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Abstract. This paper proposes a theoretical analysis of Genetic Pro-
gramming (GP) from the perspective of statistical learning theory, a well
grounded mathematical toolbox for machine learning. By computing the
Vapnik-Chervonenkis dimension of the family of programs that can be
inferred by a specific setting of GP, it is proved that a parsimonious
fitness ensures universal consistency. This means that the empirical er-
ror minimization allows convergence to the best possible error when the
number of test cases goes to infinity. However, it is also proved that the
standard method consisting in putting a hard limit on the program size
still results in programs of infinitely increasing size in function of their
accuracy. It is also shown that cross-validation or hold-out for choosing
the complexity level that optimizes the error rate in generalization also
leads to bloat. So a more complicated modification of the fitness is pro-
posed in order to avoid unnecessary bloat while nevertheless preserving
universal consistency.

1 Introduction

This paper is about two important issues in Genetic Programming (GP), that
is Universal Consistency (UC) and code bloat. UC consists in the convergence
to the optimal error rate with regards to an unknown distribution of examples.
A restricted version of UC is consistency, which focus on the convergence to the
optimal error rate within a restricted search space. Both UC and consistency
are well studied in the field of statistical learning theory. Despite their possible
benefits, they have not been widely studied in the field of GP. Code bloat is the
uncontrolled growth of program size that may occur in GP when relying on a
variable length representation [10,11]. This has been identified as a key problem
in GP for which there have been several empirical studies. However, very few
theoretical studies addressed this issue directly. The work presented in this paper
is intended to provide some theoretical insights on the bloat phenomenon and
its link with UC in the context of GP-based learning taking a statistical learning
theory perspective [23].

Statistical learning theory provides several theoretical tools to analyze some
aspects of learning accuracy. Our main objective consists in performing both
an in-depth analysis of bloat as well as providing appropriate solutions to avoid



it. Section 2 shortly exposes issues of code bloat with GP. Section 3 and 4
present all the aforementioned results about code bloat avoidance and UC and
propose a new approach ensuring both. Then, Section 5 provides some extensions
of the previous theoretical results on the use of cross-validation and hold-out
methodologies. Follows some experimental results in Section 6, illustrating the
accuracy of the theoretical results. Section 7 finally concludes this paper with a
discussion on the consequences of those theoretical results for GP practitioners
and uncover some perspectives of work.

2 Code Bloat in GP

Due to length constraints, we do not introduce here some important theories
around code bloat: introns, fitness causes bloat, and removal bias. The reader is
refered to [1,3,11,13,16,17,21] for more informations around that. Some common
solutions against bloat rely either on specific operators (e.g. size-fair crossover
[12], or different fair mutation [14]), on some parsimony-based penalization of
the fitness [22] or on abrupt limitation of the program size such as the one
originally used by Koza [10]. Also, some multi-objective approachs have been
proposed [2,5,7,15,19]. Some other more particular solutions have been proposed
but are not widely used yet [18,24]. Also, all proofs are removed due to length
constraints. Readers familiar with mathematics like in e.g. [6] should however
be able to guess the main ideas.

Although code bloat is not clearly understood, it is yet possible to distinguish
at least two kinds of code bloat. We first define structural bloat as the code bloat
that necessarily takes place when no optimal solution can be approximated by
a set of programs with bounded length. In such a situation, optimal solutions of
increasing accuracy will also exhibit an increasing complexity (larger programs),
as larger and larger code will be generated in order to better approximate the
target function. This extreme case of structural bloat has also been demonstrated
in [9]. The authors use some polynomial functions of increasing difficulty, and
demonstrate that a precise fit can only be obtained through an increased bloat
(see also [4] for related issues about problem complexity in GP). Another form
of bloat is the functional bloat, which takes place when program length keeps
on growing even though an optimal solution (of known complexity) does lie in
the search space. In order to clarify this point, let us use a simple symbolic
regression problem defined as follow: given a set S of test cases, the goal is to
find a function f (here, a GP-tree) that minimizes the Mean Square Error (or
MSE). If we intend to approximate a polynomial (e.g. 14∗x2 with x ∈ [0, 1]), we
may observe code bloat since it is possible to find arbitrarily long polynomials
that gives the exact solution (e.g. 14x2+0∗x3+ . . .), or sequences of polynomials
of length growing to ∞ and accuracy converging to the optimal accuracy (e.g.
Pn(x) = 14x2+

