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Abstract 48 

Metabolomics is a potentially powerful tool for identification of biomarkers associated with 49 

lifestyle exposures and risk of various diseases. This is the rationale of the “meeting-in-the-50 

middle” concept, for which an analytical framework was developed in this study. In a nested 51 

case-control study on hepatocellular carcinoma (HCC) within the European Prospective 52 

Investigation into Cancer and nutrition (EPIC), serum 1H NMR spectra (800 MHz) were 53 

acquired for 114 cases and 222 matched controls. Through Partial Least Square (PLS) 54 

analysis, 21 lifestyle variables (the “predictors”, including information on diet, anthropometry 55 

and clinical characteristics) were linked to a set of 285 metabolic variables (the “responses”). 56 

The three resulting scores were related to HCC risk by means of conditional logistic 57 

regressions. The first PLS factor was not associated with HCC risk. The second PLS 58 

metabolomic factor was positively associated with tyrosine and glucose, and was related to a 59 

significantly increased HCC risk with OR= 1.11 (95%CI: 1.02, 1.22, p=0.02) for a 1-SD 60 

change in the responses score, and a similar association was found for the corresponding 61 

lifestyle component of the factor. The third PLS lifestyle factor was associated with lifetime 62 

alcohol consumption, hepatitis and smoking, and had negative loadings on vegetables intake. 63 

Its metabolomic counterpart displayed positive loadings on ethanol, glutamate and 64 

phenylalanine. These factors were positively and statistically significantly associated with 65 

HCC risk, with 1.37 (1.05, 1.79, p=0.02) and 1.22 (1.04, 1.44, p=0.01), respectively. Evidence 66 

of mediation was found in both the second and third PLS factors, where the metabolomic 67 

signals mediated the relation between the lifestyle component and HCC outcome. This study 68 

devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics data. 69 

This implementation of the “meeting-in-the-middle” approach finds natural applications in 70 

settings characterized by high-dimensional data, increasingly frequent in the –omics 71 

generation. 72 
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Introduction 75 

Metabolomic profiles from blood and other biological samples collected from large-76 

scale epidemiologic studies are increasingly being investigated [1], following recent 77 

developments in nuclear magnetic resonance (NMR) and mass spectrometry (MS) enabling 78 

the assessment of metabolic profiles for large numbers of individuals. As a result, 79 

metabolomic data is gradually playing a key part in clinical and observational studies; and 80 

new statistical methodologies [2] are increasingly being sought to explore insights into 81 

pathological processes that metabolomics may provide in order to better understand 82 

determinants of disease development. These approaches explore a variety of etiological 83 

hypotheses; however they usually focus on one aspect at a time, combining metabolomics 84 

with either epidemiologic/phenotypic data on lifestyle exposures [3] or with disease outcomes 85 

[4,5]. The main aim of this work is to jointly use all aspects that are potentially informative to 86 

apprehend the contrivances of disease development.  87 

Metabolomic data offers the opportunity to identify signatures and biomarkers 88 

associated with environmental exposures and the risk of a disease. Prospective studies are 89 

conceptually suitable for this purpose, since they rely on biological samples collected before 90 

disease onset, and are thus marginally influenced by metabolic changes due to processes of 91 

disease development. In this scenario, the “meeting-in-the-middle” (MITM) approach [6] has 92 

been conceived as a research strategy to identify biomarkers that are related to specific 93 

exposures and that are, at the same time, predictive of disease outcome. Finding this overlap 94 

between exposure and disease of “intermediate” biomarkers can potentially disclose useful 95 

information on the exposure-to-disease pathway, and may serve as an objective risk exposure 96 

measure, ultimately allowing the identification of a targeted prevention scheme. The MITM 97 

was previously implemented as a proof of concept in a case-control study nested within a 98 

cohort of healthy individuals [7], where a list of putative intermediate 1H NMR biomarkers 99 
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linking exposure to dietary compounds, mainly micro- and macronutrients, and disease 100 

outcomes (colon and breast cancer) were investigated.  101 

In this study we extend previous attempts to model the MITM by fully integrating 102 

metabolomics, lifestyle and disease risk in a single analytical framework. A strategy was 103 

developed to simultaneously investigate a broad range of metabolites and lifestyle variables 104 

with a partial least square (PLS) regression model [8]. The resulting scores were related to the 105 

risk of hepatocellular carcinoma (HCC), in a case-control study nested within the European 106 

Prospective Investigation into Cancer and nutrition (EPIC). HCC is the most frequent primary 107 

form of cancer affecting the liver, an organ that plays a critical role in many metabolic 108 

pathways [9]. HCC is a disease with multifactorial origins embracing lifestyle and dietary 109 

exposures whose intersection may reveal metabolomic signals [10] relevant to cancer onset. 110 

The system of relationships between metabolomic profiles and lifestyle factors in relation to 111 

HCC was evaluated by means of mediation analysis. The methodological challenges 112 

characterizing the analysis of large and complex metabolomic datasets are described and 113 

discussed. 114 

Methods 115 

EPIC design. The European Prospective Investigation into Cancer and nutrition (EPIC) is a 116 

large cohort established to investigate the association of diet, lifestyle and environmental 117 

factors with cancer incidence and other chronic disease outcomes. Between 1992-2000, over 118 

520,000 participants aged 20-85 years, were recruited from 23 centers in 10 Western 119 

European countries including Denmark, France, Germany, Greece, Italy, Norway, Spain, 120 

Sweden, The Netherlands and the United Kingdom [11].  The design, rationale and methods 121 

of the EPIC study including information on dietary assessment methodology, blood collection 122 

protocols and follow-up procedures were previously detailed [11].   123 
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Between 1992 and 1998, standardized lifestyle data, anthropometric measures and biological 124 

samples were collected at recruitment, prior to onset of any disease [11]. Validated country-125 

specific questionnaires ensuring high compliance were used to measure diet over the previous 126 

12 months [12]. Blood samples are stored at the International Agency for Research on Cancer 127 

(IARC, Lyon, France) in -196˚C liquid nitrogen for all countries, exceptions being Denmark 128 

(nitrogen vapour,-150˚C) and Sweden (freezers, -80˚C).  129 

The nested case-control study. The present study focused on data with available sera samples 130 

from a nested case-control study in EPIC on hepatocellular carcinoma (HCC) [13]. Cases of 131 

HCC were identified from all participating EPIC centres except for Norway and France 132 

(n=117) from recruitment (1993-1998) up to 2007. Two controls (n=232) were selected for 133 

each case from all cohort members alive and free of cancer (except non-melanoma skin 134 

cancer) by incidence-density sampling and were matched on age at blood collection (±1 year), 135 

sex, study centre, date (±2 months), time of the day at blood collection (±3 hours) and fasting 136 

status at blood collection (<3, 3-6, >6 hours); among women, additional matching criteria 137 

included menopausal status (pre-, peri-, post-menopausal) and hormone replacement therapy 138 

(HRT) use at time of blood collection (yes/no). In the present study, cases and controls were 139 

both included in the analyses as the subjects were all cancer-free at blood collection. Out of 140 

the total 349 subjects, 7 subjects (3 cases and 4 controls) had too little serum volume for 141 

NMR spectral acquisition with sufficient sensitivity; 6 additional control subjects were 142 

excluded following the exclusion of their corresponding case subject. The final analysis 143 

included 114 HCC cases and 222 matched controls of which 108 case–control sets with two 144 

matched control subjects and 6 sets with one matched control subject. 145 

NMR spectra acquisition. Sera were processed using standard procedure for 1H NMR 146 

metabolic measurement and profiling protocols [14]. Details on the sera sample preparation as 147 

well as NMR data acquisition and processing have been described elsewhere [15]. In brief, 148 
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each spectrum was reduced to 8,500 bins of 0.001 ppm width over the chemical shift range of 149 

0.5 to 9 ppm. Spectra were normalized to total intensity, centred and Pareto scaled, and 150 

additionally normalized for batch-effects using the batch profiling calibration method [16]. 151 

After removal of the structured noise (characterized by a specific mean and standard 152 

deviation) located in a well-known noise region (8.5-9ppm) and variables with identical 153 

characteristics, the statistical recoupling of variables (SRV) [17], a bucketing procedure, was 154 

applied to the metabolomic spectra. The SRV procedure identifies clusters of variables with 155 

respect to the ratio of covariance and correlation between consecutive variables along the 156 

chemical shift axis, allowing the restauration of the spectral dependency and the recovery of 157 

complex NMR signals corresponding to potential physical, chemical or biological entities. 158 

More details on the SRV procedure are available in the Mathematical Appendix. This 159 

permitted a reduction of the number of NMR variables from 8,500 bins to 285 clusters of 160 

variables corresponding to reconstructed peak entities which constituted the Y-set of 161 

metabolic variables. All steps to obtain the data were done without knowledge of the case-162 

control status of the subjects. Quality control (QC) samples were included to ensure 163 

reproducibility of the NMR data acquisition. 164 

Metabolite identification. The assignment of NMR signals observed in the 1H one-165 

dimensional fingerprints to metabolites has been achieved by the analysis of additional 2D 166 

NMR experiments 1H-13C HSQC and 1H-1H TOCSY obtained on a subset of representative 167 

samples (one control and one case). The measured chemical shifts were compared to 168 

reference shifts of pure compounds using HMDB [18], MMCD [19] and ChenomX, 169 

(ChenomX NMR suite, ChenomxInc, Edmonton, Canada) databases. 170 

Lifestyle variables. The predictors (what will be referred to later on as the X-set) included 13 171 

dietary variables from main EPIC food groups compiled from validated country-specific food 172 

frequency questionnaires (FFQ) [11,20] (potatoes and other tubers; vegetables; legumes; 173 
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fruits, nuts and seeds; dairy products; cereal and cereal products; meat and meat products; fish 174 

and shellfish; egg and egg products; fat; sugar and confectionary; cakes and biscuits; non-175 

alcoholic beverages), alcohol average lifetime intake (continuous, g/day), anthropometric 176 

measures including body mass index (continuous, kg/m2) and height (continuous, cm) that 177 

were measured by trained interviewers in the majority of participants [11], highest level of 178 

education achieved (categorical: none or primary school completed, technical/professional 179 

school, secondary school, longer education (incl. university degree), unspecified), smoking 180 

status (categorical: never, former, current smoker, unknown), a measure of physical activity 181 

(continuous, metabolic equivalents of task (MET)/h), hepatitis status (yes/no, from biomarker 182 

measures of HBV and HCV seropositivity [ARCHITECT HBsAg and anti-HCV 183 

chemiluminescent microparticle immunoassays; Abbott Diagnostics, France]) and baseline 184 

self-reported diabetes status (yes/no). Descriptive information on these variables can be found 185 

in Supplementary table 1. 186 

Statistical analysis 187 

PC-PR2 analysis. Principal component partial R-square (PC-PR2) was primarily used to 188 

identify and quantify sources of systematic variability within metabolomic data [15]. PC-PR2 189 

combines aspects of principal component analysis (PCA) and the R2
partial statistic in multiple 190 

linear regression, and allows for (some) inter-correlation between the explanatory variables 191 

under scrutiny [15]. In short, PCA is performed on the 285 clusters of 1H NMR variables and 192 

a number of components is retained explaining an amount of total variability above a 193 

designated threshold (here, 80%). Then, multiple linear regression models are fitted where 194 

each component’s variability is explained in terms of relevant covariates, e.g. specific 195 

characteristics of samples like country of origin, smoking status, laboratory treatment, etc. For 196 

each given component, the R2
partial statistic is computed for all covariates, quantifying the 197 

amount of variability each independent variable explains, conditional on all other covariates 198 
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included in the model. Finally, an overall R2
partial is calculated as a weighted average for every 199 

covariate, using the eigenvalues as components’ weights. Mathematical details pertaining to 200 

the PC-PR2 method are described elsewhere [15]. 201 

In this study, PC-PR2 was applied to the 285 clusters of NMR variables, whereas the 202 

explanatory variables examined for systematic variability were NMR batch, country of origin, 203 

sex, age at blood collection, serum clot contact time (centrifugation at the day of blood 204 

collection d, or the following day, d+1), length of freezing time (<= 15 vs. >15 years), and 205 

fasting status at blood collection (< 3, 3-6, > 6 hours). With the similar motivation of 206 

identifying sources of variability within lifestyle data, a similar PC-PR2 analysis was applied 207 

to the 21 lifestyle factors; the examined covariates for systematic variability were country of 208 

origin, sex and age at recruitment. For both metabolomics and lifestyle data, residuals on the 209 

variable accounting for most variability, identified through PC-PR2 analyses, were computed 210 

in a series of univariate linear regression models [21] and were used in the subsequent PLS.  211 

PLS analysis. A PLS model was used to relate lifestyle variables to metabolomic profiles. 212 

PLS is a multivariate technique that generalizes features of PCA and multiple linear 213 

regression. PLS iteratively extracts linear combinations of, in turn, predictors (the X-set) and 214 

responses (the Y-set), which in this study, were lifestyle variables and metabolomic profiles, 215 

respectively. First, components or latent factors are extracted allowing a simultaneous 216 

decomposition of the X- and Y-sets, in order to maximize their covariance [22]. The factors 217 

extracted from the predictors’ set are orthogonal. Computational details of PLS are described 218 

in the Mathematical Appendix. As a standard step for the PLS algorithm, the X- and Y-sets 219 

were centered and standardized for the analysis and a simple expectation-maximization (EM) 220 

algorithm, adapted from the PLS kernel algorithm [23,24], was used to compute covariance 221 

matrices when missing values were present in the lifestyle data. This was done as follows: a 222 

first pass of PLS was computed filling in the missing values by the average of the non-223 
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missing values for each corresponding variable. A second pass was then performed whereby 224 

the missing data were assigned their predicted values based on the first model, and the PLS 225 

regression is recomputed. 226 

Then, a seven-fold cross validation analysis was carried out to select the number h of 227 

significant PLS factors to retain [8] (see Mathematical appendix).This was achieved by 228 

splitting the data into seven groups of observations. In turn, each group of observations was 229 

considered as the test set, whilst the other six were the training sets, used to perform PLS 230 

analysis. A measure of PLS performance was determined for each step through the predicted 231 

residual sum of squares (PRESS) statistic, whereby the predicted values in the test set, the Ỹh 232 

matrix, based on the X-components estimated through the model in the training set, were 233 

compared to the observed responses, the Y matrix. This comparison is quantified by the 234 

squared Euclidean distance between these two matrices. In turn for an increasing number h of 235 

components, the process is iterated seven times, until each group of observations serves as a 236 

test set. Eventually, the number h of selected PLS factors is the one minimizing the PRESS 237 

statistic. 238 

For each PLS factor, loadings were computed for the lifestyle (X-set) and the NMR (Y-set) 239 

variables. The loadings, i.e. coefficients quantifying the contribution of each original variable 240 

to the PLS factor, were used to characterize the various factors. As the analysis involved 241 

many variables in the X-set and, particularly, in the Y-set, the interpretation focused primarily 242 

on variables with loading values lower than the 10th percentile and larger than the 90th 243 

percentile for the X variables, and lower than the 5th and larger than the 95th percentiles for the 244 

Y variables, that were deemed the most significant contributors to the PLS factor.  245 

Logistic regression analysis. Last, scores of each PLS factor were related to HCC risk in 246 

conditional logistic regression models to compute HCC odds ratios (ORs) and associated 95% 247 

confidence intervals (95% CI) where ORs express the change in HCC risk associated to one 248 
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standard deviation (1-SD) increase in the score. Models were adjusted for C-reactive protein 249 

concentration, alpha-fetoprotein concentration and for a composite score indicative of liver 250 

damage. The score summarizes the number of abnormal values of circulating enzymes 251 

measured in the hepatic tissue in six liver function tests (alanine aminotransferase >55 U/L, 252 

aspartate aminotransferase >34 U/L, gamma-glutamyltransferase: men>64 U/L and 253 

women>36 U/L, alkaline phosphatase >150 U/L, albumin<35 g/L, total bilirubin>20.5 254 

μmol/L; cut-points were provided by the clinical biochemistry laboratory that conducted the 255 

analyses and were based on assay specifications) [25]. These biomarkers were measured on 256 

the ARCHITECT c Systems™ and the AEROSET System (Abbott Diagnostics) using 257 

standard protocols. Laboratory analyses were performed at the Centre de Biologie République 258 

laboratory, Lyon, France. These adjustments were deemed necessary to address potential 259 

confounding stemming from metabolic disorders, inflammation or underlying liver 260 

dysfunction [25–28]. Adjustments for total dietary fibre, vitamin D, calcium and iron intakes 261 

(continuous) were evaluated but not retained in the final models for lack of confounding 262 

exerted by these variables. The receiver operating characteristic (ROC) curve and the 263 

associated area under the curve (AUC) were determined from conditional logistic regressions 264 

to evaluate the predictive performance of PLS models. AUC values were computed for 265 

conditional logistic models including progressively the PLS scores, separately for lifestyle 266 

and metabolomic factors (as shown in Table 4, column 1). The sensitivity, specificity and 267 

accuracy were calculated for a cut-off point, selected as the minimal distance between the 268 

ROC curve and the upper left corner of the diagram [29,30]. The corrected positive predictive 269 

value (PPV), taking into account the nested case-control design [31,32] was computed by 270 

including the prevalence of HCC in the EPIC population(π= 0.0004), computed over a 7-year 271 

period (1992-2010) where 191 HCC cases were ascertained from a total of 477,206 272 

participants included for case identification after relevant exclusions [33]. The AUC 273 
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unavoidably increases with the number of covariates added to the conditional logistic model. 274 

To address this issue, a resampling scheme was devised to compute an objective/ unbiased 275 

estimate of the AUC, inspired by the work of Uno et al [34]. For each one of the 1000 drawn 276 

bootstrap samples, a 10-fold cross-validation was performed, repeated ten times to remove 277 

variation due to random partitioning of data and to yield more stable estimates. The predicted 278 

values from each of the conditional logistic models in the training set were used to derive 279 

AUC values in the test set. The 2.5th and 97.5th percentile values made up the 95% confidence 280 

intervals.  281 

Sensitivity analyses. A sensitivity analysis was performed by running PLS on data excluding 282 

sets where cases were diagnosed within the first two years of follow-up. The model was 283 

conducted on 271 observations (92 cases, 179 controls), to investigate the performance of the 284 

