individual effect) �0.097 (0.111) 0.87 0.375 (0.129) 2.90 0.030 (0.118) 0.26

Notes: Models describe intrinsic sources of growth variation, temporal trends in annual growth, temperature effects on annual
growth variation, and within- vs. among-individual variation. All models were fit to the full data set. Maximal (as opposed to best)
model fixed-effect structures tested were: intrinsic-effects model, Age3SexþAge at capture; temporal trend model, Intrinsic effects
þYear; temperature model, Intrinsic effectsþTemperatureþTemperature2. Empty cells mean that the parameter did not appear in
the model.
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data set for the majority of areas (Appendix E: Table

E4, Text E2). The general lack of detectable and

consistent Abundance effects (or any interactions with

Temperature) on growth rates could result from

ecological factors (weak intraspecific competition for

resources, possibly coupled to low overall abundances)

or more likely, the limited sensitivity of fisheries-derived

CPUE indices as estimators of population density.

Across-area variation in annual growth

Models 1a–4d (and their fixed-effect derivations) are

not spatially explicit; they neither integrate nor test

hypotheses regarding factors that span the species’ range

(e.g., Leites et al. 2012). Such spatial analyses are

difficult to perform using traditional dendrochronolog-

ical and some age-specific regression approaches because

of dimensionless indices or the assumption of a common

climatic response (Lapointe-Garant et al. 2010, Mor-

rongiello et al. 2012). To test hypotheses relevant to

across-region drivers of growth variation, we included in

model 5 area-specific random intercepts (Area) for Year

and Cohort (Table 3). The Area intercept induces

correlation among Years and Cohorts within an area

and allows drawing spatial and temporal inferences

about growth variation without having to estimate

spatial autocorrelation structures (Brown et al. 2011).

We also explored whether there was variation in among-

area Age and Age at capture and among Year and

Cohort Age fixed-effect slopes by including these as

random slopes for each area. In all, 16 models of

increasing random-effect complexity were compared.

Fixed-effect structures initially included the terms Age,

Sex, and their interaction and Age at capture. The best

performing random-effects structure that spanned the

species’ entire range was the most complex (Appendix F:

Table F1) and included random Age slopes for FishID,

Area, Year, and Cohort and random Age at capture

slopes for Area (shown in Table 3 as Model 6).

Temperature varies over space and time (Fig. 1a, b).

Consistent spatial differences in long-term temperature

averages will result in concordant variability in prey

quality and quantity, competition and predation, and

potential differential selectivity. These may result in an

underlying, geographically related gradient in average

growth. Short-term departures from these long-term

temperature averages capture environmental stochastic-

ity and can be reflected in an individual’s interannual

FIG. 5. Predicted annual growth of two-year-old male tiger
flathead (Age at capture held at mean value) by bottom
temperature for each area. Points are Year random-effect
conditional modes (BLUPs) generated from optimal intrinsic-
effect models (Appendix D: Table D1) and represent average
extrinsic growth variation. Solid triangles represent WTAS;
open triangles represent ETAS; solid circles represent EBS;
solid squares represent CBS; open squares represent WBS; open
circles represent NSW; crosses represent NC. See Fig. 1 for
definitions of abbreviations. Note that temperature was not
included in the best model for CBS.

TABLE 6. Extended.

EBS CBS ETAS WTAS

Estimate (SE) t Estimate (SE) t Estimate (SE) t Estimate (SE) t

�1.855 (0.015) 124.67 �1.748 (0.010) 174.14 �2.145 (0.013) 170.13 �2.061 (0.014) 144.86
�0.757 (0.011) 65.94 �0.699 (0.021) 32.91 �0.759 (0.017) 44.17 �0.730 (0.014) 52.27
�0.021 (0.008) 2.68 �0.116 (0.027) 4.28 �0.107 (0.018) 6.02 �0.128 (00025) 5.19
�0.036 (0.005) 7.2 �0.040 (0.015) 2.73 �0.050 (0.014) 3.55
�0.031 (0.010) 2.97 �0.066 (0.021) 3.19