∑n
i=1

1
n!i!x

i). Most of the works cited earlier are in fact concerned
with functional bloat, which is the most surprising, and the most disappointing
kind of bloat. We will consider various levels of functional bloat: cases where
length of programs found by GP runs to infinity as the number of test cases



runs to infinity whereas a bounded-length solution exists, and also cases where
large programs are found with high probability by GP whereas a small program
is optimal.

Another important issue is to study the convergence of the function given
by GP toward the actual function used to generate the test cases, under some
sufficient conditions and when the number of test cases goes to infinity. This
property is known in statistical learning as Universal Consistency (UC). Note
that this notion is slightly different from that of universal approximation, com-
monly referred in symbolic regression, where GP search using operators {+, ∗}
is assumed to be able to approximate any continuous function. UC is rather con-
cerned with the behavior of the algorithm when the number of test cases goes
to infinity: the existence of a polynomial that approximates a given function at
any arbitrary precision does not imply that any polynomial approximation built
from a set of sample points will converge to that given function when the num-
ber of points goes to infinity. Or more precisely, UC can be stated informally as
follows (a formal definition will be given later):

A GP setting corresponds to symbolic regression from examples if it takes
as inputs a finite number of examples x1, . . . , xn with their associated labels
y1, . . . , yn and outputs a program Pn. Universal consistency holds if, when pairs
(x1, y1), . . . , (xn, yn) (test cases) are identically independently distributed as the
random variable (x, y), L(Pn) → L∗ where L(p) = Pr(y 6= p(x)) and where
L∗ = inf

p measurable L(p). In all of this paper, Pr(.) denotes probabilities, as
the traditional notation P (.) is used for programs.

3 Negative Results without Regularization and
Resampling

Definition 1 precisely defines the programs space under examination. Theorem
1 evaluates its VC-dimension [23]. Many theorems, in the sequel, are based only
on VC-dimensions and hold for other sets of programs as well.

It should be noted the mildness of the hypothesis behind our results. We
consider any programs of bounded length, working with real variables, provided
that the computation time is a priori bounded. Usual families of programs in GP
verify this hypothesis and much stronger hypothesis. For example, usual tree-
based representations avoid loops and therefore all quantities that have to be
bounded in lemma below (typically, number of times each operator is used) are
bounded for trees of bounded depths. This is also true for direct acyclic graphs.
We here deal with a very general case; much better constants can be derived
for specific cases, without changing the fundamental results in the sequel of the
paper.

Definition 1 (Set of programs studied). Let F (n, t, q,m, z) be the set of
functions from Rz−m towards {0, 1} which can be computed by a program with a
maximum of n lines as follows:

(1) A run uses at most t operations. (2) Each line contains one operation
among the followings:



– Operations α 7→ exp(α) (at
most q times);

– Operations +, −, ×, and /;
– Jumps conditioned on >, ≥, <,
≤, and =;

– Output 0;

– Output 1;
– Labels for jumps;
– Constants (at most m differ-

ent);
– Variables (at most z different,

with z ≥ m).
We note F (n, t, q,m, z) as F for short when there is no ambiguity. The param-
eters n, t, q,m, z are then implicit.

The following property is central for our results.

Theorem 1 (Finite VC-dimension of the computing machine). Consider
q′, t′ and d′ ≥ 0. Let F = F (n, t, q,m, z) be the set of programs described by
Definition 1, where q ≤ q′, T (n, t, z) ≤ t′, and 1 +m ≤ d′.

V Cdim(F ) ≤ t′2d′ (d′ + 19 log2(9d′))
≤ (d′(q′ + 1))2 + 11d′(q′ + 1)(t′ + log2(9d′(q′ + 1)))

If q = 0 (no exponential) then V Cdim(F ) ≤ 4d′(t′ + 2).