PLS model, ruling out potential reverse causation. The metabolomic profiles of HCC cases 285 

diagnosed within two years from enrolment could reflect the presence of the tumour rather 286 

than informing about tumour aetiology. The variable importance in the projection (VIP) 287 

statistic was used to facilitate the comparison of the sensitivity analysis with the main 288 

analysis. The VIP expresses the explanatory power of a predictor variable X across all 289 

response variables Y (see Mathematical Appendix). 290 

Mediation analysis. The mediating role of the Y-scores in the association between lifestyle 291 

profiles and HCC risk was assessed. Separately for each extracted combination of lifestyle 292 

and metabolomic PLS factors, mediation analyses were performed with the ‘paramed’ Stata 293 

function that allows for exposure-mediator interaction based on Valeri and VanderWeele’s 294 

work [35]. Briefly, mediation was computed using a Baron and Kenny approach adapted to 295 

dichotomous outcomes [36], where two models were specified. In the mediator model, the 296 

mediator (the Y-score) was linearly regressed on the exposure (the X-score), while in the 297 

outcome model the exposure (X-score) and the mediator (Y-score) were related to the HCC 298 
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indicator in unconditional logistic regressions. Both models accounted for the concentration 299 

of C-reactive protein, alpha-fetoprotein and the composite score of liver damage, and 300 

additionally accommodated the other extracted metabolic profiles (Y-scores) to control for 301 

mediator-outcome confounders that may occur when estimating the Natural Indirect Effect 302 

(NIE) [35]. As the outcome (HCC) is rare, direct and indirect effects can be estimated taking 303 

into account the case-control design. This is done by using the same formulas for the effects, 304 

while running the mediator regression only for the controls [36]. As mediation packages do 305 

not yet accommodate conditional logistic models, the outcome and the mediator models, 306 

which were accommodated in unconditional logistic regressions, were adjusted for center and 307 

age at blood collection for sake of consistency with previous steps of the analysis.  308 

Statistical analyses were performed using R [37] and SAS [38] in general, with the following 309 

packages for specific purposes: PROC PLS in SAS 9.4 for PLS analyses, ‘paramed’ in Stata 310 

12 [39] for mediation analyses, ‘OptimalCutpoints’ in R for ROC-related assessments.  311 

The different steps of the analytical framework developed in this study to model the MITM 312 

are presented in Figure 1.  313 

Results 314 

In the PC-PR2 analyses, a total of 17 and 14 principal components were retained to 315 

explain an amount of total variability exceeding 80% in metabolomics and lifestyle data 316 

respectively. Figure 2 shows that the ensemble of explanatory variables accounted for 19.4% 317 

and 26.7% of total variance, respectively in metabolomics and lifestyle data, of which the 318 

highest contributor was ‘country of origin’ with consistently 8% and 22%. . Major sources of 319 

variation in the Y-set displaying large R2
partial value were country of origin (8.3%), NMR 320 

batch (4.0%) and fasting status at blood collection (1.6%). In the X-set, country of origin 321 

(22.6%) and sex (5.1%) showed the highest contributions. As PC-PR2 analysis showed that 322 
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‘country of origin’ accounted for about 8% of the variability within the metabolomic data, and 323 

22% in the lifestyle variables, the PLS analysis was carried controlling for this variable. 324 

After a seven-fold cross-validation, three PLS factors were retained accounting for 325 

21.7% and 8.5% of the overall variability observed in predictor and response variables, 326 

respectively (Table 1). Lifestyle variables and clusters of NMR variables contributing highly 327 

to PLS factors were identified using factor loading values (Table 2). The first PLS factor was 328 

predominantly positively associated with dairy products and cakes and biscuits intake, while 329 

lifetime alcohol intake, smoking status and diabetes displayed negative loadings for this 330 

lifestyle component (Table 2). On the same PLS factor, signals mainly associated with 331 

glucose and bonds of lipids with negative loading values, and with aspartate, glutamine and 332 

lysine with positive loadings emerged on the metabolomic profile (Table 2). Lifestyle 333 

variables characterizing the second PLS factor included cereal products, height and education 334 

level with negative loadings, and hepatitis with positive loadings. The metabolic signature 335 

included NMR variables with positive loadings associated with aromatic amino acids 336 

(phenylalanine, tyrosine) and glucose; and those with negative loadings associated mainly 337 

with bonds of lipids, threonine and mannose (Table 2). The third PLS factor had a lifestyle 338 

pattern outlining intake of vegetables (high negative loadings values), lifetime alcohol 339 

consumption, smoking, and hepatitis infection (positive loadings). Its counterpart NMR 340 

pattern highlighted signals of glucose and aspartate, with high negative loadings, along with 341 

signals of ethanol, myo-inositol, proline and glutamate as prominent metabolites with positive 342 

loadings (Table 2). 343 

Conditional logistic regression models relating HCC risk with the X- and Y-scores are 344 

shown in Table 3. The first PLS factor was associated to a non-significant decreased HCC 345 

risk (23% and 4% in the X- and Y-scores respectively), while the second and third factors 346 

were associated to a statistically significant increased HCC risk (54% and 11%; and 37% and 347 
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22% respectively). Results for the ROC curves parameters are reported in Table 4, including 348 

AUC, sensitivity, specificity, accuracy and PPV for different combinations of the X- and Y-349 

scores. The AUC of the X-scores and Y-scores for all 3 PLS factors, adjusted for C-reactive 350 

protein concentration, alpha-fetoprotein concentration and the score of liver damage, was 351 

respectively 0.859 and 0.853. An increase in the resampled cross-validated AUC values was 352 

also observed for all three X- and Y-scores, albeit smaller, with respectively 0.836 and 0.827. 353 

Results from the sensitivity analysis conducted on data excluding sets where cases were 354 

diagnosed within the first two years of follow-up, showed similarities in terms of lifestyle 355 

variables’ and metabolites’ loadings on the PLS factors (Supplementary Table 2). Notable 356 

differences pertained to the identification of new signals for the first PLS factor including 357 

ethanol, histidine and an unknown compound. On the second lifestyle factor, BMI (positive 358 

loadings) replaced education level (negative loadings) while the reflected metabolomic profile 359 

was comparable to its counterpart from the main analysis (Supplementary Table 2). On the 360 

third factor, smoking status and hepatitis (positive loadings) were replaced by sugar and 361 

confectionary intake (negative loadings); signals contributing to the associated metabolic 362 

profile remained the same but the direction of the association was inversed as loadings had 363 

opposite signs as compared to the counterpart PLS factor of the main model (Supplementary 364 

Table 2). Corresponding ORs from conditional logistic regression models relating the X- and 365 

Y-scores to HCC risk are available in Table 5. The scores showed a statistically significant 366 

association in the second factor for both sets and in the third factor for the Y-set. ROC-367 

associated statistics for different models are presented in Supplementary Table 3. The VIP 368 

plot (Figure 3) displayed the results for the importance of the lifestyle variables in the 369 

prediction of the Y-set computed for the main PLS model performed including all subjects 370 

(panel A) and for the sensitivity model (panel B). The results suggested a potential gain in 371 

stability as prominent lifestyle variables for prediction were maintained 372 
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(hepatitis/diabetes/cakes and biscuits), the magnitude of the VIP was improved for some 373 

(fat/lifetime alcohol intake) and less emphasis was put on others (BMI/physical activity). 374 

Finally, the natural indirect effect was assessed in the mediation analyses and the results are 375 

presented in Table 6. Overall, there was limited evidence that metabolomic signals mediated 376 

the association between lifestyle components and HCC risk in the first PLS factor. Evidence 377 

of a significant mediated effect by the Y-scores was found in the second and third PLS factors 378 

when models were adjusted for exposure-mediator interaction (Table 6).  379 

Discussion 380 

In this work, an analytical strategy based on PLS analysis was conceived to extract 381 

relevant information from sets of lifestyle and NMR metabolomic variables, and to relate the 382 

resulting components to the risk of disease. This offered a way to implement the MITM 383 

approach [6] in a nested case-control study on HCC within the EPIC study. MITM has been 384 

suggested as a way to link specific putative metabolites to lifestyle exposures and disease 385 

outcomes, thus leading to the identification of potential intermediate biomarkers [6].  386 

An implementation of MITM was previously carried out in a nested case-control study 387 

in the Turin sub-cohort of EPIC [7] based on prospectively collected plasma samples from a 388 

pilot study on colon and breast cancers. In their work, a list of intermediate markers was 389 

identified by an in-parallel evaluation of the relationships between untargeted 1H NMR 390 

profiles with dietary exposures and risk of colon and breast cancers using correlation analysis 391 

and logistic regression. In our study, a different analytical framework was developed, largely 392 

exploiting features of PLS analysis, a multivariate technique that iteratively extracts 393 

components capturing co-variability in sets of predictors and response variables [8,40]. A set 394 

of lifestyle predictor variables were related to NMR responses. In a second step, PLS 395 

predictors’ and responses’ scores were linked to the risk of HCC.  396 
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Another sensitive issue in this analysis was the choice of lifestyle variables. Two 397 

disease-indicator variables reflecting environmental exposures, diabetes and hepatitis, were 398 

included in the set of predictors, as they turned out to have an important role in the 399 

characterization of metabolomic signatures. In addition, diabetes is the main metabolic risk 400 

factor for HCC alongside with fatty liver disease [41,42], and chronic infection with hepatitis 401 

B (HBV) and particularly hepatitis C (HCV) viruses were classified as class I carcinogens for 402 

HCC by IARC [43].  403 

Other relevant biomarkers were not part of the list of predictors in PLS analysis, but were 404 

controlled for in logistic regression models. This included C-reactive protein, alpha-405 

fetoprotein, and a score for liver damage,  an index of different circulating enzymes measured 406 

in the hepatic tissue indicating potential underlying liver function impairment [25]. The alpha-407 

fetoprotein was not included as an adjustment factor in the analyses not because of its 408 

established part as a serum marker for HCC diagnosis [26,44], but rather to account for it as a 409 

potential confounder that may cloud the relation between scores and HCC, both in conditional 410 

logistic regressions and in mediation analyses. 411 

Similarly to other multivariate techniques, a key aspect of PLS analysis is the choice 412 

of the number of factors to retain, in an effort of exhaustively summarizing data variability 413 

through a limited number of factors. Based on a seven-fold cross-validation, three linear 414 

combinations of variables were extracted in this work. A challenging aspect of this analysis is 415 

the interpretation of these factors, with respect to lifestyle and metabolomic variables. A 416 

subjective criterion based on the distribution of loading values was used throughout. The 417 

variables displaying the most extreme loading values (in absolute terms) were the ones 418 

characterizing each factor.  419 

The first lifestyle factor highlighted a healthy pattern with negative loadings for 420 

diabetes status, smoking status and lifetime alcohol intake, and was not associated to HCC 421 
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risk, similarly to its metabolomics counterpart. The lifestyle component of the second PLS 422 

factor, was reflective of a lifestyle pattern reflective of “higher-risk exposures”, and was 423 

related to a significant 54% increase in HCC risk. Likewise, its associated metabolic 424 

component displayed a significant HCC risk augmentation by 11%. The lifestyle component 425 

of the third PLS factor described participants with lower vegetables intake, elevated lifetime 426 

alcohol consumption, more likely to be ever smokers and hepatitis positive; one standard 427 

deviation increase of this component was associated to a statistically significant 37% increase 428 

in HCC risk. Similarly, a 22% significant increase in HCC risk was observed for its metabolic 429 

counterpart, characterized by positive signals of ethanol and myo-inositol, and displayed 430 

negative loadings for glucose.  431 

The MITM is captured by the rationale of PLS analysis, in the sense that each set of lifestyle 432 

profiles and metabolic signatures of the extracted PLS factors mirrored one another. In 433 

addition, mediation was observed for the second and third PLS factors, whereby the 434 

metabolomic component mediated the relation between the lifestyle component and HCC, for 435 

which statistically significant associations with HCC risk were estimated, emphasising the 436 

presence of a MITM. Mediation analysis relies on the assumption that there is no mediator-437 

outcome confounder that is affected by the exposure [35]. In our study C-reactive protein, 438 

alpha-fetoprotein and liver damage score were weakly correlated to lifestyle factor score, thus 439 

introducing potential bias in the estimation of direct and indirect effects in our mediation 440 

analysis. Additionally, a number of background confounders (mediator-outcome and 441 

exposure-outcome confounders) were present that we have tried to control for, either by 442 

adjustments or by accounting for potential interactions, however some degree of bias can 443 

remain and caution should be employed when interpreting the results. 444 

The predictive performance of PLS factors in relation to HCC occurrence was evaluated 445 

through an analysis of AUC values. The performance of the model was improved 446 
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progressively, with all 3 X- and Y-scores added; and reached an AUC of 0.859 with all 3 X-447 

scores and 0.853 with all 3 Y-scores, with adjustment for concentrations of C-reactive and 448 

alpha-fetoprotein, and for the liver damage score. Aafter a bootstrapped cross-validation, the 449 

AUC estimates were lower with respectively 0.836 and 0.827, but  the increase in the 450 

performance was nevertheless present. The ROC methodology allows estimation of PPV, 451 

which expresses the risk of disease after a positive test [45]. In a setting with low HCC 452 

prevalence (π=0.0004), in line with Western populations [46], extremely low PPV estimates 453 

were observed. In the absence of a very specific test, many positive tests arise from disease-454 

free individuals [45], thus leading to a dilution of PPV. 455 

A sensitivity analysis was carried out excluding the first two years of follow-up, but results 456 

were virtually unchanged, both in terms of relative risk estimates in logistic regression 457 

models, and of percentage of variability explained in PLS analysis. These findings suggest 458 

that reverse causation bias, if present, was minimal. 459 

This study had the ambition of integrating in the same analytical framework study 460 

participants’ lifestyle characteristics with a large number of NMR metabolic profiles. These 461 

data pose a number of methodological challenges due to their size and the complexity of 462 

exhaustively capturing and interpreting the biological processes they reflect. To address these 463 

issues, techniques involving multivariate statistics have been progressively revived in the 464 

recent years [2]. Epidemiologic evaluations of metabolomic data frequently combined PLS 465 

with discriminant analysis, such as PLS-DA or O-PLS-DA. The main objective of these 466 

methods is to identify a series of metabolomic features distinguishing between two very 467 

distinct groups of study participants [47,48]. In such strategies, only one set of variables is 468 

multi-dimensional and the response is one variable only. Similar multivariate techniques for 469 

pattern extraction, belonging to the family of regression methods, include reduced rank 470 

regression. This multivariate method relates an ensemble of response variables to a set of 471 
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predictor variables where the estimated matrix of the regression coefficients is of reduced 472 

rank [49–51]. In addition, canonical correlation analysis (CCA) [52] is a method applied to 473 

identify the optimum structure or dimensionality of each variable set that maximizes the 474 

relationship between two sets of multi-dimensional variables. The main difference between 475 

CCA and PLS regression is that CCA maximizes the correlation between the two new 476 

dimensions, i.e. extracted factors, whereas PLS maximizes their covariance. PLS can be 477 

considered as a trade-off  between CCA and PCA, since maximizing the covariance 478 

corresponds to maximizing the product of the correlation and standard deviation, given that 479 

cov(X,Y)=cor(X,Y)*SD(X)*SD(Y). 480 

Untargeted NMR was used in this work to acquire metabolomic signals. Prior to PLS 481 

analysis, a bucketing procedure, the statistical recoupling of variables (SRV) [17,53], was 482 

applied to reduce the number of NMR variables to 285 clusters. This was done by aggregating 483 

consecutive NMR bins based on their covariance to correlation ratio. , thus reconstructing 484 

peak entities. Neighbouring variables were then merged into clusters, to recover NMR 485 

multiplets, corresponding to NMR variables of interest. This alloweds the identification of 486 

informative components of the spectra, thus acting as an efficient noise-removing filter. 487 

Subsequently the annotation effort remains challenging, for a number of reasons. The 488 

majority of published metabolomics studies often identified a limited number of metabolites 489 

at a time [54], and the Human Metabolome Database (HMDB) and other related resources 490 

[18,55], that offer richly annotated information continuously increasing the metabolite 491 

coverage for users, are mostly exploited through time consuming interactive procedures. In 492 

addition, individual metabolites often overlap in NMR signals, which can hinder 493 

interpretation of the annotated metabolic profilesannotations. Untargeted NMR approaches 494 

are useful for the identification of metabolites of moderate abundance; however they may 495 

miss low-abundance metabolites due to the intrinsically low NMR sensitivity. These 496 
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challenges, as well as large variability in metabolite concentrations, and disentangling 497 

informative signals from noise, are not specific to NMR and pertain to any type of untargeted 498 

technique. Such investigations may profit from complementary targeted metabolomic 499 

analytical strategies [55].  500 

Throughout the different steps of this work, the scaling problem was first tackled by 501 

normalizing spectra to total intensity. NMR data were also centered and Pareto-scaled, 502 

together with correction for potential batch effects [16]. The PC-PR2 method offered a way to 503 

investigate major sources of systematic variability in NMR and lifestyle data [15]. The 504 

variable “country of origin” emerged as the variable accounting for the largest proportion of 505 

total variability, and the residual method was used to control for this variable in the following 506 

steps of the analysis. While this may lead to removing regional gradients of dietary 507 

variability, this step is instrumental to avoid unwanted systematic regional-specific bias in the 508 

data in country-specific questionnaire assessments. In addition, technical aspects like storage 509 

and handling of biological samples, fasting status at blood collection are specific to each 510 

country [15]. In any case, variability due to “country of origin” is not exploited in conditional 511 

logistic models, as cases and controls were also matched on center. 512 

One of the limitations of this study is the restricted sample size which raises concerns 513 

with regards to power to detect associations. While a larger sample size would possibly result 514 

in more statistically significant findings, we used the data that was available with NMR 515 

profiles measured. In this work we have developed a framework to analyse complex data 516 

integrating lifestyle and metabolomics in relation to risk of disease. The approach described in 517 

this study has merits but also pitfalls among which it is worth mentioning that statistical 518 

methods are used repeatedly on the same set of data, notably the PLS model, the conditional 519 

logistic regression, the AUC estimation and mediation analysis. To partially address this, a 520 

cross-validation approach was devised for AUC estimation which involved conditional 521 
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logistic regression, whereby PLS was done without knowledge of the case/control status. 522 

However, conditional logistic regression models and mediation analyses were implemented 523 

on the same data, and our analysis did not account for this limitation. This may have led to 524 

spuriously increase the nominal level of statistical significance of statistical tests.  525 

Conclusion 526 

The MITM emerged as a method for the identification of relevant biomarkers, with 527 

great potential to unravel utmost important steps in the aetiology of disease. The analytical 528 

strategy for MITM was developed to use all potentially informative aspects of high-529 

throughput data by integrating metabolomic, dietary and lifestyle exposures together with 530 

disease indicators. While the framework was applied towards the investigation of HCC 531 

determinants, it can be easily extended to similar aetiological contexts and applied to other –532 

omics settings. 533 
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 757 

Legends to figures  758 

Figure 1: General scheme of the analytical framework developed in the study. A PC-PR2 759 

analysis is carried out beforehand to identify relevant sources of variation. In the PLS model 760 

the X- and Y- sets are related to each other, and scores are computed (1). X- and Y-scores are, 761 

in turn, associated to a case-control indicator of HCC status in conditional logistic regression 762 

models (2). A mediation analysis is carried out to explore the role of metabolomics in the 763 

association between lifestyle factors and risk of HCC (3). 764 

Figure 2: PC-PR2 analysis results* identifying the sources of variability in the NMR data 765 

(panel A) and in the lifestyle data (panel B). 766 

* 17 and 14 components were retained to account for 80 % (threshold used) of total NMR (A) 767 

and lifestyle variability (B), respectively. The R2 value represents the amount of variability in 768 

NMR / lifestyle variable explained by the ensemble of investigated predictors. 769 

Figure 3: Variable importance plot (VIP) displaying the variable importance for projection 770 

statistic of the predictor variables for the PLS analyses. 771 

Panel A: Results from the main PLS model run on all observations (N=336, X-set=21, Y-772 

set=285). 773 

Panel B: Results from the PLS sensitivity analysis run on a subsample (N=271, 92 cases, 179 774 

controls) excluding sets where cases were diagnosed within the first two years of follow-up 775 

(X-set=21, Y-set=285). 776 
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The horizontal line corresponds to Wold’s criterion (0.8), the threshold used to rule if a 777 

variable has an important contribution to the construction of the Y variables (see 778 

Mathematical Appendix for further details). 779 
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Table 1: Individual and cumulative variation (%) explained by the first 3 PLS factors in 21 lifestyle (X-set) and 285 

NMR (Y-set) variables. 