0.007 (0.001) 6.95 0.008 (0.002) 3.91 0.007 (0.003) 2.77

0.138 (0.043) 3.25 0.077 (0.032) 2.44 0.070 (0.029) 2.41

�0.102 (0.033) 3.05 0.005 (0.040) 0.12 �0.0002 (0.024) 0.01 0.070 (0.030) 2.35
0.411 (0.036) 11.49 0.122 (0.217) 0.56 0.373 (0.045) 8.31 0.065 (0.130) 0.50
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growth plasticity. To explore the relative importance of

these spatial and temporal components of Temperature,

we first calculated area-specific temperature normals

(average) over the period 1970–2011 (AvTemp), and

then within-area temperature anomalies (TempAnom)

were calculated as the difference between a given year’s

Temperature and AvTemp (Table 2). Temperature-

dependent spatial and temporal patterns in flathead

growth were explicitly modelled by adding various

combinations of AvTemp, TempAnom, and their

interaction and quadratic terms as fixed effects to model

6. AvTemp and its quadratic polynomial explore drivers

of systematic spatial-growth variation and describe the

spatial pattern evident in Fig. 5. TempAnom and its

quadratic investigate whether growth is impacted by

departures of short-term climate from its area-specific

long-term normal. The interaction between AvTemp

and TempAnom investigates whether areas differ in

their growth response to similar magnitude departures

of short-term temperature from long-term temperature.

The best performing fixed-effect derivation of model 6

included terms for Age 3 Sex, Age at capture, and

AvTemp 3 TempAnom (Appendix F: Table F2).

Overall, growth declined with age, the rate of which

was steeper for males than for females (Table 7, Fig. 6a).

Age-dependent growth rates also varied geographically

(random Age slopes for each Area; Fig. 6b). Across all

areas, growth was not strongly related to Age at capture

(Table 7, Fig. 6c), but the slope of this relationship

differed considerably among areas (Fig. 6d), reempha-

sizing the need to include this term in biochronological

analyses.

Integrated across areas, tiger flathead growth re-

sponse to short-term temperature variation was depen-

dent on an area’s long-term temperature normal (Table

7). Results are consistent with inferences from the

within-area analyses. Growth was lowest when long-

TABLE 7. Parameter estimates and test statistics for best model
describing across-area tiger flathead growth.

Parameter Estimate SE t

Intercept �1.854 0.278 6.68
Age �0.771 0.076 10.18
Age at capture �0.036 0.204 0.18
Sex (male) �0.025 0.004 6.92
Age 3 Sex �0.018 0.007 2.58
AvTemp 0.148 0.030 4.87
TempAnom 0.096 0.022 4.31
AvTemp 3 TempAnom 0.053 0.026 2.08

FIG. 6. Predicted annual growth variation in tiger flathead across all fishing areas back-transformed to the original scale. (a)
Age- and sex-dependent trends (mean with 95% CI) for males (solid circle) and females (open circles); females are offset on the x-
axis for clarity; (b) among-area (gray lines) variation in the growth–age relationship about the species’ average (black line); (c)
species’ age-at-capture trend (mean with 95% CI); (d) among-area (gray lines) variation in the growth–age-at-capture relationship
about the species’ average (black line).
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term temperature averages were coolest (more souther-

ly), and here, short-term positive temperature anomalies

did little to increase growth (Fig. 7). For warmer

average conditions, growth increased and began to more

positively respond to warmer years over the short term.

Finally, growth was highest at the warmest long-term

average temperatures and under these conditions

responded strongly to positive short-term temperature

anomalies. The across area model did not, however,

adequately fit the data from NC (compare direction of

NC slope in Fig. 5 with the 16.58C slope in Fig. 7), likely

due to the relatively few years of data available for this

area and the limitations of exploring just linear terms.

Within vs. among individual variation

The expression of phenotypic traits, like growth,

varies within and among individuals (adaptively, non-

adaptively, or neither) depending on the interplay

between genetics and the environmental conditions

experienced (Pigliucci 2005). Models 1–6 considered

fishing area- and species-level growth responses to

environmental variation. However, the nature of indi-

vidual-level plasticity cannot always be easily inferred

from population-centric models, as they can obscure

individual variability in responses and hence the degree

of trait heterogeneity in a population (Nussey et al.

2007, Clutton-Brock and Sheldon 2010). Importantly,

inference at one level of biological organization (e.g., the

population) is dependent on processes operating at

lower levels of organization (e.g., among and within

individuals). Exploring this hierarchy can therefore

provide valuable evolutionary context to ecological

insights.