Interpretation: The theorem demonstrates that interesting and natural families
of programs have finite VC-dimension. Effective methods can associate a VC-
dimension to these families of programs.

We now consider how to use such results in order to ensure UC. First, we
show why simple empirical risk minimization (i.e. minimizing the error observed
without taking into account programs complexity) does not ensure consistency.
More precisely, for some distribution of test cases and some i.i.d. (independent
identically distributed) sequence of test cases {(x1, y1), . . . , (xn, yn), . . . }, there
exists P1, . . . , Pn, . . . such that ∀n ∈ N,∀i ∈ {1, 2, . . . , n} Pn (xi) = yi, and
however ∀n ∈ N Pr (Pn (x) = y) = 0. This can be proved by considering that x
is uniformly distributed in [0, 1] and y is a constant equal to 1. Then, consider
Pn, the program that compares its entry to x1, x2, . . . , xn, and outputs 1 if the
entry is equal to xj for some j ≤ n, and otherwise outputs 0. With probability
1, this program output 0, whereas almost surely the desired output y is 1.

We therefore conclude that minimizing the empirical risk is not enough for
ensuring any satisfactory form of consistency. Let’s now show that structural risk
minimization (i.e. taking into account a penalization for complex structures) can
ensure UC and fast convergence when the solution can be written within finite
complexity.

Theorem 2 (Universal consistency of genetic programming with struc-
tural risk minimization). Consider qk, tk, mk, nk, and zk increasing integer
sequences. Define Fk the set of programs with at most tk lines executed, zk vari-
ables, nk lines, qk exponentials, and mk constants (Fk = F (nk, tk, qk,mk, zk)
of Definition 1) and F = ∪kFk. Then with q′k = qk, t′k = T (nk, tk, zk), and
d′k = 1 +mk, define Vk as:

– If ∀k qk = 0, then Vk = 4d′k(t′k + 2).



– Otherwise, Vk = (d′k(q′k + 1))2 + 11d′k(q′k + 1)(t′k + log2(9d′k(q′k + 1))).

Now given s test cases, consider P ∈ F minimizing L̂(P )+
√

32
s V (P ) log(es),

where V (P ) = Vk where k is minimal such that P ∈ Fk. Then, the generaliza-
tion error, with probability 1, converges to L∗; moreover, if one optimal program
belongs to Fk, then for any s and ε such that Vk log(es) ≤ sε2/512, the gener-
alization error with s test cases is larger than L∗ + ε with probability at most
∆ exp(−sε2/128) + 8sVk exp(−sε2/512) where ∆ =

∑∞
j=1 exp(−Vj).

Interpretation: This theorem shows that genetic programming for binary clas-
sification, provided that structural risk minimization is performed (i.e. if we
optimize an ad hoc compromise between complexity of programs and accuracy
on empirical data), is universally consistent and verifies some convergence rate
properties.

We now prove the non-surprising fact that if it is possible to approximate
the optimal function (the Bayesian classifier) without reaching it exactly, then
the complexity of the program runs to infinity as soon as there is convergence
of the generalization error to the optimal one.

Proposition 1 (Structural bloat in genetic programming).
Consider F1 ⊂ F2 ⊂ F3 ⊂ . . . , where FV is a set of functions from X to

{0, 1} with VC-dimension bounded by V . Consider (V (s))s∈N a non decreasing
sequence of integers and (Ps)s∈N a sequence of functions such that Ps ∈ FV (s).

Define LV = infP∈FV
L(P ) and V (P ) = inf{V ;P ∈ FV } and suppose that

∀V LV > L∗. Then,
(
L(Ps)

s→∞−→ L∗
)

=⇒
(
V (Ps)

s→∞−→ ∞
)

.

Interpretation: This is structural bloat: if the space of programs approximates
but does not contain the optimal function and cannot approximate it within
bounded size, then bloat occurs. Note that for any F1,F2, . . . , the assumption
∀V LV > L∗ holds simultaneously for all V for many distributions, as we con-
sider countable unions of families with finite VC-dimension (e.g. see [6, chap.
18]).