# of 

PLS  
Lifestyle Variables NMR Variables 

Factors Individual  Cumulative  Individual Cumulative  

1 6.17 - 5.51 - 

2 6.23 12.40 2.38 7.89 

3 9.27 21.67 0.59 8.48 
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Table 2: Lifestyle and NMR cluster variables contributing to each of the 3 PLS factors (N=336, X-set=21, Y-

set=285). 
PLS 

Factor 
Lifestyle Variable* 

Loading 

value 

CS*‡ 

(ppm) 
Metabolite** 

Loading 

value 

1 Dairy Products 0.28 5.22 

Glucose 

-0.06 

  Cakes and Biscuits 0.32 3.88 -0.05 

  Lifetime Alcohol Consumption -0.25 3.82 -0.06 

  Smoking Status -0.39 3.76 -0.06 

  Diabetes -0.63 3.71 -0.05 

    3.54 -0.05 

    3.50 -0.07 

    3.48 -0.07 

    3.44 Acetoacetate -0.07 

    3.23 Choline + Glycerphosphocholine  -0.04 

    3.01 Lysine 0.10 

    2.94 Albumin 0.10 

    2.65 Aspartate 0.10 

    2.42 Glutamine 0.10 

    2.28 Acetoacetate 0.10 

    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.04 

    1.86 
Lysine 

0.09 

    1.87 0.10 

      1.53 CH2-CH2-COOC bond of lipids  -0.03 

2 Cereal and Cereal Products -0.16 7.17 
Tyrosine 

0.13 

  Height -0.34 6.87 0.13 

  Education Level -0.26 5.27 CH=CH bond of lipids -0.13 

  Hepatitis 0.49 5.22 Glucose 0.16 

    5.18 Mannose + Lipid O-CH2 -0.12

    4.27 Lipid O-CH2 -0.12 

    4.25 Threonine -0.14

    4.07 Choline + Lipid O-CH2 + Myo-inositol -0.12 

    4.05 Creatinine -0.14

    3.88 

Glucose 

0.15 

    3.82 0.16 

    3.76 0.15 

    3.71 0.15 

    3.54 0.15 

    3.50 0.16 

    3.48 0.16

    3.44 Acetoacetate 0.16 

    3.23 Choline + Glycerphosphocholine 0.15

    2.80 Aspartate -0.12 

    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.11

    2.19 CH2-CH2-COOC bond of lipids -0.15

    2.02 Proline  + Glutamate + CH2=C bonds of lipids -0.13 

    1.53 CH2-CH2-COOC bond of lipids -0.13

    1.25 CH2 bond of lipids  -0.12 

      0.86 Cholesterol + CH3 bond of lipids -0.12

3 Vegetables -0.42 7.32 Phenylalanine 0.11 

  Lifetime Alcohol Consumption 0.29 5.22 Glucose -0.13

  Smoking Status 0.25 4.28 Lipid O-CH2  0.11 

  Hepatitis 0.26 3.88 

Glucose 

-0.11 

    3.82 -0.11 

    3.76 -0.12 

    3.71 -0.11 

    3.69 -0.11 

    3.63 Myo-inositol 0.16

    3.50 
Glucose 

-0.13 

    3.48 -0.12 

    3.44 Acetoacetate -0.12 

    3.35 
Proline 

0.11 

    3.33 0.13 

    3.28 Myo-inositol 0.12 

    3.23 Choline + Glycerphosphocholine  -0.12 

    2.80 Aspartate -0.13 

    2.76 part of =CH-CH2-CH= bond of lipids  -0.13 

    2.35 
Proline + Glutamate 

0.12 

    2.33 0.13
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    1.20 3-hydroxybutyrate + CH2 bond of lipids  0.11 

    1.16 Ethanol 0.15 

      0.66 Cholesterol 0.11 

*Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading 

values <10th percentile (pctl) and >90th pctl or <5th pctl and >95th pctl respectively. 

‡ CS: 1H chemical shift (in ppm) of the cluster (center value). 

**Some of the identified clusters were found to be background noise during the annotation phase and were removed 

from this table. 
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Table 3: HCC odds ratios* and 95% confidence interval (OR, 95% CI) associated with the lifestyle (X-set) and the 

NMR clusters (Y-set) PLS scores in the main analysis (N=336, X-set=21, Y-set=285). 

 

PLS Lifestyle Variables 

X-scores 

PLS NMR Variables 

Y-scores 

Factor OR** (95% CI) P-Wald† Factor OR** (95% CI) P-Wald† 

1 0.77 (0.58, 1.02)  0.07 1 0.96 (0.91, 1.01) 0.09 

2 1.54 (1.06, 2.25) 0.02 2 1.11 (1.02, 1.22) 0.02 

3 1.37 (1.05, 1.79) 0.02 3 1.22 (1.04, 1.44) 0.01 

*Models were adjusted for C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for 

liver damage. Cases and controls were matched on age at blood collection (± 1 year), sex, study centre, date (± 2 

months) and time of the day at blood collection (± 3 hours), fasting status at blood collection (<3/3-6/>6 hours); 

among women, additional matching criteria included menopausal status (pre-/peri-/postmenopausal) and hormone 

replacement therapy use at time of blood collection (yes/no). ** ORs expressing the change in HCC risk associated to 

1-SD increase in the score. † Wald's test was for continuous exposure compared with a Chi-square distribution with 1 

degree of freedom (dof). 

 

 

 

Table 4: Area under the curve (AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC 

models (with 95% CI), from the main PLS analysis (N=336, X-set=21, Y-set=285). 

 
AUC AUCb** Sensitivity Specificity Accuracy PPV 

Adjustment Covariates (ADJ)* 0.842 (0.794, 0.891) 0.821 (0.766, 0.868) 0.752 (0.662, 0.829) 0.802 (0.743, 0.852) 0.785 0.0015

 

X1 scores + ADJ 0.846 (0.797, 0.894) 0.825 (0.766, 0.875) 0.743 (0.653, 0.821) 0.838 (0.783, 0.884) 0.806 0.0018 

X1+X2 scores + ADJ 0.854 (0.808, 0.900) 0.831 (0.772, 0.881) 0.743 (0.653, 0.821) 0.824 (0.768, 0.872) 0.797 0.0017 

X1+X2+X3 scores + ADJ 0.859 (0.811, 0.907) 0.836 (0.778, 0.887) 0.796 (0.710, 0.866) 0.788 (0.729, 0.840) 0.791 0.0015 

 

Y1 scores + ADJ 0.841 (0.793, 0.890) 0.817 (0.760, 0.865) 0.735 (0.643, 0.813) 0.820 (0.763, 0.868) 0.791 0.0016 

Y1+Y2 scores + ADJ 0.845 (0.795, 0.894) 0.820 (0.762, 0.872) 0.735 (0.643, 0.813) 0.851 (0.798, 0.895) 0.812 0.0020

Y1+Y2+Y3 scores + ADJ 0.853 (0.804, 0.902) 0.827 (0.771, 0.877) 0.726 (0.634, 0.805) 0.883 (0.833, 0.922) 0.890 0.0025 

*The model is run on the adjustment covariates (ADJ) including the C-reactive protein concentration, alpha-

fetoprotein concentration and a composite score for liver damage. ** AUCb is the bootstrapped-cross validated 

estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors, 

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively. 

 

 

Table 5: HCC odds ratios* and 95% confidence intervals (OR, 95%CI) associated with the lifestyle (X-set) and the 

NMR clusters (Y-set) PLS scores. Results from the sensitivity analysis (N=271, 92 cases, 179 controls) conducted 

excluding sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). 

 

PLS Lifestyle Variables 

X-scores 

PLS NMR Variables 

Y-scores 

Factor OR** (95% CI) P-Wald† Factor OR** (95% CI) P-Wald† 

1 0.80 (0.60, 1.08) 0.15 1 0.96 (0.94, 1.04) 0.56 

2 1.56 (1.02, 2.40) 0.04 2 1.18 (1.03, 1.36) 0.02 

3 0.86 (0.67, 1.11) 0.26 3 0.86 (0.73, 0.99) <0.05 

*Models were adjusted for C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for 

liver damage. Cases and controls were matched on age at blood collection (± 1 year), sex, study centre, date (± 2 

months) and time of the day at blood collection (± 3 hours), fasting status at blood collection (<3/3-6/>6 hours); 

among women, additional matching criteria included menopausal status (pre-/peri-/postmenopausal) and hormone 

replacement therapy use at time of blood collection (yes/no). ** ORs expressing the change in HCC risk associated to 

1-SD increase in the score. † Wald's test was for continuous exposure compared with a Chi-square distribution with 1 

degree of freedom (dof). 
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Table 6: Results from the mediation analysis (N= 336, X-set=21, Y-set=285): Natural Indirect Effect 

(NIE) and 95%CI*. 

 

Model**  Natural Indirect Effect (NIE) 

Exposure 

(A) 
Mediator (M) Outcome 

A*M 

interaction 

term 

Estimate (95%CI) p-value 

X1 score Y1 score HCC No 0.91 (0.77, 1.06) 0.23 

X2 score Y2 score HCC No 1.11 (0.97, 1.25) 0.12 

X3 score Y3 score HCC No 1.08 (0.94, 1.23) 0.28 

X1 score Y1 score HCC Yes 0.96 (0.79, 1.17) 0.70 

X2 score Y2 score HCC Yes 1.15 (1.01, 1.31) 0.04

X3 score Y3 score HCC Yes 1.13 (1.01, 1.28) 0.04 

* The standard errors used to compute the 95%CI were obtained using the delta method. 

**Models were adjusted for the C-reactive protein concentration, alpha-fetoprotein concentration and 

a composite score for liver damage, as well as for the other Y-scores, as potential mediator-outcome 

confounders. Additionally, the outcome and the mediator models were adjusted for centre and age at 

blood collection. 
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X✲ ❛♥❞ Y ✲ ♠❛tr✐❝❡s✳ ❚❤❡s❡ s❡ts ❛r❡ ❛ss✉♠❡❞ t♦ ♣❧❛② t❤❡ ❛s②♠♠❡tr✐❝ r♦❧❡s ♦❢ ♣r❡❞✐❝t♦rs ❛♥❞

r❡s♣♦♥s❡s✱ r❡s♣❡❝t✐✈❡❧②✳ ◆❡①t✱ ✇❡ ❜r✐❡✢② ❞❡s❝r✐❜❡ t❤❡ ❧❛♥❞♠❛r❦ ❛❧❣♦r✐t❤♠ ◆■P❆▲❙ ◆♦♥❧✐♥❡❛r

❡st✐♠❛t✐♦♥ ❜② ■t❡r❛t✐✈❡ P❛rt✐❛❧ ▲❡❛st ❙q✉❛r❡s✳ ❆s ❛ ✜rst st❡♣✱ t✇♦ s✉❜st✐t✉t❡ ♠❛tr✐❝❡s X0 ❛♥❞

Y0 ❛r❡ ✐♥✐t✐❛❧✐③❡❞ ✇✐t❤ X0 = X(n×p) ❛♥❞ Y0 = Y(n×q)✱ ✇❤❡r❡ ✈❛r✐❛❜❧❡s ✇❡r❡ st❛♥❞❛r❞✐③❡❞ t♦ ❤❛✈❡

♠❡❛♥s ❛♥❞ st❛♥❞❛r❞ ❞❡✈✐❛t✐♦♥s ❡q✉❛❧ t♦ ③❡r♦ ❛♥❞ ♦♥❡✱ r❡s♣❡❝t✐✈❡❧②✳ ❋♦r h = 1, . . . , H✱ ✇❤❡r❡

H = min(p, q)✱ t❤❡ P▲❙ ❢❛❝t♦rs ❛r❡ ♦❜t❛✐♥❡❞ ✐t❡r❛t✐✈❡❧②✳ P▲❙ r❡❣r❡ss✐♦♥ ❢♦❝✉s❡s ♦♥ ✜♥❞✐♥❣ t✇♦

s❡ts ♦❢ ✇❡✐❣❤ts✱ wh(p×1) ❛♥❞ ch(q×1)✱ ✐♥ ♦r❞❡r t♦ ❝r❡❛t❡ r❡s♣❡❝t✐✈❡❧② ❛ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t❤❡

❝♦❧✉♠♥s ♦❢ X ❛♥❞ Y ✱ ❦♥♦✇♥ ❛s t❤❡ P▲❙ ❢❛❝t♦rs✱ s✉❝❤ t❤❛t t❤❡s❡ t✇♦ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥s ❤❛✈❡

♠❛①✐♠✉♠ ❝♦✈❛r✐❛♥❝❡ ❛♥❞ ❛r❡ ✉♥✐q✉❡✳ ❚❤❡s❡ ✇❡✐❣❤ts ❞❡✜♥❡ ❛ ✜rst ♣❛✐r ♦❢ ✈❡❝t♦rs✱ ❝❛❧❧❡❞ t❤❡ X✲

❛♥❞ Y ✲s❝♦r❡s✱ th = Xwh ❛♥❞ uh = Y ch ✇❤❡r❡ ✇❡ ❤❛✈❡ t⊺huh ♠❛①✐♠❛❧✳ P▲❙ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s

t❤❡ ❢♦❧❧♦✇✐♥❣ ♦♣t✐♠✐s❛t✐♦♥ ♣r♦❜❧❡♠ ✇❤❡r❡ ♠❛①✐♠✉♠ ❝♦✈❛r✐❛♥❝❡ ✐s s♦✉❣❤t ❜❡t✇❡❡♥ th(1×n) ❛♥❞

uh(1×n) ❢♦r ❡❛❝❤ h = 1 · · ·H✿

▼❛① cov(Xwh, Y ch) ✭✶✮

✉♥❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦r♠❛❧✐t② ❝♦♥str❛✐♥ts

‖wh‖ = 1 ✭✷✮

‖ch‖ = 1 ✭✸✮

❛♥❞ t❤❡ ❢♦❧❧♦✇✐♥❣ ♦rt❤♦❣♦♥❛❧✐t② ❝♦♥str❛✐♥t

t⊺h(t1, . . . , th−1) = 0 ✭✹✮

❇② ❝♦♥str✉❝t✐♦♥ ✇❡ ❛❧s♦ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣❡rt②✿

u⊺

h(t1, . . . , th−1) = 0 ✭✺✮

❚❤❡ ✜rst ♣❛✐r ♦❢ X✲ ❛♥❞ Y ✲ s❝♦r❡s ❝❛♥ ❡q✉✐✈❛❧❡♥t❧② ❜❡ ♦❜t❛✐♥❡❞ ✈✐❛ ❛ s✐♥❣✉❧❛r ✈❛❧✉❡ ❞❡❝♦♠✲

♣♦s✐t✐♦♥✳ ■♥❞❡❡❞✱ t❤❡ ❙❱❉ ♦❢ t❤❡ ❝r♦ss✲♣r♦❞✉❝t ♠❛tr✐① X⊺

h−1Yh−1 ❧❡❛❞s t♦ t❤❡ ✐❞❡♥t✐✜❝❛t✐♦♥ ♦❢

t❤❡ ✜rst ❧❡❢t ❛♥❞ r✐❣❤t s✐♥❣✉❧❛r ✈❡❝t♦rs ❛♥❞ ♦❢ t❤❡ ✇❡✐❣❤ts wh ❛♥❞ ch✳ ❚❤❡ s❝♦r❡s th ❛♥❞ uh ❛r❡