Data sets collected from wild animals, such as otolith

increment measurements, also pose a problem to

studying individual-level variation, because we cannot

choose the level of a predictor variable (e.g., tempera-

ture) at which we measure a trait (e.g., growth; van de

Pol and Wright 2009). Not all tiger flathead are exposed

to the same conditions; fish spawned in earlier years, for

example, experienced on average cooler conditions than

those spawned more recently (Fig. 1b). The random

FishID intercepts in models 1–6 account for among-

individual differences in average growth, but do not take

into account among-individual differences in tempera-

ture experienced. Consequently, the observed popula-

tion-level temperature relationships (Fig. 5) could derive

from either within-individual phenotypic plasticity

(reaction norms) or among-individual effects in which

fish that experienced on average warmer waters

throughout their lives have higher (or lower) growth

rates due to genetic or nongenetic effects or a

combination of both. Furthermore, opposing

within- and among-individual effects can even cancel

each other out, as for example when physiology

supports a positive growth–temperature relationship

(within individuals), but food availability declines in

warmer conditions resulting in lower average growth

(among individuals).

We used a similar technique to that employed for the

across-area analyses (called within-subject centering by

van de Pol and Wright [2009]) to calculate an average

temperature experienced by individuals across their

lifetime (x̄i ) and the deviation of each annual temper-

ature from this mean (xik� x̄i; Table 2). These two new

predictor variables were fitted in model 7 (Table 3); their

coefficients provide, respectively, an estimate of how

growth systematically varies across average lifetime

conditions (among-individual slope bA) and an estimate

of the average growth phenotypic plasticity present

within an area (within-individual slope bW; see van de

Pol and Wright [2009] for a thorough discussion of the

method). Model 7 can be expanded to include individ-

ual-specific differences in within-individual temperature

slopes (random bW for FishID), thus facilitating an

exploration of among-individual variation in individual

reaction norms (Table 3; model 8).

Model selection and results summaries are presented

in Appendix G: Text G1, and within- and among-

individual growth variation patterns are illustrated in

Fig. 8. In the low-latitude NC, we identified a negative,

curvilinear population-level growth response to increas-

ing temperature (Fig. 8a), which was a consequence

primarily of within-individual phenotypic plasticity.

Moving poleward, the strong positive area-level growth

response in NSW can be attributed to similar levels of

within-individual phenotypic plasticity and among-

individual growth variation, where those fish that were

alive in warmer years had higher average growth rates

FIG. 7. Interaction plot of predicted regional variation in
tiger flathead annual growth as a function of five long-term
average temperature values (12.5–16.58C; AvTemp) and within-
area short-term temperature variation (x-axis temperature
anomaly, TempAnom), back-transformed to the original scale
with other covariates held at their mean values.
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(Fig. 8b). The weak area-level response to temperature

in WBS masked evidence of much stronger negative

average phenotypic plasticity, which was likely cancelled

out by slightly positive among-individual variation (Fig.

8c). In EBS and ETAS, within- and among-individual

variation partially cancelled each other out with the

positive area-level growth response underestimating

substantial among-individual growth variation related

to average experienced temperatures (Fig. 8d, f ). WTAS

fish showed an inverse pattern to those in NC with the

majority of the population-level growth response

attributable to within-individual phenotypic plasticity

(Fig. 8g). No clear patterns were evident in CBS (Fig.

8e). There was little evidence of temporal patterns in

within individual reaction norms (see Appendix G: Text

G2 for results and discussion).

Synthesis and conclusions

Hierarchically structured biochronologies are widely

available in ecological and ecophysiological contexts,

ranging from elemental and morphological time-series in

ibex horns (Büntgen et al. 2014) and whale ear plugs

(Trumble et al. 2013) to classic tree-ring-based dendro-

chronology (Cook and Kairiukstis 1990). The informa-

tion that can be extracted from such chronologies

depends on the fidelity of the proxy and the extent to

which parameters of interest can be separated from the

influence of other factors. In traditional climate-oriented

biochronological studies, this separation often takes the

form of arbitrarily excluding from the analysis compla-

cent individuals in order to better describe the climate

signal of interest (D’Arrigo et al. 2006) or by using

information from only situations that a priori exclude

the effects of confounding variables and maximize

sensitivity, e.g., examining tree rings only from speci-

mens in high-elevation environments in order to isolate

the effects of temperature of growth (Cook et al. 2000).

While such approaches have obvious merit in climatic

hindcasting where a strong proxy signal is desired, they

limit ecological inference due to often small and/or

nonrepresentative (and thus biased) samples (Nehrbass-

Ahles et al. 2014), averaging across levels of biological

hierarchy, and the exclusion from analysis of important

components of growth variation (Carrer and Urbinati

2004, Morrongiello et al. 2012).