We now show that, even in cases in which an optimal short program exists,
the usual procedure (known as the method of Sieves; see also [20]) defined below,
consisting in defining a maximum VC-dimension depending upon the sample size
and then using a family of functions accordingly, leads to bloat.

Theorem 3 (Bloat with the method of Sieves). Let F1, . . . ,Fk, . . . be non-
empty sets of functions with finite VC-dimensions V1, . . . , Vk, . . . , and let F =
∪nFn. Then given s i.i.d. test cases, consider P̂ ∈ Fs minimizing the empirical
risk L̂ in Fs.

From theorems about the method of Sieves, we already know that if Vs =
o(s/ log(s)) and Vs → ∞, then Pr

(
L(P̂ ) ≤ L̂(P̂ ) + ε(s, Vs, δ)

)
≥ 1 − δ and

almost surely L(P̂ )→ infP∈F L(P ).
We now state that if Vs → ∞, and noting V (P ) = min{Vk;P ∈ Fk}, then

∀V0, δ0 > 0, ∃Pr, a distribution of probability on X and Y , such that ∃g ∈ F1

such that L(g) = L∗, and for s sufficiently large Pr
(
V (P̂ ) ≤ V0

)
≤ δ0.



Interpretation: The result in particular implies that for any V0, there is a
distribution of test cases such that ∃g;V (g) = V1 and L(g) = L∗, with probability
1, V (P̂ ) ≥ V0 infinitely often as s increases. This shows that bloat can occur if
we use only an abrupt limit on code size, if this limit depends upon the number of
test cases ( a fortiori if there’s no limit). Note that this result, proved thanks to a
particular distribution, could indeed be proved for the whole class of classification
problems for which the conditional probability of Y = 1 (conditionally to X) is
equal to 1

2 in an open subset of the domain.

4 Universal Consistency without Bloat

In this section, we consider a more complicated case where the goal is to en-
sure UC, while simultaneously avoiding non-necessary bloat. This means that
an optimal program does exist in a given family of functions and convergence
towards the minimal error rate is performed without increasing the program
complexity. This is achieved by: i) merging regularization and bounding of the
VC-dimension, and ii) penalization of the complexity (i.e. length) of programs
by a penalty term R(s, P ) = R(s)R′(P ) depending upon the sample size and
the program. R(., .) is user-defined and the algorithm looks for a classifier with
a small value of both R′ and L. In the following, we study both the UC of this
algorithm (i.e. L → L∗) and the no-bloat theorem (i.e. R′ → R′(P ∗) when P ∗

exists). Note that the bound Vs = o(log(s)) is much stronger than the usual
limit used in the method of Sieves (see Theorem 3).

Theorem 4 (No-bloat theorem). Let F1, . . . ,Fk, . . . with finite VC-dimen-
sions V1, . . . , Vk, . . . . Let F = ∪nFn. Define V (P ) = Vk with k = inf{t|P ∈ Ft}.
Define LV = infP∈FV

L(P ). Consider Vs = o(log(s)) and Vs →∞. Consider also

that P̂s minimizes ˆ̃L(P ) = L̂(P )+R(s, P ) in Fs, and assume that R(s, .) ≥ 0. As-
sume that supP∈FVs

R(s, P ) = o(1). Then, L(P̂s)→ infP∈F L(P ) almost surely.
Note that for well chosen family of functions, infP∈F L(P ) = L∗. Moreover,
assume that ∃P ∗ ∈ FV ∗ L(P ∗) = L∗. With R(s, P ) = R(s)R′(P ) and with
R′(s) = supP∈FVs

R′(P ), we get the following results:

1. Non-asymptotic no-bloat theorem: For any δ ∈]0, 1], R′(P̂s) ≤ R′(P ∗)+
(1/R(s))2ε(s, Vs, δ) with probability at least 1− δ. This result is in particular
interesting for ε(s, Vs, δ)/R(s)→ 0.