♦❜t❛✐♥❡❞ ❛s ❢♦❧❧♦✇s✿

th = Xh−1wh ✭✻✮

uh = Yh−1ch ✭✼✮

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✷



❚❤❡ ✈❡❝t♦r th ✐s t❤❡♥ ♥♦r♠❛❧✐③❡❞ ✭❛ s❝❛❧✐♥❣ ♦❢ uh ✐s ♦♣t✐♦♥❛❧✮✳ ❘❡❣r❡ss✐♥❣ t❤❡ ♣r❡❞✐❝t♦r ❛♥❞

r❡s♣♦♥s❡ ♠❛tr✐❝❡s ♦♥ t❤❡ th ✈❡❝t♦r ②✐❡❧❞s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❧♦❛❞✐♥❣s✳

ph = X⊺

h−1th ✭✽✮

ch = Y ⊺

h−1th ✭✾✮

◆❡①t ✐s t❤❡ ❞❡✢❛t✐♦♥ st❡♣✱ ✇❤❡r❡ ✐♥❢♦r♠❛t✐♦♥ ❜❛s❡❞ ♦♥ t❤❡ ❡①tr❛❝t❡❞ ❧❛t❡♥t ❢❛❝t♦r h ✐s s✉❜tr❛❝t❡❞

❢r♦♠ t❤❡ ❝✉rr❡♥t ❞❛t❛ ♠❛tr✐❝❡s✳

Xh = Xh−1 − thp
⊺

h ✭✶✵✮

Yh = Yh−1 − thc
⊺

h ✭✶✶✮

❚❤❡ ❞❡s❝r✐❜❡❞ st❡♣s ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ❛r❡ ✐t❡r❛t❡❞ ✉♥t✐❧ ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝r✐t❡r✐❛ ✐s ♠❡t✿

❼ ■❢ H ✐s s♣❡❝✐✜❡❞✱ ❛♥❞ t❤❡ ❛❧❣♦r✐t❤♠ st♦♣s ✇❤❡♥ t❤❡ H✲t❤ P▲❙ ❢❛❝t♦r ✐s ❡①tr❛❝t❡❞ ❛♥❞ ✐ts

❛ss♦❝✐❛t❡❞ st❛t✐st✐❝s ❝♦♠♣✉t❡❞✳

❼ ■❢ H ✐s ♥♦t s♣❡❝✐✜❡❞✱ t❤❡ ❛❧❣♦r✐t❤♠ st♦♣s ✇❤❡♥ XH ❜❡❝♦♠❡s ❛ ♥✉❧❧ ♠❛tr✐①✳ ■♥ t❤✐s ❝❛s❡

❤♦✇❡✈❡r✱ H ❝❛♥♥♦t ❡①❝❡❡❞ min(p, q)✳

❆❧❣♦r✐t❤♠ ✶ P▲❙✶ ❝❧❛ss✐❝ ❛❧❣♦r✐t❤♠ st❡♣s ✲ ❲❤❡♥ Y ✐s ✉♥✐✈❛r✐❛t❡✳
✶✿ X0 ← X ❀ y0 ← y

✷✿ ❢♦r (h = 1;h ≤ H;h++) ❞♦

✸✿ wh = X
⊺

h−1
yh−1/y⊺

h−1
yh−1

✹✿ wh = wh/
√

w
⊺

h
wh

✺✿ th = Xh−1wh/w⊺

h
wh

✻✿ ph = X
⊺

h−1
th/t⊺

h
th

✼✿ Xh = Xh−1 − thp
⊺

h

✽✿ ch = y
⊺

h−1
th/t⊺

h
th

✾✿ uh = yh−1/ch

✶✵✿ yh = yh−1 − chth

❲❤❡♥ Y ✐s ✉♥✐✈❛r✐❛t❡✱ t❤❡ P▲❙ ❛❧❣♦r✐t❤♠ ❝❛rr✐❡❞ ♦✉t ✐s P▲❙✶ ✭❙❡❡ ❆❧❣♦r✐t❤♠ ✶✱ ❢♦❧❧♦✇✐♥❣

t❤❡ ♥♦t❛t✐♦♥ ♦❢ ▼✳ ❚❡♥❡♥❤❛✉s ❬✶❪✮✳ P▲❙✷ ✭❆❧❣♦r✐t❤♠ ✷✮ ✐s ✉s❡❞ ✇❤❡♥ Y ✐s ♠✉❧t✐✈❛r✐❛t❡✳ ❲❤❡♥

t❤❡r❡ ❛r❡ ♠✐ss✐♥❣ ❞❛t❛ ✐♥ ❡✐t❤❡r t❤❡ X✲ ♦r Y ✲ s❡ts✱ t❤❡ ❝♦♦r❞✐♥❛t❡s ♦❢ t❤❡ ✈❡❝t♦rs wh✱ th✱ ch✱ uh✱

❛♥❞ ph ❛r❡ ❝♦♠♣✉t❡❞ ❛s s❧♦♣❡s ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s str❛✐❣❤t ❧✐♥❡ t❤❛t ♣❛ss❡s t❤r♦✉❣❤ t❤❡ ♦r✐❣✐♥✱

✉s✐♥❣ t❤❡ ❛✈❛✐❧❛❜❧❡ ❞❛t❛ ❛s ❢♦❧❧♦✇s✿

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✸



❆❧❣♦r✐t❤♠ ✷ P▲❙✷ ❝❧❛ss✐❝ ❛❧❣♦r✐t❤♠ st❡♣s ✲ ❲❤❡♥ Y ✐s ♠✉❧t✐✈❛r✐❛t❡✳
✶✿ X0 ← X ❀ Y0 ← Y

✷✿ ❢♦r (h = 1;h ≤ H;h++) ❞♦

✸✿ uh = Yh−1[, 1] ✐✳❡✳ t❤❡ ✜rst ❝♦❧✉♠♥ ♦❢ t❤❡ ♠❛tr✐①

✹✿ ✇❤✐❧❡ wh ❤❛s ♥♦t ❝♦♥✈❡r❣❡❞ ❞♦

✺✿ wh = X
⊺

h−1
uh/u⊺

h
uh

✻✿ wh = wh/
√

w
⊺

h
wh

✼✿ th = Xh−1wh/w⊺

h
wh

✽✿ ch = Y
⊺

h−1
th/t⊺

h
th

✾✿ uh = Yh−1ch/c⊺
h
ch

✶✵✿ ph = X
⊺

h−1
th/t⊺

h
th

✶✶✿ Xh = Xh−1 − thp
⊺

h

✶✷✿ Yh = Yh−1 − thc
⊺

h

❼ wh = (wh1, . . . , whp)
⊺✱ ✐s ❛ ♥♦r♠❛❧✐③❡❞ ✈❡❝t♦r✱ ✇❤❡r❡ whj ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s

❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡ ♦r✐❣✐♥ ♦❢ t❤❡ ♣❧❛♥❡ ❞❡✜♥❡❞ ❜② ✭uh✱ Xh−1,j✮✳ Xh−1,j ✐s t❤❡ j✲t❤ X

✈❛r✐❛❜❧❡ ♦❢ t❤❡ h− 1 P▲❙ ❢❛❝t♦r✳

❼ th = (th1, . . . , thn)
⊺✱ ✇❤❡r❡ thi ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s ❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡

♦r✐❣✐♥ ♦❢ t❤❡ ♣❧❛♥❡ ❞❡✜♥❡❞ ❜② ✭wh✱ xh−1,i✮✳ xh−1,i ✐s t❤❡ i✲t❤ x ♦❜s❡r✈❛t✐♦♥ ♦❢ t❤❡ h − 1

P▲❙ ❢❛❝t♦r✳

❼ ch = (ch1, . . . , chq)
⊺✱ ✇❤❡r❡ chk ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s ❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡

♦r✐❣✐♥ ♦❢ t❤❡ ♣❧❛♥❡ ❞❡✜♥❡❞ ❜② ✭th✱ Yh−1,k✮✳ Yh−1,k ✐s t❤❡ k✲t❤ Y ✈❛r✐❛❜❧❡ ♦❢ t❤❡ h− 1 P▲❙

❢❛❝t♦r✳

❼ uh = (uh1, . . . , uhn)
⊺✱ ✇❤❡r❡ uhi ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s ❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡

♦r✐❣✐♥ ♦❢ t❤❡ ♣❧❛♥❡ ❞❡✜♥❡❞ ❜② ✭ch✱ yh−1,i✮✳ yh−1,i ✐s t❤❡ i✲t❤ y ♦❜s❡r✈❛t✐♦♥ ♦❢ t❤❡ h− 1 P▲❙

❢❛❝t♦r✳

❼ ph = (ph1, . . . , php)
⊺✱ ✇❤❡r❡ phj ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❛st sq✉❛r❡s ❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡

♦r✐❣✐♥ ♦❢ t❤❡ ♣❧❛♥❡ ❞❡✜♥❡❞ ❜② ✭th✱ Xh−1,j✮✳ Xh−1,j ✐s t❤❡ j✲t❤ X ✈❛r✐❛❜❧❡ ♦❢ t❤❡ h− 1 P▲❙

❢❛❝t♦r✳

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✹



✶✳✸ ❚♦♦❧s ❢♦r ✐♥t❡r♣r❡t❛t✐♦♥

✶✳✸✳✶ ❈❤♦✐❝❡ ♦❢ ♥✉♠❜❡r ♦❢ ❝♦♠♣♦♥❡♥ts

❚❤❡ ♥✉♠❜❡r ♦❢ P▲❙ ❧❛t❡♥t ❢❛❝t♦rs ♦r ❝♦♠♣♦♥❡♥ts t♦ ❜❡ r❡t❛✐♥❡❞ ❝❛♥ ❜❡ ❞❡❝✐❞❡❞ ❜❛s❡❞ ♦♥ ❛

❝r♦ss✲✈❛❧✐❞❛t✐♦♥✳

❋♦r ❡❛❝❤ ♠♦❞❡❧ ✇✐t❤ ❛ ♥✉♠❜❡r h ♦❢ ❡①tr❛❝t❡❞ ❢❛❝t♦rs✱ t❤✐s ✐s ❞♦♥❡ ❜② r✉♥♥✐♥❣ t❤❡ P▲❙ ❛♥❛❧②s✐s

♦♥ ♦♥❧② ❛ ♣❛rt ♦❢ t❤❡ ❞❛t❛ ❝❛❧❧❡❞ t❤❡ tr❛✐♥✐♥❣ s❡t✱ ❛♥❞ t❤❡♥ ❡✈❛❧✉❛t✐♥❣ ❤♦✇ ✇❡❧❧ t❤❡ ♠♦❞❡❧

✜ts ♦❜s❡r✈❛t✐♦♥s ✐♥ t❤❡ t❡st s❡t✳ ❚❤✐s ✐♥❝❧✉❞❡s t❤❡ ♣❛rt ♦❢ t❤❡ ❞❛t❛ ♥♦t ✐♥✈♦❧✈❡❞ ✐♥ t❤❡ P▲❙

♠♦❞❡❧❧✐♥❣ ♦❢ t❤❡ tr❛✐♥✐♥❣ s❡t✳

❚❤❡ ❞❛t❛s❡t ❝♦♠♣r✐s❡❞ ♦❢ n ♦❜s❡r✈❛t✐♦♥s ✐s s♣❧✐t ✐♥t♦ z ❛♣♣r♦①✐♠❛t❡❧② ❡q✉❛❧ s❡ts ♦❢ ♦❜s❡r✈❛t✐♦♥s✳

❚❤❡ tr❛✐♥✐♥❣ s❡t ❝♦♥s✐sts ♦❢ t❤❡ ❞❛t❛ ✐♥ t❤❡ ✜rst z − 1 ❢♦❧❞s ❛♥❞ t❤❡ r❡♠❛✐♥✐♥❣ ❢♦❧❞ ✐s ✉s❡❞ ❛s

t❡st s❡t✳ Pr❡❞✐❝t❡❞ ✈❛❧✉❡s ❢♦r t❤❡ Y ✲s❡t ❛r❡ ❝♦♠♣✉t❡❞ ♦♥ t❤✐s t❡st s❡t ❛❧♦♥❣ ✇✐t❤ t❤❡ s✉♠ ♦❢ t❤❡

sq✉❛r❡❞ ❡rr♦r ♦❢ ♣r❡❞✐❝t✐♦♥✳ ❚❤✐s ♣r♦❝❡ss ✐s r❡♣❡❛t❡❞ z t✐♠❡s s♦ t❤❛t ❡❛❝❤ ❢♦❧❞ ❝❛♥ ✐♥ t✉r♥ s❡r✈❡

❛s ❛ t❡st s❡t✳ ■♥ ♣r❛❝t✐❝❡✱ ❢♦r ❡❛❝❤ ♥✉♠❜❡r ♦❢ ♣♦ss✐❜❧❡ ❧❛t❡♥t ❢❛❝t♦rs h = 1, . . . , H✱ ✇❡ ❝♦♠♣✉t❡

t❤❡ ♣r❡❞✐❝t✐♦♥ ♦❢ yi ❜② t❤❡ P▲❙ ♠♦❞❡❧ ✇✐t❤ r❡s✉❧ts ♦❜t❛✐♥❡❞ ♦♥ t❤❡ tr❛✐♥✐♥❣ s❡t ✇✐t❤ ❛ ♥✉♠❜❡r

h ♦❢ ❝♦♠♣♦♥❡♥ts ❛♣♣❧✐❡❞ t♦ ♦❜s❡r✈❛t✐♦♥s ✐♥ t❤❡ t❡st s❡t ✐♥ ♦r❞❡r t♦ ②✐❡❧❞ ŷh(−i)✳ ❚❤❡ Pr❡❞✐❝t✐♦♥

❊rr♦r ❙✉♠ ♦❢ ❙q✉❛r❡s ✭P❘❊❙❙✮ ✐s t❤❡ r❡s✉❧t✐♥❣ s✉♠ ♦❢ ❛❧❧ sq✉❛r❡❞ ❡rr♦rs ♦❢ ♣r❡❞✐❝t✐♦♥ st❛t✐st✐❝

❝♦♠♣✉t❡❞ ❛❝r♦ss ❛❧❧ t❡st s❡ts ❛s ❞❡✜♥❡❞ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥✿

PRESSh =
∑

(yi − ŷh(−i))
2 ✭✶✷✮

❚❤❡ ❘❡s✐❞✉❛❧ ❙✉♠ ♦❢ ❙q✉❛r❡s ✭❘❙❙✮ ✐s ❝♦♠♣✉t❡❞ ✐♥ ❛ st❛♥❞❛r❞ ✇❛②✿

RSSh =
∑

(yi − ŷhi)
2 ✭✶✸✮

❉✐✛❡r❡♥t ❝r✐t❡r✐❛ ❝❛♥ ❜❡ ✉s❡❞ t♦ ❞❡t❡r♠✐♥❡ t❤❡ ♥✉♠❜❡r ♦❢ ❝♦♠♣♦♥❡♥ts h t♦ r❡t❛✐♥✳ ❖♥❡ s✉❝❤

❝r✐t❡r✐♦♥✱ Q2
h ✇❛s ✜rst ✐♥tr♦❞✉❝❡❞ ❜② ❍✳ ❲♦❧❞ ❬✷❪ ❛♥❞ ✐s ♠❛✐♥❧② ✉s❡❞ ✐♥ t❤❡ s♦❢t✇❛r❡ ❙■▼❈❆✲P✳

■t ✐s ❜❛s❡❞ ♦♥ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t✐st✐❝✿

Q2
h = 1−

PRESSh

RSSh−1

✭✶✹✮

❆s ♣♦✐♥t❡❞ ♦✉t ❜② ▼✳ ❚❡♥❡♥❤❛✉s✱ t❤❡ ✐♥✐t✐❛❧ ✈❛❧✉❡ ❢♦r RSS ✇❤❡♥ y ✐s ✉♥✐✈❛r✐❛t❡ ❝❡♥tr❡❞✲s❝❛❧❡❞

❛♥❞ h = 0 ✐s✿

RSS0 =
n

∑

i=1

(yi − ȳ)2 = n− 1 ✭✶✺✮

■♥ t❤❡ s♦❢t✇❛r❡ ❙■▼❈❆✲P t❤❡ P▲❙ ❝♦♠♣♦♥❡♥t ✐s ❦❡♣t ✇❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥ ✐s ♠❡t✿

√

PRESSh ≤ 0.95
√

RSSh−1 ✭✶✻✮

⇐⇒ Q2
h > 0.0975 ✭✶✼✮

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✺



❚❤❡ ❞❡❢❛✉❧t t❤r❡s❤♦❧❞ 0.0975 ✐s ❡q✉❛❧ t♦ 1− 0.952✳ ■♥ ❙❆❙✱ t❤❡ ❝r✐t❡r✐❛ t♦ s❡❧❡❝t t❤❡ ♥✉♠❜❡r h

♦❢ ❝♦♠♣♦♥❡♥ts t♦ ❜❡ r❡t❛✐♥❡❞ ✐s ❜② ♠✐♥✐♠✐③✐♥❣ t❤❡ PRESSh st❛t✐st✐❝✳

❚❤❡ ❛❜♦✈❡ ❞❡s❝r✐❜❡❞ ❢♦r♠✉❧❛❡ ❝❛♥ ❜❡ ❣❡♥❡r❛❧✐③❡❞ ❢♦r ♠✉❧t✐✈❛r✐❛t❡ Y ✱ t❤✉s ✇❡ ❤❛✈❡ ❢♦r ❛♥② ❣✐✈❡♥

✈❛r✐❛❜❧❡ yk✱ k = 1, . . . , q✿

Q2
kh = 1−

PRESSkh

RSSk(h−1)

✭✶✽✮

Q2
h = 1−

∑q

k=1 PRESSkh
∑q

k=1 RSSk(h−1)

✭✶✾✮

❚❤❡ ❝r✐t❡r✐❛ ❢♦r ❦❡❡♣✐♥❣ ❛ P▲❙ ❢❛❝t♦r ❛r❡ ✐❞❡♥t✐❝❛❧ t♦ ✇❤❛t ✇❛s ❡st❛❜❧✐s❤❡❞ ❢♦r t❤❡ ✉♥✐✈❛r✐❛t❡

❝❛s❡✳ ❖♥❡ ❝❛♥ ❛❧t❡r♥❛t❡❧② ✉s❡ ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ r✉❧❡s✱ ✇❤❡r❡ t❤❡ ❡q✉✐✈❛❧❡♥❝❡ ❞❡✜♥❡❞ ✐♥