In a similar vein, the majority of ecologically focused

biochronological studies on fishes have investigated

extrinsic, population-level sources of variation, such as

water temperature, with the effects of intrinsic, individ-

ual age-, behaviorally, or genetically dependent varia-

tion either explicitly detrended and averaged out

(traditional dendrochronology; Black 2009) or excluded

by analyzing only a limited range of ages (age-specific

regression; Thresher et al. 2007, Neuheimer et al. 2011).

Mollusc and coral-based studies also largely ignore

intrinsic sources of growth variation (Helama et al.

2006, Carilli et al. 2010, Cooper et al. 2012). While a

focus on extrinsic drivers has provided valuable insight

into how such organisms respond to changing environ-

mental conditions over decadal to centenary time

periods, they exclude from consideration potentially

valuable intrinsic-level information encoded in hard

parts (Pilling et al. 2002, Brannon et al. 2004) and

within- and among-individual phenotypic and genetic

FIG. 8. Predicted population-level, within-individual, and
among-individual variation in bottom temperature coefficients
(mean with 95% CI) for log-transformed annual growth. Note
that a linear temperature coefficient is presented for NC to aid
interpretation (best model includes Temperature þ Tempera-
ture2). See Fig. 1 for definitions of abbreviations.
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variation (Nussey et al. 2007, Biro and Post 2008, van de

Pol and Wright 2009). Extrinsic- and intrinsic-level

information, as well as the interaction between the two,

is integral to understanding how populations and species

have and will respond to changing environmental

conditions, because it is the individual that experiences

and interacts with its environment (Clutton-Brock and

Sheldon 2010).

We examine an alternative model-based approach

that utilizes the full hierarchical structure of biochrono-

logical data and that allows exploring, parameterizing,

and quantifying underappreciated intrinsic effects, as

well as more familiar extrinsic effects, on growth rates.

Models could be developed for other hierarchically

structured proxies, i.e., age-dependent variability in

otolith isotopic composition, as well as other situations

where the underlying data is hierarchical, e.g., life

history parameters, Clutton-Brock and Sheldon (2010);

dendrochronology, Leites et al. (2012); animal behavior,

Dingemanse and Dochtermann (2013); and fisheries,

Hagen and Quinn (1991), Sinclair et al. (2002a).

Specifically, we develop a series of nested spatially and

temporally explicit models that allow for the quantita-

tive comparison of within- and among-individual and

within- and among-area growth rates, analyses that are

not possible using techniques that have their genesis in

the hindcasting of past environmental conditions.

Not surprisingly in the case of tiger flathead, and,

likely, otoliths in general, the majority of the variance in

annual growth rates as proxied in growth increments is

accounted for by allometrically declining age-dependent

growth. Adding individual variability (FishID) to Age

only increased the amount of variance accounted for by

between 0.8% and 8.5%, and even our most complex

models explained only a small amount of additional

variance (between 64.7% and 85.9% of the total area-

specific variance; Table 4). However, these more

complex models were a better fit to the data based on

AICc. Their value comes not from explaining more of

the variance, but rather by generating testable hypoth-

eses and partitioning the variance in, for example,

FishID or Year, among biologically interpretable

components. Likewise, selection can act on minor

aspects of trait variation, and these models are more

sensitive to detecting and attributing any such changes.

Examples gleaned from our analyses include responses

to good and bad years that differ among age groups,

Age at capture effects in six of the seven fishing areas

that unless accounted for could result in biased results

due to selective sampling, distinguishing between Cohort

and Year effects within and among areas with implied

inferences for density dependence on population dy-

namics, and identifying spatially variable responses to

temperature anomalies that are superimposed on an

otherwise coherent latitudinal, temperature-correlated

gradient in growth rates. While most of these observa-

tions are biologically plausible, we emphasize the risk of

spurious correlations inherent in using such large data

sets (in our case, 24 661 increments from 6143 individ-

uals). A possible example from our analyses is the

statistically robust observation of sex-specific growth

differences in some areas, but not others, and an age

effect on this difference, again only in some areas. Sex-

specific differences in growth rate are common, but the

extent to which it differs between adjacent spatial areas

in what appears to be a genetically homogeneous

population is difficult to explain.