2. Almost-sure no-bloat theorem: If for some α > 0, R(s)s(1−α)/2 = O(1),
then almost surely R′(P̂s)→ R′(P ∗) and if R′(P ) has discrete values (such as
the number of instructions in P or many complexity measures for programs)
then for s sufficiently large, R′(P̂s) = R′(P ∗);

3. Convergence rate: For any δ ∈]0, 1], with probability at least 1− δ,

L
(
P̂s

)
≤ inf
P∈FVs

L (P ) + R (s)R′(s)︸ ︷︷ ︸
=o(1) by hypothesis

+2ε (s, Vs, δ) ,

where ε (s, V, δ) =
√

4−log(δ/(4s2V ))
2s−4 .



Interpretation: Combining a code limitation and a penalization leads to UC
without bloat.

5 Some Negative Results with Subsampling: Hold-Out or
Cross-Validation

When one tries to learn a relation between x and y, the “true” cost function
(typically the mean squared error of a given approximate relation, which is an
expectation under some usually unknown law of probability) is generally not
available. It is usually replaced by its empirical mean on a finite sample. Mini-
mizing this empirical mean is natural, but this can be done over various families
of functions (e.g. trees with depth 1, 2, 3, and so on). Choosing between these
various levels is hard. Typically, the empirical mean decreases as the complexity
is increased, but this decrease is not generally a decrease of the generalization
error, as trees of larger depth have usually a very bad generalization error due to
overfitting. Therefore, the problem is somewhat multi-objective: there is a con-
flict between the empirical error and the complexity level. This multi-objective
optimization setting has been studied in [2,5,7].

This section is devoted to hold-out and cross-validation as tools for UC with-
out bloat. First, let’s consider hold-out for choosing the complexity level. Con-
sider X0, . . . , XN , Y0, . . . , YN , 2(N + 1) samples (each of them consisting in n
examples, i.e. Xi = (Xi,1, Xi,2, . . . , Xi,n) and Yi = (Yi,1, Yi,2, . . . , Yi,n)), the Xi’s
being learning sets, the Yi’s being (hold-out) test sets. Consider that the function
can be chosen in many complexity levels, F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ . . . , where F0

is non-empty and Fi 6= Fi+1. Note L̂k (f) the error rate of the function f in the
set Xk of examples: L̂k (f) = 1

n

∑n
i=1 l (f,Xk,i) where l (f, x) = 1 if f fails on

x and 0 otherwise. Define fk = arg minFk
L̂k (.). In hold-out, after the complete

learning, the resulting classifier is fk∗(n), where k∗(n) = arg mink≤N(n) lk and
lk = 1

n

∑n
i=1 l (fk, Yk,i). In the sequel, we assume that f ∈ Fk ⇒ 1 − f ∈ Fk

and that V Cdim(Fk)→∞ as k →∞. The case with hold-out leads to different
cases, namely:

Greedy case: all Xk’s and Yk’s are independent; this means that we test
separately each complexity level Fk with different learning sets Xk and test sets
Yk.

Case with pairing: X0 is independent of Y0, ∀k,Xk = X0 and ∀k, Yk = Y0;
this means that we use the same learning set for all complexity levels and the
same test set for all complexity levels. This case is far more usual.

Theorem 5 (No bloat avoidance with greedy hold-out). Consider greedy
hold-out for choosing between complexity levels 0, 1, . . . , N(n). If N(n) is a con-
stant, then for some distribution of examples ∀k ∈ [0, N ], P (k∗(n) = k) →
1/(N + 1). If N(n) → ∞ as n → ∞, then for some distribution of examples
such that an optimal function lies in F0, greedy hold-out leads to k∗(n)→∞ as
n→∞ and therefore lim supn→∞ k∗(n) =∞.



All the following results are in the general case of N a non decreasing function
of n.

Proposition 2 (Bloat cannot be controlled by hold-out with pairing,
first result). Consider the case with pairing. For arbitrarily large v, there exists
a distribution with optimal function in F0 such that lim infn→∞ Pr(k∗(n) ≥ v) >
0.