❢♦r♠✉❧❛ ✭✶✼✮ st✐❧❧ ❤♦❧❞s tr✉❡✿

❼ Q2
h > 0.0975

❼ ❆t ❧❡❛st ♦♥❡ ✈❛❧✉❡ ♦❢ Q2
hk > 0.0975

■❢ t❤❡ ❝r✐t❡r✐❛ ❛r❡ ♠❡t ❜② s❡✈❡r❛❧ ✈❛❧✉❡s ♦❢ h✱ t❤❡ ♦♥❡ r❡t❛✐♥❡❞ ✐s t❤❡ s♠❛❧❧❡st h✱ t♦ ❛❝❤✐❡✈❡ ❛

❜❡tt❡r ❞✐♠❡♥s✐♦♥❛❧✐t② r❡❞✉❝t✐♦♥✳

❚❤❡ Q2 ❛♥❞ PRESS ❝r✐t❡r✐❛ ❛r❡ r❡❧❛t✐✈❡❧② r♦❜✉st t♦ t❤❡ ❝❤♦✐❝❡ ♦❢ ♥✉♠❜❡r ♦❢ ❢♦❧❞s ✭❜❧♦❝❦s✮ ✉s❡❞

❢♦r ❝r♦ss✲✈❛❧✐❞❛t✐♦♥✳ ❆ ♥✉♠❜❡r ♦❢ ❢♦❧❞s ❜❡t✇❡❡♥ ✺ ❛♥❞ ✶✵ ✐s r❡❝♦♠♠❡♥❞❡❞ ✭❚❡♥❡♥❤❛✉s ✶✾✾✽✱

♣✳✷✸✽✮ ❬✶❪✳ ❚❤❡ ❞❡❢❛✉❧t ❝❤♦✐❝❡ ✐♥ t❤❡ ❙■▼❈❆✲P ❛♥❞ ❙❆❙ s♦❢t✇❛r❡s ✐s ✼✱ ❛♥❞ ✐s t❤❡ ♣❛r❛♠❡t❡r

✉s❡❞ ✐♥ t❤✐s st✉❞②✳

✶✳✸✳✷ ❱❛r✐❛❜❧❡ ■♠♣♦rt❛♥❝❡ ✐♥ t❤❡ Pr♦❥❡❝t✐♦♥ ✭❱■P✮

❚❤❡ ❱❛r✐❛❜❧❡ ■♠♣♦rt❛♥❝❡ ✐♥ t❤❡ Pr♦❥❡❝t✐♦♥ ✭❱■P✮ ✐s ❛ ♠❡❛s✉r❡ ♦❢ t❤❡ ❡①♣❧❛♥❛t♦r② ♣♦✇❡r ♦❢ ❛

❣✐✈❡♥ ✈❛r✐❛❜❧❡ xj ♦✈❡r Y ✳ ❚❤❡ V IPhj ♦❢ ❛ ❣✐✈❡♥ ❝♦♠♣♦♥❡♥t h ♦❢ t❤❡ j✲t❤ ✈❛r✐❛❜❧❡ xj ✐s ❞❡✜♥❡❞

❛s✿

V IPhj =

√

√

√

√

p

Rd(Y ; t1, . . . , th)

h
∑

l=1

Rd(Y, tl)w2
lj ✭✷✵✮

❛♥❞ ♦♥❡ ❤❛s✿
p

∑

j=1

V IP 2
hj = p ✭✷✶✮

✇❤❡r❡ Rd(Y ; t1, . . . , th) ✐s t❤❡ r❡❞✉♥❞❛♥❝② ♦❢ Y ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ t s❝♦r❡s ✭t1, . . . , th✮✳ ■t

❞❡s❝r✐❜❡s t❤❡ ❛♠♦✉♥t ♦❢ ✈❛r✐❛♥❝❡ ♦❢ Y ❡①♣❧❛✐♥❡❞ ❜② t❤❡ ❝♦♠♣♦♥❡♥t th ♦❢ t❤❡ X✲s❡t✳ ■t ✐s ❞❡✜♥❡❞

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✻



❛s ❢♦❧❧♦✇s✿

Rd(Y, th) =
1

q

q
∑

k=1

cor2(yk, th) ✭✷✷✮

■t ❝❛♥ ❜❡ ❡q✉✐✈❛❧❡♥t❧② ❝♦♠♣✉t❡❞ ❛s✿

Rd(Y, th) = r2h
1

q

q
∑

k=1

cor2(yk, uh) ✭✷✸✮

✇❤❡r❡ rh = cor(Xwh, Y ch) ✐s ❝❛❧❧❡❞ ❛ ❝❛♥♦♥✐❝❛❧ ❝♦rr❡❧❛t✐♦♥ ❛♥❞ r2h ✐s t❤❡ hth ❧❛r❣❡st ❡✐❣❡♥✈❛❧✉❡

♦❢ t❤❡ ❝r♦ss♣r♦❞✉❝t ♠❛tr✐① ❞❡❝♦♠♣♦s✐t✐♦♥✳

❚❤❡ ❝♦♥tr✐❜✉t✐♦♥ ♦❢ ❛ ✈❛r✐❛❜❧❡ xj t♦ t❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ ❛ ❝♦♠♣♦♥❡♥t tl ✐s ♠❡❛s✉r❡❞ ❜② t❤❡

✇❡✐❣❤t w2
lj✳ ❋♦r ❡❛❝❤ l✱ ✇✐t❤ l = 1, . . . , h✱ t❤❡ s✉♠ ♦❢ t❤❡s❡ ✇❡✐❣❤ts ❛❝r♦ss t❤❡ p ✈❛r✐❛❜❧❡s xj

❡q✉❛❧s ✶✳ ❚♦ ♠❡❛s✉r❡ t❤❡ ❝♦♥tr✐❜✉t✐♦♥ ♦❢ t❤❡ ✈❛r✐❛❜❧❡ xj t♦ t❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ Y t❤r♦✉❣❤

t❤❡ ❝♦♠♣♦♥❡♥ts tl✱ ♦♥❡ s❤♦✉❧❞ ❝♦♥s✐❞❡r t❤❡ ❡①♣❧❛♥❛t♦r② ♣♦✇❡r ♦❢ t❤❡ ❝♦♠♣♦♥❡♥t tl✱ ♠❡❛s✉r❡❞

❜② t❤❡ r❡❞✉♥❞❛♥❝② Rd(Y ; tl)✳ ❆♥ ❡q✉❛❧ ✇❡✐❣❤t w2
lj ✐♥❞✐❝❛t❡s ❛♥ ❡①♣❧❛♥❛t♦r② ♣♦✇❡r ♦❢ t❤❡ xj

✈❛r✐❛❜❧❡ ♦✈❡r t❤❡ Y ✲s❡t ✇❤♦s❡ ✐♠♣♦rt❛♥❝❡ ✐♥❝r❡❛s❡s ✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢ r❡❞✉♥❞❛♥❝② Rd(Y ; tl)✳

❚❤❡ ❱■P ❡♥❛❜❧❡s t❤❡ r❛♥❦✐♥❣ ♦❢ t❤❡ ♣r❡❞✐❝t♦rs xj ❛❝❝♦r❞✐♥❣ t♦ t❤❡✐r ❡①♣❧❛♥❛t♦r② ♣♦✇❡r ♦♥ Y ✱

❛♥❞ s✉♠♠❛r✐③❡s t❤❡✐r ❝♦♥tr✐❜✉t✐♦♥ t♦ t❤❡ ♠♦❞❡❧✳ ❆ ❱■P ✐s ❝♦♥s✐❞❡r❡❞ s♠❛❧❧ ✐❢ ✐ts ✈❛❧✉❡ ✐s ❧❡ss

t❤❛♥ ✵✳✽ ❛♥❞ ❤✐❣❤ ✇❤❡♥ ✐ts ✈❛❧✉❡ ✐s ❣r❡❛t❡r t❤❛♥ ✶✳ ❱❛r✐❛❜❧❡s ✇✐t❤ ❛ ❤✐❣❤ ❱■P ✭V IP > 1✮ ❛r❡

t❤❡ ♠♦st ✐♠♣♦rt❛♥t ❢♦r t❤❡ r❡❝♦♥str✉❝t✐♦♥ ❛♥❞ ♣r❡❞✐❝t✐♦♥ ♦❢ Y ✳

✷ ❙t❛t✐st✐❝❛❧ ❘❡❝♦✉♣❧✐♥❣ ♦❢ ❱❛r✐❛❜❧❡s ✭❙❘❱✮

❚❤❡ ❙❘❱ ♣r♦❝❡❞✉r❡ ✇❛s ✐♥tr♦❞✉❝❡❞ ❜② ❇❧❛✐s❡ ❡t ❛❧✳✭✷✵✵✾✮ ❬✸❪ ❛♥❞ ❢♦r ✇❤✐❝❤ ❛ ♠❛t❧❛❜ t♦♦❧❜♦① ✇❛s

❧❛t❡r ✐♠♣❧❡♠❡♥t❡❞ ❬✹❪✳ ❚❤❡ ❙❘❱ ✐s ❛♥ ✧✐♥t❡❧❧✐❣❡♥t ❜✉❝❦❡t✐♥❣✧ ❛❧❣♦r✐t❤♠ t❤❛t ❛✐♠s ❛t r❡❣r♦✉♣✐♥❣

✈❛r✐❛❜❧❡s ✭t②♣✐❝❛❧❧② t❤❡ s♠❛❧❧❡st ✉♥✐t ♦❢ t❤❡ ◆▼❘ s♣❡❝tr✉♠✮ ✐♥ ❝❧✉st❡rs ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❛ ✇✐❞❡r

❜✐♦❧♦❣✐❝❛❧ ❛♥❞ ❝❤❡♠✐❝❛❧ ❡♥t✐t②✳

❙❘❱ ❡①♣❧♦✐ts t❤❡ s♣❡❝tr❛❧ str✉❝t✉r❡ ♦❢ ❞❛t❛✱ ✇✐t❤♦✉t ❢♦r♠✐♥❣ ❛♥② ♠❡t❛❜♦❧✐❝ ❤②♣♦t❤❡s✐s t♦ r❡❞✉❝❡

t❤❡ ❞✐♠❡♥s✐♦♥❛❧✐t② ♦❢ s♣❡❝tr❛✳ ❆ t②♣✐❝❛❧ ◆▼❘ 1H 9 ♣♣♠ s♣❡❝tr✉♠ ✐s ♦❢t❡♥ ♣❛rt✐t✐♦♥❡❞ ✐♥t♦

9, 000 ❜✉❝❦❡ts ♦❢ 0.001 ♣♣♠ ✇✐❞t❤✳ ❚❤❡ ♠❛✐♥ ✐❞❡❛ ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ✐s t♦ ❡①♣❧♦✐t t❤❡ s♣❡❝tr❛❧

❞❡♣❡♥❞❡♥❝② ❧❛♥❞s❝❛♣❡ L ✇❤✐❝❤ ✐s t❤❡ ❝♦✈❛r✐❛♥❝❡ t♦ ❝♦rr❡❧❛t✐♦♥ r❛t✐♦ ❜❡t✇❡❡♥ t✇♦ ♥❡✐❣❤❜♦✉r✐♥❣

✈❛r✐❛❜❧❡s ❛❧♦♥❣ t❤❡ ❝❤❡♠✐❝❛❧ s❤✐❢t ❛①✐s t♦ ❛ss❡♠❜❧❡ t❤❡♠ ✇✐t❤✐♥ ❛ ❝❧✉st❡r✳ ■❢ ♦♥❡ ❝♦♥s✐❞❡rs ❛

♠❛tr✐① Z ♦❢ s❡r✉♠ s♣❡❝tr❛ ❛❝q✉✐r❡❞ ❜② ◆▼❘ ✇✐t❤ n ♦❜s❡r✈❛t✐♦♥s ❛♥❞ r ❝♦❧✉♠♥s (z1, . . . , zr)

❝♦rr❡s♣♦♥❞✐♥❣ t♦ ♥❡✐❣❤❜♦✉r✐♥❣ ❜✐♥s ♦❢ ◆▼❘ s✐❣♥❛❧s✳ ❚❤❡ ✜rst ❜✐♥✲✈❛r✐❛❜❧❡ st❛rts t❤❡ ✜rst

▼❛t❤❡♠❛t✐❝❛❧ ❆♣♣❡♥❞✐① ✼



❝❧✉st❡r✱ t❤❡♥ L ✐s ❝♦♠♣✉t❡❞ ❢♦r ❡❛❝❤ zi ❛s ❢♦❧❧♦✇s ✇✐t❤ i = 1, . . . , r ✿

L(zi) =
cov(zi, zi+1)

cor(zi, zi+1)
✭✷✹✮

= sd(zi) ∗ sd(zi+1)

✇❤❡r❡ sd ✐s t❤❡ st❛♥❞❛r❞ ❞❡✈✐❛t✐♦♥✳

❚❤❡ ✈❛r✐❛❜❧❡ t❤❡♥ ❥♦✐♥s ❛ ❝❧✉st❡r ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ r✉❧❡s✿

❼ L(zi) ✈❛❧✉❡s ❛r❡ ✉s❡❞ t♦ ❧♦❝❛t❡ ❧♦❝❛❧ ♠✐♥✐♠❛ ✐✳❡✳ ❜♦r❞❡rs ❜❡t✇❡❡♥ ❝❧✉st❡rs✳

❼ ■❢ L(zi−1) > L(zi) t❤❡♥ zi−1 ❛♥❞ zi ❛r❡ ❛ss♦❝✐❛t❡❞ ✐♥ t❤❡ s❛♠❡ ❝❧✉st❡r✱ ♦t❤❡r✇✐s❡ zi ❛♥❞

zi+1 st❛rt ❛ ♥❡✇ ❝❧✉st❡r✳

❼ ❚❤❡ ♠✐♥✐♠✉♠ ♥✉♠❜❡r ♦❢ ✈❛r✐❛❜❧❡s ❜❡❧♦♥❣✐♥❣ t♦ ❛ ❝❧✉st❡r ✐s s❡t ❛ ♣r✐♦r✐ ❛s ✐t ✐s ❜❛s❡❞ ♦♥

t❤❡ r❡s♦❧✉t✐♦♥ ♦❢ t❤❡ ◆▼❘ s♣❡❝tr❛✳ ❲❤❡♥ ❛❝q✉✐r❡❞ ❛t ✼✵✵ ▼❍③✱ t❤❡ t②♣✐❝❛❧ ♣❡❛❦ ❜❛s❡

✇✐❞t❤ ♦❢ ❛ ✇❡❧❧✲r❡s♦❧✈❡❞ s✐♥❣❧❡t ✐s ❡q✉❛❧ t♦ ✼ ❍③✳ ❚❤❡r❡❢♦r❡✱ t❤❡ t❤r❡s❤♦❧❞ ✇❛s s❡t t♦ ✶✵

✐♥ ♦✉r ❛♥❛❧②s✐s✱ ♠❡❛♥✐♥❣ t❤❛t ✐❢ ❛ ❝❧✉st❡r ❤❛s ❧❡ss t❤❛♥ ✶✵ ✈❛r✐❛❜❧❡s✱ ✐t ✐s ❞✐s❝❛r❞❡❞✳

❼ ❚❤❡ s✉♣❡r✲❝❧✉st❡r ✐♥t❡♥s✐t② ✐s ❝♦♠♣✉t❡❞ ❛s t❤❡ ♠❡❛♥ ♦❢ t❤❡ ✐♥t❡♥s✐t✐❡s ♦❢ t❤❡ s✐❣♥❛❧ ✐♥ t❤❡

❜✐♥s ❛ss✐❣♥❡❞ t♦ t❤❡ s✉♣❡r✲❝❧✉st❡r✳

❼ ■❢ t✇♦ ♥❡✐❣❤❜♦✉r✐♥❣ ❝❧✉st❡rs ❤❛✈❡ ❛ ❝♦rr❡❧❛t✐♦♥ > 0.9✱ t❤❡② ❛r❡ ❛❣❣r❡❣❛t❡❞ t♦ ❢♦r♠ ❛

s✉♣❡r✲❝❧✉st❡r✳ ■♥ t❤❡s❡ ❛♥❛❧②s❡s✱ t❤❡ ❛ss♦❝✐❛t✐♦♥ ✐s ❧✐♠✐t❡❞ t♦ 3 ❝❧✉st❡rs ♣❡r s✉♣❡r✲❝❧✉st❡r

✭t❤✐s ✈❛❧✉❡ ✐s ❡♠♣✐r✐❝❛❧ ❛♥❞ ✇❛s ❞✐s❝✉ss❡❞ ✐♥ t❤❡ ♦r✐❣✐♥❛❧ ♣❛♣❡r ❬✸❪✮✳

❘❡❢❡r❡♥❝❡s
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Abstract 48 

Metabolomics is a potentially powerful tool for identification of biomarkers associated with 49 

lifestyle exposures and risk of various diseases. This is the rationale of the “meeting-in-the-50 

middle” concept, for which an analytical framework was developed in this study. In a nested 51 

case-control study on hepatocellular carcinoma (HCC) within the European Prospective 52 

Investigation into Cancer and nutrition (EPIC), serum 1H NMR spectra (800 MHz) were 53 

acquired for 114 cases and 222 matched controls. Through Partial Least Square (PLS) 54 

analysis, 21 lifestyle variables (the “predictors”, including information on diet, anthropometry 55 

and clinical characteristics) were linked to a set of 285 metabolic variables (the “responses”). 56 

The three resulting scores were related to HCC risk by means of conditional logistic 57 

regressions. The first PLS factor was not associated with HCC risk. The second PLS 58 

metabolomic factor was positively associated with tyrosine and glucose, and was related to a 59 

significantly increased HCC risk with OR= 1.11 (95%CI: 1.02, 1.22, p=0.02) for a 1-SD 60 

change in the responses score, and a similar association was found for the corresponding 61 

lifestyle component of the factor. The third PLS lifestyle factor was associated with lifetime 62 

alcohol consumption, hepatitis and smoking, and had negative loadings on vegetables intake. 63 

Its metabolomic counterpart displayed positive loadings on ethanol, glutamate and 64 

phenylalanine. These factors were positively and statistically significantly associated with 65 