The analyses also indicate that, despite the magnitude

of regional warming, the total effect of Temperature,

alone and in various combinations, on growth rate

variability in tiger flathead is relatively small. Nonethe-

less, a detailed hierarchical interrogation of the data

both confirms a nonlinear relationship between absolute

temperature and growth rate previously documented for

a number of other inshore species locally and identifies

more subtle responses to temperature trends and

variability. The overall spatial variation of tiger flathead

within-area temperature responses is consistent with

previous studies of the effects of warming on southeast

Australian coastal fish species (Thresher et al. 2007, Last

et al. 2011, Neuheimer et al. 2011) and theoretical

expectations of a direct temperature effect on the

physiology and ecology of poikilotherms (Portner

2001, Portner and Farrell 2008). Qualitative assessment

of our model results suggests a pejus temperature for

tiger flathead of ;168C. Hence, the large-scale relation-

ship between tiger flathead interannual growth variation

and bottom temperature appears to confirm an impact

of climate change, likely via both direct physiological

pathways (Portner 2001, Portner and Knust 2007) and

indirectly through altering resource availability

(McLeod et al. 2012) and interspecific interactions and

synergies with other stressors (Ling et al. 2009). The

magnitude of the temperature effect ranged among areas

between 0.70% per year and 2.50% per year and is large

enough to have pervasive intra- and interspecific

biological and fishery relevance (Audzijonyte et al.

2013a, b). Integrated across areas, however, the growth

response to short-term temperature variation depended

on an area’s long-term temperature normal. Average

growth was lowest where long-term temperature aver-

ages were coolest (more southerly), and in such areas,

short-term positive temperature anomalies had only

minor effects on growth rate. Toward the warmer end of

the range, growth was not only on average faster, but

also responded more strongly to positive short-term

temperature anomalies, indicating some synergistic

effect of warming from an already warm base. At the

warm extreme, however, we saw indications of a pejus

effect, with warm temperatures resulting in declining

growth rates.

The different patterns in within- and among-individ-

ual growth variation across areas provide insight into

the evolutionary processes underlying trait variation, as

well as facilitating more nuanced predictions of future

response to environmental change (Miner et al. 2005,
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Nussey et al. 2007). For example, the consistent levels of

average within-individual plasticity (both across indi-

viduals and cohorts) evident in NC, CBS, ETAS, and

WTAS is indicative of stabilizing selection on growth

such that there is a common preferential response to

warming (or cooling). Conversely, among-individual

variation or temporal change in average reaction norm

slopes (NSW, WBS, and EBS) could be evidence of

directional selection where increased (or decreased)

plasticity is favored in warmer (or cooler) conditions

(Pigliucci 2005). Among-individual differences in aver-

age growth with temperature as seen in three areas may

be caused by microevolution (selection in more recent

and generally warmer years favoring faster growth rate

genotypes) or indicative of a plastic response to

multiyear environmental changes (reaction norm slopes

stay the same, but average growth increases).

Our results indicate that while there is general

agreement in the overall effects of temperature on tiger

flathead growth, this phenotypic pattern can be brought

about via a number of possible mechanisms, including

differences in underpinning genetics or selective regimes.

Future work determining the relative importance of

these on trait averages and trait plasticity, as well as the

additive or interactive role of other factors, such as

fishing activity, and demography will provide a valuable

mechanistic underpinning to the observed growth

variation (Planque et al. 2010). Nonetheless, the

preponderance for growth plasticity in relation to

temperature across most areas suggests that tiger

flathead will be able to, all else being equal, positively

respond to continued warming through much of their

range. This response may be facilitated by existing in

situ adaptive scope or the poleward expansion of

potentially warm, specialized genotypes from NSW

and NC. At the equatorial range margin, where growth

is currently highest, growth rates are likely to decrease as

waters warm. Whether this ultimately leads to a range

contraction is unknown and depends on the interplay

among growth, survival, and reproduction. The pole-

ward range margin is delineated by the availability of

habitat (continental shelf waters), and it is unlikely to

expand southward as the next land mass is Antarctica.

Finally, we propose that if aquatic hard-part re-

searchers want to undertake ecological or evolutionary

studies, they need to shift their focus away from

methods developed for climatological reconstruction

(for review, see Morrongiello et al. 2012). They should

instead consider and analyze existing and future hard-

part increment measurements as long-term, individual-

based data sets rather than purposefully detrending and

averaging away within and among individual variation.

Such an individual-based perspective has facilitated the

exploration of complex ecological and evolutionary

questions in terrestrial animals (Clutton-Brock and

Sheldon 2010) using, for example, reproductive phenol-

ogy in great tits (Visser et al. 1998), body mass in Soay

sheep (Ozgul et al. 2009), and senescence in ungulates

(Nussey et al. 2011). While this requires relatively large,

high-quality data sets, there is no reason why similar

advances cannot be made in aquatic systems, where

hard-part studies can generate individual-based bio-

chronologies decades and even centuries in length.
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