Now, let’s consider a distribution that depends on n. This is interesting,
as it provides lower bounds on what can be guaranteed, for a given value of
n, independently of the distribution. For technical reasons, and without loss
of generality with renumbering of the Fk, we assume that Fv+1 has a VC-
dimension larger than Fv. We can show that, with a distribution dependent on
n, lim supn→∞ k∗(n)→∞. This leads to this other negative theorem about the
control of bloat by hold-out.

Proposition 3 (Bloat can not be controlled by hold-out with pairing,
second result). lim supn k∗(n) = ∞, where the distribution depends on n but
is always such that an optimal function lies in F0.

This result above is in the setting of a distribution which depends on n; it is
of course not interesting for modelizing the evolution of one particular problem
as the number of examples increases, but it shows that no bound on k∗(n) for
n ≥ n0 can be provided, whatever may be n0, for hold-out with pairing, unless
the distribution of problems is taken into account.

Cross-Validation for the Control of Bloat. We now turn our attention to
the case of cross-validation. We formalize N -folds cross-validation as follows:

f ik = arg min
Fk

L(., X ′ik), k∗ = arg min
1
N

N∑
i=1

L(f ik, X
i
k)

X ′
i
k = (X1

k , X
2
k , . . . , X

i−1
k , Xi+1

k , Xi+2
k , . . . , XN

k ) for i ≤ N

where for any i and k, Xi
k is a sample of n points.

Greedy cross-validation could be considered as in the case of hold-out above:
all Xi

k could be independent. This leads to the same result (for some distribution,
k∗(n) → ∞) with roughly the same proof. We therefore only consider cross-
validation with pairing, i.e. ∀i, k, k′, Xi

k = Xi
k′ . For short, we note Xi

k = Xi.

Theorem 6 (Negative result on subsampling). Assume that Fk has a VC-
dimension going to ∞ as k → ∞. One can not avoid bloat with only hold-out
or cross-validation, in the sense that with paired hold-out, or greedy hold-out,
or cross-validation, for any V , there exists some distribution for which almost
surely, k∗(n) > V infinitely often whereas an optimal function lies in F0.



Note that propositions above show in some cases stronger forms of bloat.
If we consider greedy hold-out, hold out with pairing and cross-validation with
pairing, then: (1) For some well-chosen distribution of examples, greedy hold-
out almost surely leads to (i) k∗(n) → ∞ if N → ∞ (ii) k∗(n) asymptotically
uniformly distributed in [[0, N ]] if N finite, whereas an optimal function lies in
F0 (theorem 5). (2) Whatever may be V = V Cdim(Fv), for some well-chosen
distribution, hold-out with pairing almost surely leads to k∗(n) > V infinitely
often whereas an optimal function lies in F0 (proposition 2). (3) Whatever may
be V = V Cdim(Fv), for some well-chosen distribution, cross-validation with
pairing almost surely leads to k∗(n) > V infinitely often whereas an optimal
function lies in F0.

6 Experimental Results

Some theoretical elements presented in Sections 3 and 4 are verified experimen-
tally in this section. The experimentation are conducted using Koza-style GP
[10], with a problem setup similar to the classical symbolic regression example,
modified for binary classification. This is covered by theoretical results above.
The GP branches used are the addition, subtraction, multiplication, protected
division, and if-less-than. This last branch takes four arguments, returning the
third argument if the first argument is less than the second one, otherwise re-
turning the fourth argument. The GP terminals are the x variable, and the 0
and 1 constants. The learning task consists in minimizing the error e(i) between
the desired output yi = {−1, 1} and the obtained output ŷi of the tested GP
tree for the xi input, as in the following: e(i) = max(1 − yiŷi, 0). The fitness
measure used in the experiments consists in minimizing the sum of the errors to
which is added a complexity factor that approximate the VC-dimension of the