HCC risk, with 1.37 (1.05, 1.79, p=0.02) and 1.22 (1.04, 1.44, p=0.01), respectively. Evidence 66 

of mediation was found in both the second and third PLS factors, where the metabolomic 67 

signals mediated the relation between the lifestyle component and HCC outcome. This study 68 

devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics data. 69 

This implementation of the “meeting-in-the-middle” approach finds natural applications in 70 

settings characterized by high-dimensional data, increasingly frequent in the –omics 71 

generation. 72 
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Introduction 75 

Metabolomic profiles from blood and other biological samples collected from large-76 

scale epidemiologic studies are increasingly being investigated [1], following recent 77 

developments in nuclear magnetic resonance (NMR) and mass spectrometry (MS) enabling 78 

the assessment of metabolic profiles for large numbers of individuals. As a result, 79 

metabolomic data is gradually playing a key part in clinical and observational studies; and 80 

new statistical methodologies [2] are increasingly being sought to explore insights into 81 

pathological processes that metabolomics may provide in order to better understand 82 

determinants of disease development. These approaches explore a variety of etiological 83 

hypotheses; however they usually focus on one aspect at a time, combining metabolomics 84 

with either epidemiologic/phenotypic data on lifestyle exposures [3] or with disease outcomes 85 

[4,5]. The main aim of this work is to jointly use all aspects that are potentially informative to 86 

apprehend the contrivances of disease development.  87 

Metabolomic data offers the opportunity to identify signatures and biomarkers 88 

associated with environmental exposures and the risk of a disease. Prospective studies are 89 

conceptually suitable for this purpose, since they rely on biological samples collected before 90 

disease onset, and are thus marginally influenced by metabolic changes due to processes of 91 

disease development. In this scenario, the “meeting-in-the-middle” (MITM) approach [6] has 92 

been conceived as a research strategy to identify biomarkers that are related to specific 93 

exposures and that are, at the same time, predictive of disease outcome. Finding this overlap 94 

between exposure and disease of “intermediate” biomarkers can potentially disclose useful 95 

information on the exposure-to-disease pathway, and may serve as an objective risk exposure 96 

measure, ultimately allowing the identification of a targeted prevention scheme. The MITM 97 

was previously implemented as a proof of concept in a case-control study nested within a 98 

cohort of healthy individuals [7], where a list of putative intermediate 1H NMR biomarkers 99 
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linking exposure to dietary compounds, mainly micro- and macronutrients, and disease 100 

outcomes (colon and breast cancer) were investigated.  101 

In this study we extend previous attempts to model the MITM by fully integrating 102 

metabolomics, lifestyle and disease risk in a single analytical framework. A strategy was 103 

developed to simultaneously investigate a broad range of metabolites and lifestyle variables 104 

with a partial least square (PLS) regression model [8]. The resulting scores were related to the 105 

risk of hepatocellular carcinoma (HCC), in a case-control study nested within the European 106 

Prospective Investigation into Cancer and nutrition (EPIC). HCC is the most frequent primary 107 

form of cancer affecting the liver, an organ that plays a critical role in many metabolic 108 

pathways [9]. HCC is a disease with multifactorial origins embracing lifestyle and dietary 109 

exposures whose intersection may reveal metabolomic signals [10] relevant to cancer onset. 110 

The system of relationships between metabolomic profiles and lifestyle factors in relation to 111 

HCC was evaluated by means of mediation analysis. The methodological challenges 112 

characterizing the analysis of large and complex metabolomic datasets are described and 113 

discussed. 114 

Methods 115 

EPIC design. The European Prospective Investigation into Cancer and nutrition (EPIC) is a 116 

large cohort established to investigate the association of diet, lifestyle and environmental 117 

factors with cancer incidence and other chronic disease outcomes. Between 1992-2000, over 118 

520,000 participants aged 20-85 years, were recruited from 23 centers in 10 Western 119 

European countries including Denmark, France, Germany, Greece, Italy, Norway, Spain, 120 

Sweden, The Netherlands and the United Kingdom [11].  The design, rationale and methods 121 

of the EPIC study including information on dietary assessment methodology, blood collection 122 

protocols and follow-up procedures were previously detailed [11].   123 
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Between 1992 and 1998, standardized lifestyle data, anthropometric measures and biological 124 

samples were collected at recruitment, prior to onset of any disease [11]. Validated country-125 

specific questionnaires ensuring high compliance were used to measure diet over the previous 126 

12 months [12]. Blood samples are stored at the International Agency for Research on Cancer 127 

(IARC, Lyon, France) in -196˚C liquid nitrogen for all countries, exceptions being Denmark 128 

(nitrogen vapour,-150˚C) and Sweden (freezers, -80˚C).  129 

The nested case-control study. The present study focused on data with available sera samples 130 

from a nested case-control study in EPIC on hepatocellular carcinoma (HCC) [13]. Cases of 131 

HCC were identified from all participating EPIC centres except for Norway and France 132 

(n=117) from recruitment (1993-1998) up to 2007. Two controls (n=232) were selected for 133 

each case from all cohort members alive and free of cancer (except non-melanoma skin 134 

cancer) by incidence-density sampling and were matched on age at blood collection (±1 year), 135 

sex, study centre, date (±2 months), time of the day at blood collection (±3 hours) and fasting 136 

status at blood collection (<3, 3-6, >6 hours); among women, additional matching criteria 137 

included menopausal status (pre-, peri-, post-menopausal) and hormone replacement therapy 138 

(HRT) use at time of blood collection (yes/no). In the present study, cases and controls were 139 

both included in the analyses as the subjects were all cancer-free at blood collection. Out of 140 

the total 349 subjects, 7 subjects (3 cases and 4 controls) had too little serum volume for 141 

NMR spectral acquisition with sufficient sensitivity; 6 additional control subjects were 142 

excluded following the exclusion of their corresponding case subject. The final analysis 143 

included 114 HCC cases and 222 matched controls of which 108 case–control sets with two 144 

matched control subjects and 6 sets with one matched control subject. 145 

NMR spectra acquisition. Sera were processed using standard procedure for 1H NMR 146 

metabolic measurement and profiling protocols [14]. Details on the sera sample preparation as 147 

well as NMR data acquisition and processing have been described elsewhere [15]. In brief, 148 



8 
 

each spectrum was reduced to 8,500 bins of 0.001 ppm width over the chemical shift range of 149 

0.5 to 9 ppm. Spectra were normalized to total intensity, centred and Pareto scaled, and 150 

additionally normalized for batch-effects using the batch profiling calibration method [16]. 151 

After removal of the structured noise (characterized by a specific mean and standard 152 

deviation) located in a well-known noise region (8.5-9ppm) and variables with identical 153 

characteristics, the statistical recoupling of variables (SRV) [17], a bucketing procedure, was 154 

applied to the metabolomic spectra. The SRV procedure identifies clusters of variables with 155 

respect to the ratio of covariance and correlation between consecutive variables along the 156 

chemical shift axis, allowing the restauration of the spectral dependency and the recovery of 157 

complex NMR signals corresponding to potential physical, chemical or biological entities. 158 

More details on the SRV procedure are available in the Mathematical Appendix. This 159 

permitted a reduction of the number of NMR variables from 8,500 bins to 285 clusters of 160 

variables corresponding to reconstructed peak entities which constituted the Y-set of 161 

metabolic variables. All steps to obtain the data were done without knowledge of the case-162 

control status of the subjects. Quality control (QC) samples were included to ensure 163 

reproducibility of the NMR data acquisition. 164 

Metabolite identification. The assignment of NMR signals observed in the 1H one-165 

dimensional fingerprints to metabolites has been achieved by the analysis of additional 2D 166 

NMR experiments 1H-13C HSQC and 1H-1H TOCSY obtained on a subset of representative 167 

samples (one control and one case). The measured chemical shifts were compared to 168 

reference shifts of pure compounds using HMDB [18], MMCD [19] and ChenomX, 169 

(ChenomX NMR suite, ChenomxInc, Edmonton, Canada) databases. 170 

Lifestyle variables. The predictors (what will be referred to later on as the X-set) included 13 171 

dietary variables from main EPIC food groups compiled from validated country-specific food 172 

frequency questionnaires (FFQ) [11,20] (potatoes and other tubers; vegetables; legumes; 173 
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fruits, nuts and seeds; dairy products; cereal and cereal products; meat and meat products; fish 174 

and shellfish; egg and egg products; fat; sugar and confectionary; cakes and biscuits; non-175 

alcoholic beverages), alcohol average lifetime intake (continuous, g/day), anthropometric 176 

measures including body mass index (continuous, kg/m2) and height (continuous, cm) that 177 

were measured by trained interviewers in the majority of participants [11], highest level of 178 

education achieved (categorical: none or primary school completed, technical/professional 179 

school, secondary school, longer education (incl. university degree), unspecified), smoking 180 

status (categorical: never, former, current smoker, unknown), a measure of physical activity 181 

(continuous, metabolic equivalents of task (MET)/h), hepatitis status (yes/no, from biomarker 182 

measures of HBV and HCV seropositivity [ARCHITECT HBsAg and anti-HCV 183 

chemiluminescent microparticle immunoassays; Abbott Diagnostics, France]) and baseline 184 

self-reported diabetes status (yes/no). Descriptive information on these variables can be found 185 

in Supplementary table 1. 186 

Statistical analysis 187 

PC-PR2 analysis. Principal component partial R-square (PC-PR2) was primarily used to 188 

identify and quantify sources of systematic variability within metabolomic data [15]. PC-PR2 189 

combines aspects of principal component analysis (PCA) and the R2
partial statistic in multiple 190 

linear regression, and allows for (some) inter-correlation between the explanatory variables 191 

under scrutiny [15]. In short, PCA is performed on the 285 clusters of 1H NMR variables and 192 

a number of components is retained explaining an amount of total variability above a 193 

designated threshold (here, 80%). Then, multiple linear regression models are fitted where 194 

each component’s variability is explained in terms of relevant covariates, e.g. specific 195 

characteristics of samples like country of origin, smoking status, laboratory treatment, etc. For 196 

each given component, the R2
partial statistic is computed for all covariates, quantifying the 197 

amount of variability each independent variable explains, conditional on all other covariates 198 
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included in the model. Finally, an overall R2
partial is calculated as a weighted average for every 199 

covariate, using the eigenvalues as components’ weights. Mathematical details pertaining to 200 

the PC-PR2 method are described elsewhere [15]. 201 

In this study, PC-PR2 was applied to the 285 clusters of NMR variables, whereas the 202 

explanatory variables examined for systematic variability were NMR batch, country of origin, 203 

sex, age at blood collection, serum clot contact time (centrifugation at the day of blood 204 

collection d, or the following day, d+1), length of freezing time (<= 15 vs. >15 years), and 205 

fasting status at blood collection (< 3, 3-6, > 6 hours). With the similar motivation of 206 

identifying sources of variability within lifestyle data, a similar PC-PR2 analysis was applied 207 

to the 21 lifestyle factors; the examined covariates for systematic variability were country of 208 

origin, sex and age at recruitment. For both metabolomics and lifestyle data, residuals on the 209 

variable accounting for most variability, identified through PC-PR2 analyses, were computed 210 

in a series of univariate linear regression models [21] and were used in the subsequent PLS.  211 

PLS analysis. A PLS model was used to relate lifestyle variables to metabolomic profiles. 212 

PLS is a multivariate technique that generalizes features of PCA and multiple linear 213 

regression. PLS iteratively extracts linear combinations of, in turn, predictors (the X-set) and 214 

responses (the Y-set), which in this study, were lifestyle variables and metabolomic profiles, 215 

respectively. First, components or latent factors are extracted allowing a simultaneous 216 

decomposition of the X- and Y-sets, in order to maximize their covariance [22]. The factors 217 

extracted from the predictors’ set are orthogonal. Computational details of PLS are described 218 

in the Mathematical Appendix. As a standard step for the PLS algorithm, the X- and Y-sets 219 

were centered and standardized for the analysis and a simple expectation-maximization (EM) 220 

algorithm, adapted from the PLS kernel algorithm [23,24], was used to compute covariance 221 

matrices when missing values were present in the lifestyle data. This was done as follows: a 222 

first pass of PLS was computed filling in the missing values by the average of the non-223 
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missing values for each corresponding variable. A second pass was then performed whereby 224 

the missing data were assigned their predicted values based on the first model, and the PLS 225 

regression is recomputed. 226 

Then, a seven-fold cross validation analysis was carried out to select the number h of 227 

significant PLS factors to retain [8] (see Mathematical appendix).This was achieved by 228 

splitting the data into seven groups of observations. In turn, each group of observations was 229 

considered as the test set, whilst the other six were the training sets, used to perform PLS 230 

analysis. A measure of PLS performance was determined for each step through the predicted 231 

residual sum of squares (PRESS) statistic, whereby the predicted values in the test set, the Ỹh 232 

matrix, based on the X-components estimated through the model in the training set, were 233 

compared to the observed responses, the Y matrix. This comparison is quantified by the 234 

squared Euclidean distance between these two matrices. In turn for an increasing number h of 235 

components, the process is iterated seven times, until each group of observations serves as a 236 

test set. Eventually, the number h of selected PLS factors is the one minimizing the PRESS 237 

statistic. 238 

For each PLS factor, loadings were computed for the lifestyle (X-set) and the NMR (Y-set) 239 

variables. The loadings, i.e. coefficients quantifying the contribution of each original variable 240 

to the PLS factor, were used to characterize the various factors. As the analysis involved 241 

many variables in the X-set and, particularly, in the Y-set, the interpretation focused primarily 242 

on variables with loading values lower than the 10th percentile and larger than the 90th 243 

percentile for the X variables, and lower than the 5th and larger than the 95th percentiles for the 244 

Y variables, that were deemed the most significant contributors to the PLS factor.  245 

Logistic regression analysis. Last, scores of each PLS factor were related to HCC risk in 246 

conditional logistic regression models to compute HCC odds ratios (ORs) and associated 95% 247 

confidence intervals (95% CI) where ORs express the change in HCC risk associated to one 248 
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standard deviation (1-SD) increase in the score. Models were adjusted for C-reactive protein 249 

concentration, alpha-fetoprotein concentration and for a composite score indicative of liver 250 

damage. The score summarizes the number of abnormal values of circulating enzymes 251 

measured in the hepatic tissue in six liver function tests (alanine aminotransferase >55 U/L, 252 

aspartate aminotransferase >34 U/L, gamma-glutamyltransferase: men>64 U/L and 253 

women>36 U/L, alkaline phosphatase >150 U/L, albumin<35 g/L, total bilirubin>20.5 254 

μmol/L; cut-points were provided by the clinical biochemistry laboratory that conducted the 255 

analyses and were based on assay specifications) [25]. These biomarkers were measured on 256 

the ARCHITECT c Systems™ and the AEROSET System (Abbott Diagnostics) using 257 

standard protocols. Laboratory analyses were performed at the Centre de Biologie République 258 

laboratory, Lyon, France. These adjustments were deemed necessary to address potential 259 

confounding stemming from metabolic disorders, inflammation or underlying liver 260 

dysfunction [25–28]. Adjustments for total dietary fibre, vitamin D, calcium and iron intakes 261 

(continuous) were evaluated but not retained in the final models for lack of confounding 262 

exerted by these variables. The receiver operating characteristic (ROC) curve and the 263 

associated area under the curve (AUC) were determined from conditional logistic regressions 264 

to evaluate the predictive performance of PLS models. AUC values were computed for 265 

conditional logistic models including progressively the PLS scores, separately for lifestyle 266 

and metabolomic factors (as shown in Table 4, column 1). The sensitivity, specificity and 267 

accuracy were calculated for a cut-off point, selected as the minimal distance between the 268 

ROC curve and the upper left corner of the diagram [29,30]. The corrected positive predictive 269 

value (PPV), taking into account the nested case-control design [31,32] was computed by 270 

including the prevalence of HCC in the EPIC population(π= 0.0004), computed over a 7-year 271 

period (1992-2010) where 191 HCC cases were ascertained from a total of 477,206 272 

participants included for case identification after relevant exclusions [33]. The AUC 273 
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unavoidably increases with the number of covariates added to the conditional logistic model. 274 

To address this issue, a resampling scheme was devised to compute an objective/ unbiased 275 

estimate of the AUC, inspired by the work of Uno et al [34]. For each one of the 1000 drawn 276 

bootstrap samples, a 10-fold cross-validation was performed, repeated ten times to remove 277 

variation due to random partitioning of data and to yield more stable estimates. The predicted 278 

values from each of the conditional logistic models in the training set were used to derive 279 

AUC values in the test set. The 2.5th and 97.5th percentile values made up the 95% confidence 280 

intervals.  281 

Sensitivity analyses. A sensitivity analysis was performed by running PLS on data excluding 282 

sets where cases were diagnosed within the first two years of follow-up. The model was 283 

conducted on 271 observations (92 cases, 179 controls), to investigate the performance of the 284 

PLS model, ruling out potential reverse causation. The metabolomic profiles of HCC cases 285 

diagnosed within two years from enrolment could reflect the presence of the tumour rather 286 

than informing about tumour aetiology. The variable importance in the projection (VIP) 287 

statistic was used to facilitate the comparison of the sensitivity analysis with the main 288 

analysis. The VIP expresses the explanatory power of a predictor variable X across all 289 

response variables Y (see Mathematical Appendix). 290 

Mediation analysis. The mediating role of the Y-scores in the association between lifestyle 291 

profiles and HCC risk was assessed. Separately for each extracted combination of lifestyle 292 

and metabolomic PLS factors, mediation analyses were performed with the ‘paramed’ Stata 293 

function that allows for exposure-mediator interaction based on Valeri and VanderWeele’s 294 

work [35]. Briefly, mediation was computed using a Baron and Kenny approach adapted to 295 

dichotomous outcomes [36], where two models were specified. In the mediator model, the 296 

mediator (the Y-score) was linearly regressed on the exposure (the X-score), while in the 297 

outcome model the exposure (X-score) and the mediator (Y-score) were related to the HCC 298 
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indicator in unconditional logistic regressions. Both models accounted for the concentration 299 

of C-reactive protein, alpha-fetoprotein and the composite score of liver damage, and 300 

additionally accommodated the other extracted metabolic profiles (Y-scores) to control for 301 

mediator-outcome confounders that may occur when estimating the Natural Indirect Effect 302 

(NIE) [35]. As the outcome (HCC) is rare, direct and indirect effects can be estimated taking 303 

into account the case-control design. This is done by using the same formulas for the effects, 304 

while running the mediator regression only for the controls [36]. As mediation packages do 305 

not yet accommodate conditional logistic models, the outcome and the mediator models, 306 

which were accommodated in unconditional logistic regressions, were adjusted for center and 307 

age at blood collection for sake of consistency with previous steps of the analysis.  308 

Statistical analyses were performed using R [37] and SAS [38] in general, with the following 309 

packages for specific purposes: PROC PLS in SAS 9.4 for PLS analyses, ‘paramed’ in Stata 310 

12 [39] for mediation analyses, ‘OptimalCutpoints’ in R for ROC-related assessments.  311 

The different steps of the analytical framework developed in this study to model the MITM 312 

are presented in Figure 1.  313 

Results 314 

In the PC-PR2 analyses, a total of 17 and 14 principal components were retained to 315 

explain an amount of total variability exceeding 80% in metabolomics and lifestyle data 316 

respectively. Figure 2 shows that the ensemble of explanatory variables accounted for 19.4% 317 

and 26.7% of total variance, respectively in metabolomics and lifestyle data, of which the 318 

highest contributor was ‘country of origin’ with consistently 8% and 22%.  PLS analysis was 319 

carried controlling for this variable. 320 

After a seven-fold cross-validation, three PLS factors were retained accounting for 321 

21.7% and 8.5% of the overall variability observed in predictor and response variables, 322 
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respectively (Table 1). Lifestyle variables and clusters of NMR variables contributing highly 323 

to PLS factors were identified using factor loading values (Table 2). The first PLS factor was 324 

predominantly positively associated with dairy products and cakes and biscuits intake, while 325 

lifetime alcohol intake, smoking status and diabetes displayed negative loadings for this 326 

lifestyle component (Table 2). On the same PLS factor, signals mainly associated with 327 

glucose and bonds of lipids with negative loading values, and with aspartate, glutamine and 328 

lysine with positive loadings emerged on the metabolomic profile (Table 2). Lifestyle 329 

variables characterizing the second PLS factor included cereal products, height and education 330 

level with negative loadings, and hepatitis with positive loadings. The metabolic signature 331 

included NMR variables with positive loadings associated with aromatic amino acids 332 

(phenylalanine, tyrosine) and glucose; and those with negative loadings associated mainly 333 

with bonds of lipids, threonine and mannose (Table 2). The third PLS factor had a lifestyle 334 

pattern outlining intake of vegetables (high negative loadings values), lifetime alcohol 335 

consumption, smoking, and hepatitis infection (positive loadings). Its counterpart NMR 336 

pattern highlighted signals of glucose and aspartate, with high negative loadings, along with 337 

signals of ethanol, myo-inositol, proline and glutamate as prominent metabolites with positive 338 

loadings (Table 2). 339 

Conditional logistic regression models relating HCC risk with the X- and Y-scores are 340 

shown in Table 3. The first PLS factor was associated to a non-significant decreased HCC 341 

risk (23% and 4% in the X- and Y-scores respectively), while the second and third factors 342 

were associated to a statistically significant increased HCC risk (54% and 11%; and 37% and 343 

22% respectively). Results for the ROC curves parameters are reported in Table 4, including 344 

AUC, sensitivity, specificity, accuracy and PPV for different combinations of the X- and Y-345 

scores. The AUC of the X-scores and Y-scores for all 3 PLS factors, adjusted for C-reactive 346 

protein concentration, alpha-fetoprotein concentration and the score of liver damage, was 347 
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respectively 0.859 and 0.853. An increase in the resampled cross-validated AUC values was 348 

also observed for all three X- and Y-scores, albeit smaller, with respectively 0.836 and 0.827. 349 

Results from the sensitivity analysis conducted on data excluding sets where cases were 350 

diagnosed within the first two years of follow-up, showed similarities in terms of lifestyle 351 

variables’ and metabolites’ loadings on the PLS factors (Supplementary Table 2). Notable 352 

differences pertained to the identification of new signals for the first PLS factor including 353 

ethanol, histidine and an unknown compound. On the second lifestyle factor, BMI (positive 354 

loadings) replaced education level (negative loadings) while the reflected metabolomic profile 355 

was comparable to its counterpart from the main analysis (Supplementary Table 2). On the 356 

third factor, smoking status and hepatitis (positive loadings) were replaced by sugar and 357 

confectionary intake (negative loadings); signals contributing to the associated metabolic 358 

profile remained the same but the direction of the association was inversed as loadings had 359 

opposite signs as compared to the counterpart PLS factor of the main model (Supplementary 360 

Table 2). Corresponding ORs from conditional logistic regression models relating the X- and 361 

Y-scores to HCC risk are available in Table 5. The scores showed a statistically significant 362 

association in the second factor for both sets and in the third factor for the Y-set. ROC-363 

associated statistics for different models are presented in Supplementary Table 3. The VIP 364 

plot (Figure 3) displayed the results for the importance of the lifestyle variables in the 365 

prediction of the Y-set computed for the main PLS model performed including all subjects 366 

(panel A) and for the sensitivity model (panel B). The results suggested a potential gain in 367 

stability as prominent lifestyle variables for prediction were maintained 368 

(hepatitis/diabetes/cakes and biscuits), the magnitude of the VIP was improved for some 369 

(fat/lifetime alcohol intake) and less emphasis was put on others (BMI/physical activity). 370 

Finally, the natural indirect effect was assessed in the mediation analyses and the results are 371 

presented in Table 6. Overall, there was limited evidence that metabolomic signals mediated 372 
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the association between lifestyle components and HCC risk in the first PLS factor. Evidence 373 

of a significant mediated effect by the Y-scores was found in the second and third PLS factors 374 

when models were adjusted for exposure-mediator interaction (Table 6).  375 

Discussion 376 

In this work, an analytical strategy based on PLS analysis was conceived to extract 377 

relevant information from sets of lifestyle and NMR metabolomic variables, and to relate the 378 

resulting components to the risk of disease. This offered a way to implement the MITM 379 

approach [6] in a nested case-control study on HCC within the EPIC study. MITM has been 380 

suggested as a way to link specific putative metabolites to lifestyle exposures and disease 381 

outcomes, thus leading to the identification of potential intermediate biomarkers [6].  382 

An implementation of MITM was previously carried out in a nested case-control study 383 

in the Turin sub-cohort of EPIC [7] based on prospectively collected plasma samples from a 384 

pilot study on colon and breast cancers. In their work, a list of intermediate markers was 385 

identified by an in-parallel evaluation of the relationships between untargeted 1H NMR 386 

profiles with dietary exposures and risk of colon and breast cancers using correlation analysis 387 

and logistic regression. In our study, a different analytical framework was developed, largely 388 

exploiting features of PLS analysis, a multivariate technique that iteratively extracts 389 

components capturing co-variability in sets of predictors and response variables [8,40]. A set 390 

of lifestyle predictor variables were related to NMR responses. In a second step, PLS 391 

predictors’ and responses’ scores were linked to the risk of HCC.  392 

Another sensitive issue in this analysis was the choice of lifestyle variables. Two 393 

disease-indicator variables reflecting environmental exposures, diabetes and hepatitis, were 394 

included in the set of predictors, as they turned out to have an important role in the 395 

characterization of metabolomic signatures. In addition, diabetes is the main metabolic risk 396 
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factor for HCC alongside with fatty liver disease [41,42], and chronic infection with hepatitis 397 

B (HBV) and particularly hepatitis C (HCV) viruses were classified as class I carcinogens for 398 

HCC by IARC [43].  399 

Other relevant biomarkers were not part of the list of predictors in PLS analysis, but were 400 

controlled for in logistic regression models. This included C-reactive protein, alpha-401 

fetoprotein, and a score for liver damage,  an index of different circulating enzymes measured 402 

in the hepatic tissue indicating potential underlying liver function impairment [25]. The alpha-403 

fetoprotein was included as an adjustment factor in the analyses not because of its established 404 

part as a serum marker for HCC diagnosis [26,44], but rather to account for it as a potential 405 

confounder that may cloud the relation between scores and HCC, both in conditional logistic 406 

regressions and in mediation analyses. 407 

Similarly to other multivariate techniques, a key aspect of PLS analysis is the choice 408 

of the number of factors to retain, in an effort of exhaustively summarizing data variability 409 

through a limited number of factors. Based on a seven-fold cross-validation, three linear 410 

combinations of variables were extracted in this work. A challenging aspect of this analysis is 411 

the interpretation of these factors, with respect to lifestyle and metabolomic variables. A 412 

subjective criterion based on the distribution of loading values was used throughout. The 413 

variables displaying the most extreme loading values (in absolute terms) were the ones 414 

characterizing each factor.  415 

The first lifestyle factor highlighted a healthy pattern with negative loadings for 416 

diabetes status, smoking status and lifetime alcohol intake, and was not associated to HCC 417 

risk, similarly to its metabolomics counterpart. The lifestyle component of the second PLS 418 

factor, was reflective of a lifestyle pattern reflective of “higher-risk exposures”, and was 419 

related to a significant 54% increase in HCC risk. Likewise, its associated metabolic 420 

component displayed a significant HCC risk augmentation by 11%. The lifestyle component 421 
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of the third PLS factor described participants with lower vegetables intake, elevated lifetime 422 

alcohol consumption, more likely to be ever smokers and hepatitis positive; one standard 423 

deviation increase of this component was associated to a statistically significant 37% increase 424 

in HCC risk. Similarly, a 22% significant increase in HCC risk was observed for its metabolic 425 

counterpart, characterized by positive signals of ethanol and myo-inositol, and displayed 426 

negative loadings for glucose.  427 

The MITM is captured by the rationale of PLS analysis, in the sense that each set of lifestyle 428 

profiles and metabolic signatures of the extracted PLS factors mirrored one another. In 429 

addition, mediation was observed for the second and third PLS factors, whereby the 430 

metabolomic component mediated the relation between the lifestyle component and HCC, for 431 

which statistically significant associations with HCC risk were estimated, emphasising the 432 

presence of a MITM. Mediation analysis relies on the assumption that there is no mediator-433 

outcome confounder that is affected by the exposure [35]. In our study C-reactive protein, 434 

alpha-fetoprotein and liver damage score were weakly correlated to lifestyle factor score, thus 435 

introducing potential bias in the estimation of direct and indirect effects in our mediation 436 

analysis. Additionally, a number of background confounders (mediator-outcome and 437 

exposure-outcome confounders) were present that we have tried to control for, either by 438 

adjustments or by accounting for potential interactions, however some degree of bias can 439 

remain and caution should be employed when interpreting the results. 440 

The predictive performance of PLS factors in relation to HCC occurrence was evaluated 441 

through an analysis of AUC values. The performance of the model improved progressively, 442 

with all 3 X- and Y-scores added; after a bootstrapped cross-validation, the AUC estimates 443 

were lower  but the increase in the performance was nevertheless present. The ROC 444 

methodology allows estimation of PPV, which expresses the risk of disease after a positive 445 

test [45]. In a setting with low HCC prevalence (π=0.0004), in line with Western populations 446 
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[46], extremely low PPV estimates were observed. In the absence of a very specific test, many 447 

positive tests arise from disease-free individuals [45], thus leading to a dilution of PPV. 448 

A sensitivity analysis was carried out excluding the first two years of follow-up, but results 449 

were virtually unchanged, both in terms of relative risk estimates in logistic regression 450 

models, and of percentage of variability explained in PLS analysis. These findings suggest 451 

that reverse causation bias, if present, was minimal. 452 

This study had the ambition of integrating in the same analytical framework study 453 

participants’ lifestyle characteristics with a large number of NMR metabolic profiles. These 454 

data pose a number of methodological challenges due to their size and the complexity of 455 

exhaustively capturing and interpreting the biological processes they reflect. To address these 456 

issues, techniques involving multivariate statistics have been progressively revived in the 457 

recent years [2]. Epidemiologic evaluations of metabolomic data frequently combined PLS 458 

with discriminant analysis, such as PLS-DA or O-PLS-DA. The main objective of these 459 

methods is to identify a series of metabolomic features distinguishing between two very 460 

distinct groups of study participants [47,48]. In such strategies, only one set of variables is 461 

multi-dimensional and the response is one variable only. Similar multivariate techniques for 462 

pattern extraction, belonging to the family of regression methods, include reduced rank 463 

regression. This multivariate method relates an ensemble of response variables to a set of 464 

predictor variables where the estimated matrix of the regression coefficients is of reduced 465 

rank [49–51]. In addition, canonical correlation analysis (CCA) [52] is a method applied to 466 

identify the optimum structure or dimensionality of each variable set that maximizes the 467 

relationship between two sets of multi-dimensional variables. The main difference between 468 

CCA and PLS regression is that CCA maximizes the correlation between the two new 469 

dimensions, i.e. extracted factors, whereas PLS maximizes their covariance. PLS can be 470 

considered as a trade-off  between CCA and PCA, since maximizing the covariance 471 
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corresponds to maximizing the product of the correlation and standard deviation, given that 472 

cov(X,Y)=cor(X,Y)*SD(X)*SD(Y). 473 

Untargeted NMR was used in this work to acquire metabolomic signals. Prior to PLS 474 

analysis, a bucketing procedure, the statistical recoupling of variables (SRV) [17,53], was 475 

applied to reduce the number of NMR variables to 285 clusters. This was done by aggregating 476 

consecutive NMR bins based on their covariance to correlation ratio. This allowed the 477 

identification of informative components of the spectra, thus acting as an efficient noise-478 

removing filter. Subsequently the annotation effort remains challenging, for a number of 479 

reasons. The majority of published metabolomics studies often identified a limited number of 480 

metabolites at a time [54], and the Human Metabolome Database (HMDB) and other related 481 

resources [18,55], that offer richly annotated information continuously increasing the 482 

metabolite coverage for users, are mostly exploited through time consuming interactive 483 

procedures. In addition, individual metabolites often overlap in NMR signals, which can 484 

hinder annotations. These challenges, as well as large variability in metabolite concentrations, 485 

and disentangling informative signals from noise, are not specific to NMR and pertain to any 486 

type of untargeted technique. Such investigations may profit from complementary targeted 487 

metabolomic analytical strategies [55].  488 

Throughout the different steps of this work, the scaling problem was first tackled by 489 

normalizing spectra to total intensity. NMR data were also centered and Pareto-scaled, 490 

together with correction for potential batch effects [16]. The PC-PR2 method offered a way to 491 

investigate major sources of systematic variability in NMR and lifestyle data [15]. The 492 

variable “country of origin” emerged as the variable accounting for the largest proportion of 493 

total variability, and the residual method was used to control for this variable in the following 494 

steps of the analysis. While this may lead to removing regional gradients of dietary 495 

variability, this step is instrumental to avoid unwanted systematic regional-specific bias in the 496 
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data in country-specific questionnaire assessments. In addition, technical aspects like storage 497 

and handling of biological samples, fasting status at blood collection are specific to each 498 

country [15]. In any case, variability due to “country of origin” is not exploited in conditional 499 

logistic models, as cases and controls were also matched on center. 500 

One of the limitations of this study is the restricted sample size which raises concerns 501 

with regards to power to detect associations. While a larger sample size would possibly result 502 

in more statistically significant findings, we used the data that was available with NMR 503 

profiles measured. In this work we have developed a framework to analyse complex data 504 

integrating lifestyle and metabolomics in relation to risk of disease. The approach described in 505 

this study has merits but also pitfalls among which it is worth mentioning that statistical 506 

methods are used repeatedly on the same set of data, notably the PLS model, the conditional 507 

logistic regression, the AUC estimation and mediation analysis. To partially address this, a 508 

cross-validation approach was devised for AUC estimation which involved conditional 509 

logistic regression, whereby PLS was done without knowledge of the case/control status. 510 

However, conditional logistic regression models and mediation analyses were implemented 511 

on the same data, and our analysis did not account for this limitation. This may have led to 512 

spuriously increase the nominal level of statistical significance of statistical tests.  513 

Conclusion 514 

The MITM emerged as a method for the identification of relevant biomarkers, with 515 

great potential to unravel utmost important steps in the aetiology of disease. The analytical 516 

strategy for MITM was developed to use all potentially informative aspects of high-517 

throughput data by integrating metabolomic, dietary and lifestyle exposures together with 518 

disease indicators. While the framework was applied towards the investigation of HCC 519 

determinants, it can be easily extended to similar aetiological contexts and applied to other –520 

omics settings. 521 
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 745 

Legends to figures  746 

Figure 1: General scheme of the analytical framework developed in the study. A PC-PR2 747 

analysis is carried out beforehand to identify relevant sources of variation. In the PLS model 748 

the X- and Y- sets are related to each other, and scores are computed (1). X- and Y-scores are, 749 

in turn, associated to a case-control indicator of HCC status in conditional logistic regression 750 

models (2). A mediation analysis is carried out to explore the role of metabolomics in the 751 

association between lifestyle factors and risk of HCC (3). 752 

Figure 2: PC-PR2 analysis results* identifying the sources of variability in the NMR data 753 

(panel A) and in the lifestyle data (panel B). 754 

* 17 and 14 components were retained to account for 80 % (threshold used) of total NMR (A) 755 

and lifestyle variability (B), respectively. The R2 value represents the amount of variability in 756 

NMR / lifestyle variable explained by the ensemble of investigated predictors. 757 

Figure 3: Variable importance plot (VIP) displaying the variable importance for projection 758 

statistic of the predictor variables for the PLS analyses. 759 

Panel A: Results from the main PLS model run on all observations (N=336, X-set=21, Y-760 

set=285). 761 

Panel B: Results from the PLS sensitivity analysis run on a subsample (N=271, 92 cases, 179 762 

controls) excluding sets where cases were diagnosed within the first two years of follow-up 763 

(X-set=21, Y-set=285). 764 
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The horizontal line corresponds to Wold’s criterion (0.8), the threshold used to rule if a 765 

variable has an important contribution to the construction of the Y variables (see 766 

Mathematical Appendix for further details). 767 
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Table 1: Individual and cumulative variation (%) explained by the first 3 PLS factors in 21 lifestyle (X-set) and 285 

NMR (Y-set) variables. 

# of 

PLS  
Lifestyle Variables NMR Variables 

Factors Individual  Cumulative  Individual Cumulative 

1 6.17 - 5.51 - 

2 6.23 12.40 2.38 7.89 

3 9.27 21.67 0.59 8.48 
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Table 2: Lifestyle and NMR cluster variables contributing to each of the 3 PLS factors (N=336, X-set=21, Y-

set=285). 
PLS 

Factor 
Lifestyle Variable* 

Loading 

value 

CS*‡ 

(ppm)
Metabolite** 

Loading 

value 

1 Dairy Products 0.28 5.22 

Glucose 

-0.06 

  Cakes and Biscuits 0.32 3.88 -0.05 

  Lifetime Alcohol Consumption -0.25 3.82 -0.06 

  Smoking Status -0.39 3.76 -0.06 

  Diabetes -0.63 3.71 -0.05 

    3.54 -0.05 

    3.50 -0.07 

    3.48 -0.07 

    3.44 Acetoacetate -0.07 

    3.23 Choline + Glycerphosphocholine  -0.04 

    3.01 Lysine 0.10 

    2.94 Albumin 0.10 

    2.65 Aspartate 0.10 

    2.42 Glutamine 0.10 

    2.28 Acetoacetate 0.10 

    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.04 

    1.86 
Lysine 

0.09 

    1.87 0.10 

      1.53 CH2-CH2-COOC bond of lipids  -0.03 

2 Cereal and Cereal Products -0.16 7.17 
Tyrosine 

0.13 

  Height -0.34 6.87 0.13 

  Education Level -0.26 5.27 CH=CH bond of lipids -0.13 

  Hepatitis 0.49 5.22 Glucose 0.16 

    5.18 Mannose + Lipid O-CH2  -0.12 

    4.27 Lipid O-CH2 -0.12 

    4.25 Threonine -0.14 

    4.07 Choline + Lipid O-CH2 + Myo-inositol -0.12 

    4.05 Creatinine -0.14 

    3.88 

Glucose 

0.15 

    3.82 0.16 

    3.76 0.15 

    3.71 0.15 

    3.54 0.15 

    3.50 0.16 

    3.48 0.16 

    3.44 Acetoacetate 0.16 

    3.23 Choline + Glycerphosphocholine  0.15 

    2.80 Aspartate -0.12 

    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.11 

    2.19 CH2-CH2-COOC bond of lipids -0.15 

    2.02 Proline  + Glutamate + CH2=C bonds of lipids -0.13 

    1.53 CH2-CH2-COOC bond of lipids  -0.13 

    1.25 CH2 bond of lipids  -0.12 

      0.86 Cholesterol + CH3 bond of lipids -0.12 

3 Vegetables -0.42 7.32 Phenylalanine 0.11 

  Lifetime Alcohol Consumption 0.29 5.22 Glucose -0.13 

  Smoking Status 0.25 4.28 Lipid O-CH2  0.11 

  Hepatitis 0.26 3.88 

Glucose 

-0.11 

    3.82 -0.11 

    3.76 -0.12 

    3.71 -0.11 

    3.69 -0.11 

    3.63 Myo-inositol 0.16 

    3.50 
Glucose 

-0.13 

    3.48 -0.12 

    3.44 Acetoacetate -0.12 

    3.35 
Proline 

0.11 

    3.33 0.13 

    3.28 Myo-inositol 0.12 

    3.23 Choline + Glycerphosphocholine  -0.12 

    2.80 Aspartate -0.13 

    2.76 part of =CH-CH2-CH= bond of lipids  -0.13 

    2.35 
Proline + Glutamate 

0.12 

    2.33 0.13 
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    1.20 3-hydroxybutyrate + CH2 bond of lipids  0.11 

    1.16 Ethanol 0.15 

      0.66 Cholesterol 0.11 

*Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading 

values <10th percentile (pctl) and >90th pctl or <5th pctl and >95th pctl respectively. 

‡ CS: 1H chemical shift (in ppm) of the cluster (center value). 

**Some of the identified clusters were found to be background noise during the annotation phase and were removed 

from this table. 
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Table 3: HCC odds ratios* and 95% confidence interval (OR, 95% CI) associated with the lifestyle (X-set) and the 

NMR clusters (Y-set) PLS scores in the main analysis (N=336, X-set=21, Y-set=285). 

 

PLS Lifestyle Variables 

X-scores 

PLS NMR Variables 

Y-scores 

Factor OR** (95% CI) P-Wald† Factor OR** (95% CI) P-Wald† 

1 0.77 (0.58, 1.02)  0.07 1 0.96 (0.91, 1.01) 0.09 

2 1.54 (1.06, 2.25) 0.02 2 1.11 (1.02, 1.22) 0.02 

3 1.37 (1.05, 1.79) 0.02 3 1.22 (1.04, 1.44) 0.01 

*Models were adjusted for C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for 

liver damage. Cases and controls were matched on age at blood collection (± 1 year), sex, study centre, date (± 2 

months) and time of the day at blood collection (± 3 hours), fasting status at blood collection (<3/3-6/>6 hours); 

among women, additional matching criteria included menopausal status (pre-/peri-/postmenopausal) and hormone 

replacement therapy use at time of blood collection (yes/no). ** ORs expressing the change in HCC risk associated to 

1-SD increase in the score. † Wald's test was for continuous exposure compared with a Chi-square distribution with 1 

degree of freedom (dof). 

 

 

 

Table 4: Area under the curve (AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC 

models (with 95% CI), from the main PLS analysis (N=336, X-set=21, Y-set=285). 

 
AUC AUCb** Sensitivity Specificity Accuracy PPV 

Adjustment Covariates (ADJ)* 0.842 (0.794, 0.891) 0.821 (0.766, 0.868) 0.752 (0.662, 0.829) 0.802 (0.743, 0.852) 0.785 0.0015 

 

X1 scores + ADJ 0.846 (0.797, 0.894) 0.825 (0.766, 0.875) 0.743 (0.653, 0.821) 0.838 (0.783, 0.884) 0.806 0.0018 

X1+X2 scores + ADJ 0.854 (0.808, 0.900) 0.831 (0.772, 0.881) 0.743 (0.653, 0.821) 0.824 (0.768, 0.872) 0.797 0.0017 

X1+X2+X3 scores + ADJ 0.859 (0.811, 0.907) 0.836 (0.778, 0.887) 0.796 (0.710, 0.866) 0.788 (0.729, 0.840) 0.791 0.0015 

 

Y1 scores + ADJ 0.841 (0.793, 0.890) 0.817 (0.760, 0.865) 0.735 (0.643, 0.813) 0.820 (0.763, 0.868) 0.791 0.0016 

Y1+Y2 scores + ADJ 0.845 (0.795, 0.894) 0.820 (0.762, 0.872) 0.735 (0.643, 0.813) 0.851 (0.798, 0.895) 0.812 0.0020 

Y1+Y2+Y3 scores + ADJ 0.853 (0.804, 0.902) 0.827 (0.771, 0.877) 0.726 (0.634, 0.805) 0.883 (0.833, 0.922) 0.890 0.0025 

*The model is run on the adjustment covariates (ADJ) including the C-reactive protein concentration, alpha-

fetoprotein concentration and a composite score for liver damage. ** AUCb is the bootstrapped-cross validated 

estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors, 

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively. 

 

 

Table 5: HCC odds ratios* and 95% confidence intervals (OR, 95%CI) associated with the lifestyle (X-set) and the 

NMR clusters (Y-set) PLS scores. Results from the sensitivity analysis (N=271, 92 cases, 179 controls) conducted 

excluding sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). 

 

PLS Lifestyle Variables 

X-scores 

PLS NMR Variables 

Y-scores 

Factor OR** (95% CI) P-Wald† Factor OR** (95% CI) P-Wald† 

1 0.80 (0.60, 1.08) 0.15 1 0.96 (0.94, 1.04) 0.56 

2 1.56 (1.02, 2.40) 0.04 2 1.18 (1.03, 1.36) 0.02 

3 0.86 (0.67, 1.11) 0.26 3 0.86 (0.73, 0.99) <0.05 

*Models were adjusted for C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for 

liver damage. Cases and controls were matched on age at blood collection (± 1 year), sex, study centre, date (± 2 

months) and time of the day at blood collection (± 3 hours), fasting status at blood collection (<3/3-6/>6 hours); 

among women, additional matching criteria included menopausal status (pre-/peri-/postmenopausal) and hormone 

replacement therapy use at time of blood collection (yes/no). ** ORs expressing the change in HCC risk associated to 

1-SD increase in the score. † Wald's test was for continuous exposure compared with a Chi-square distribution with 1 

degree of freedom (dof). 
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Table 6: Results from the mediation analysis (N= 336, X-set=21, Y-set=285): Natural Indirect Effect (NIE) and 

95%CI*. 

 

Model**  Natural Indirect Effect (NIE) 

Exposure 

(A) 
Mediator (M) Outcome 

A*M 

interaction 

term 

Estimate (95%CI) p-value 

X1 score Y1 score HCC No 0.91 (0.77, 1.06) 0.23 

X2 score Y2 score HCC No 1.11 (0.97, 1.25) 0.12 

X3 score Y3 score HCC No 1.08 (0.94, 1.23) 0.28 

X1 score Y1 score HCC Yes 0.96 (0.79, 1.17) 0.70 

X2 score Y2 score HCC Yes 1.15 (1.01, 1.31) 0.04 

X3 score Y3 score HCC Yes 1.13 (1.01, 1.28) 0.04 

* The standard errors used to compute the 95%CI were obtained using the delta method. 

**Models were adjusted for the C-reactive protein concentration, alpha-fetoprotein concentration and a composite 

score for liver damage, as well as for the other Y-scores, as potential mediator-outcome confounders. Additionally, the 

outcome and the mediator models were adjusted for centre and age at blood collection. 
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Supplementary Tables 

A Statistical framework to model the meeting-in-the-middle principle using metabolomic data: 

application to hepatocellular carcinoma in the EPIC study.  

Supplementary Table 1: Summary statistics of the predictors variables (X-set) of the study subjects in the EPIC liver 

nested case–control study (N=336, 114 Cases, 222 Controls). 

 

  Mean / N* sd / %* p5 p95 N missing 

Dietary Variables (g/day) 

Potatoes and other tubers 100.57 78.15 9.34 266.97 0 

Vegetables 194.20 143.22 45.03 473.45 0 

Legumes 9.85 18.03 0.00 41.18 0 

Fruits, nuts and seeds 232.80 197.94 23.55 585.22 0 

Dairy products 334.40 261.46 49.92 777.48 0 

Cereal and cereral products 227.04 117.67 76.39 458.94 0 

Meat and meat products 115.97 62.29 37.83 236.32 0 

Fish and shellfish 32.88 32.26 3.78 81.43 0 

Egg and egg products 18.67 18.72 1.88 55.57 0 

Fat 34.61 18.48 11.01 70.76 0 

Sugar and confectionary 47.26 51.51 1.93 138.73 0 

Cakes and biscuits 41.33 49.68 0.00 147.26 0 

Non-alcoholic beverages 1053.91 793.31 85.00 2391.90 0 

Anthropometric variables 

BMI (kg/m2) 27.41 4.41 21.22 36.16 0 

Height (cm) 169.70 9.99 152.00 184.80 0 

Lifestyle Variables 

Lifetime alcohol intake (g/day) 23.27 41.38 0 91.998 61 

Physical activity (Mets/h) 77.13 49.45 11.5 173.63 0 

Highest Education Level  

None or primary school completed 167 49.7  -  -  - 

Technical/professional school 75 22.32  -  -  - 

Secondary school 27 8.04  -  -  - 

Longer education (incl. university degree) 62 18.45  -   -  - 

Unspecified or Unknown 5 1.49  -   -  - 

Smoking status 

Never 124 36.9  -  -  - 

Former 125 37.2  -  -  - 

Current smoker 85 25.3  -  -  - 

Unspecified or Unknown 2 0.6  -   -  - 

Pathology variables indicative of lifestyle 

Hepatitis status 1 

No 291 86.87  -  -  - 

Yes 44 13.13  -   -  - 

Diabetes 0 

No 307 91.37  -  -  - 

Yes 29 8.63  -   -  - 

*Mean and standard deviation (sd), were reported for continuous variables and frequencies and percentages (%) were 

reported for categorical variables.  

p5: 5th percentile, p95:95th percentile.



Supplementary Table 2: Results from the sensitivity analysis run on a subsample (N=271, 92 cases, 179 controls) 

excluding sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Lifestyle 

and NMR cluster variables contributing to each PLS factor. 

 
PLS 

Factor 
Lifestyle Variable* 

Loading 

value 

CS*‡ 

(ppm) 
Metabolite** 

Loading 

value 

1 Dairy Products 0.33 7.03 Histidine 0.09 

  Cakes and Biscuits 0.34 5.22 

Glucose 

-0.07 

  Lifetime Alcohol Consumption -0.34 3.88 -0.06 

  Smoking Status -0.26 3.82 -0.07 

  Diabetes -0.59 3.76 -0.06 

    3.71 -0.06 

    3.54 -0.05 

    3.50 -0.07 

    3.48 -0.08 

    3.44 Acetoacetate -0.08 

    3.23 Choline + Glycerphosphocholine -0.05 

    3.03 Creatine 0.10 

    3.01 Albumin 0.10 

    2.28 Acetoacetate 0.10 

    2.22 CH2-CH2-COOC bond of lipids + Acetone -0.03 

    2.06 Proline + Glutamate 0.09 

    1.91 Lysine + Arginine -0.03 

    1.87 Lysine 0.09 

    1.16 Ethanol -0.04 

    1.08 Unknown 1 0.09 

      0.91 CH3 bond of lipids 0.09 

2 Cereal and Cereal Products -0.24 7.17 
Tyrosine 

0.14 

  BMI 0.34 6.87 0.14 

  Height -0.39 5.27 CH=CH bond of lipids -0.14 

  Hepatitis 0.55 5.22 Glucose 0.13 

    5.18 Mannose + Lipid O-CH2  -0.13 

    4.27 Lipid O-CH2  -0.12 

    4.25 Threonine -0.14 

    4.05 Creatinine -0.14 

    3.88 

Glucose 

0.13 

    3.82 0.13 

    3.76 0.13 

    3.75 0.12 

    3.71 0.12 

    3.54 0.15 

    3.50 0.13 

    3.48 0.13 

    3.44 Acetoacetate 0.13 

    3.23 Choline + Glycerphosphocholine 0.12 

    2.80 Aspartate -0.13 

    2.76  =CH-CH2-CH= bond of lipids  -0.12 

    2.19 CH2-CH2-COOC bond of lipids -0.16 

    2.02 Proline + Glutamate -0.14 

    1.53 CH2-CH2-COOC bond of lipids  -0.13 

    1.25 CH2 bond of lipids  -0.12 

      0.86 Cholesterol + CH3 bond of lipids -0.12 

3 Vegetables 0.39 5.25 Glucose 0.17 

  Sugar and Confectionnary -0.21 4.28 Lipid O-CH2  -0.07 

  Lifetime Alcohol Consumption -0.29 4.14 Proline -0.08 

    4.07 Choline + Lipid O-CH2 + Myo-inositol -0.07 

    3.88 

Glucose 

0.16 

    3.82 0.16 

    3.76 0.16 

    3.75 0.14 

    3.71 0.15 

    3.69 0.16 

    3.63 Myo-inositol -0.16 



    3.54 

Glucose 

0.12 

    3.50 0.17 

    3.48 0.17 

    3.44 Acetoacetate 0.16 

    3.41 

Proline 

-0.10 

    3.35 -0.15 

    3.34 -0.12 

    3.28 Myo-inositol -0.09 

    3.23 Choline + Glycerphosphocholine 0.15 

    1.91 Lysine + Arginine -0.07 

    1.16 Ethanol -0.16 

    0.68 
Cholesterol 

-0.06 

      0.66 -0.08 

*Relevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading 

values <10th percentile (pctl) and >90th pctl or <5th pctl and >95th pctl respectively. 

‡ CS: 1H chemical shift (in ppm) of the cluster (center value). 

**Some of the identified clusters were found to be background noise during the annotation phase and were removed 

from this table. 

 

 

Supplementary Table 3: Results from the sensitivity analysis (N=271, 92 cases, 179 controls) conducted excluding 

sets where cases were diagnosed within the first two years of follow-up (X-set=21, Y-set=285). Area under the curve 

(AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC models (with 95% CI). 

 
  AUC AUCb** Sensitivity Specificity Accuracy PPV 

Adjustment Covariate (ADJ)*  0.846 (0.793, 0.899) 0.827 (0.765,0.879) 0.750 (0.649, 0.834) 0.838 (0.776, 0.889) 0.808 0.0018 

 

X1 scores + ADJ 0.853 (0.800, 0.905) 0.834 (0.774, 0.890) 0.728 (0.626, 0.816) 0.872 (0.813, 0.917) 0.823 0.0023 

X1+X2 scores + ADJ 0.860 (0.811, 0.910)  0.837 (0.772, 0.893) 0.750 (0.649, 0.834) 0.832 (0.769, 0.884) 0.804 0.0018 

X1+X2+X3 scores + ADJ 0.861 (0.810, 0.912)  0.837 (0.773, 0.893) 0.761 (0.661, 0.844) 0.838 (0.776, 0.889) 0.812 0.0019 

 

Y1 scores + ADJ 0.847 (0.794, 0.900) 0.827 (0.768, 0.884) 0.739 (0.637, 0.825) 0.838 (0.776, 0.889) 0.804 0.0018 

Y1+Y2 scores + ADJ 0.848 (0.794, 0.901)  0.827 (0.764, 0.883) 0.717 (0.614, 0.806) 0.899 (0.846, 0.939) 0.838 0.0028 

Y1+Y2+Y3 scores + ADJ 0.853 (0.800, 0.907) 0.826 (0.763, 0.882) 0.717 (0.614, 0.806) 0.911 (0.859, 0.948) 0.845 0.0032 

*The model is run on the adjustment covariates (ADJ) including the C-reactive protein concentration, alpha-

fetoprotein concentration and a composite score for liver damage. ** AUCb is the bootstrapped-cross validated 

estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors, 

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively. 
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