GP program: f = 1
s

∑s
i=1 e(i) + k

√
t2 log2(t)

s , where t is the number of nodes of
the GP program tested, s is the number of test cases used for fitness evaluation,
and k is a trade-off weight in the composition of the complexity penalization
relatively to the accuracy term. The s test cases are distributed uniformly in
xi ∈ [0, 1], with associated yi = {−1, 1}. For xi < 0.4, each yi are equal to
1 with probability 0.25 (so yi = −1 with probability 0.75), for xi ∈ [0.4, 0.6[,
yi = 1 with probability 0.5, and for xi ≥ 0.6, yi = 1 with probability 0.75.
Thus, the associated classifier with best generalization capabilities would return
y∗i = −1 for xi < 0.4, y∗i = 1 for xi ≥ 0.6 and a random output for xi ∈ [0.4, 0.6[,
with a minimal generalization error of 0.3. After the evolutions, each best-of-run
classifier is thus evaluated by a fine sampling of the input space, with the gen-
eralization error evaluated as the difference between the output given by the
tested best-of-run classifier and the output obtained by a classifier with best
generalization capabilities. Five types of GP evolutions have been tested: i) no
limitation on the tree size (no depth limit and complexity trade-off k = 0), ii)
depth limitation on the tree size of 17 levels (complexity trade-off k = 0), iii) soft
complexity penalty in the fitness (complexity trade-off k = 0.0001), iv) medium



complexity penalty in the fitness (complexity trade-off k = 0.001), and v) impor-
tant complexity penalty in the fitness (complexity trade-off k = 0.01). For the
three last approaches, the depth limitation of 17 levels is still maintained. The
selection method used is lexicographic parsimony pressure [15], that is regular
tournament selection 4 participants, with the smallest participant taken in case
of ties. Other GP parameters are: population of 1000 individuals; evolutions on
200 generations; crossover probability of 0.8; subtree, swap and shrink mutation
of probability 0.05 each; and finally half-and-half initialization with maximal
depth of 5. All the experiments have been implemented using the GP facilities
of the Open BEAGLE (http://beagle.gel.ulaval.ca, [8]) C++ framework
for evolutionary computations. The experiments have been conducted different
number of test cases varying from s = 10 to s = 100 by steps of 10. One hundred
evolutions is done for each combinations of approaches tested and number of test
cases, for a total of 50 000 evolutions. Figure 1 shows the average generalization
errors and tree size obtained for the different approaches in function of the num-
ber of test cases used for fitness evaluation. These results show that bloat occurs
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Fig. 1. Generalization errors and tree sizes observed for different size limitations.
Figure (a) shows the average generalization errors observed, with apparently
better results for the approaches where the fitness includes some parsimony
pressure. Figure (b) shows the average tree sizes obtained, where important
bloat is observed for the no limitation and maximum depth limitations

when no limitation of size occurs, even when lexicographic parsimony pressure
is used (see curve No limit of Figure 1b), which validates Theorem 3. Then, as
stated by Theorem 2, UC is achieved using moderate complexity penalization
in the fitness measure, with a convergence toward optimal generalization error
of 0.3 (see curve k=0.001 of Figure 1a). Third, as predicted by Theorem 4, in-
creasing the penalization leads to both UC and no bloat (see curve k=0.01 of
both Figures 1a and 1b). Note that Theorem 3 asserts that this result cannot
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be achieved by a priori scaling of the complexity, and that Section 5 shows that
this can not be achieved by cross-validation.

7 Conclusion

In this paper, we have proposed a theoretical study of two important issues
in Genetic Programming (GP) known as Universal Consistency (UC) and code
bloat. We have shown that the understanding of the bloat phenomenon in GP
could benefit from classical results from statistical learning theory. The main
limit of our work is that it deals only with the statistical elements of genetic
programming (effect of noise) and not with the dynamics (the effect of bounded
computational power). Application of theorems from learning theory has led to
two original outcomes with both positive and negative results. Firstly, results on
UC of GP: there is almost sure asymptotic convergence to the optimal error rate
in the context of binary classification with GP with any of the classical forms of
regularizations (from learning theory): the method of Sieves, or Structural Risk
Minimization. Secondly, results on code bloat: i) if the ideal target function does
not have a finite description then code bloat is unavoidable (structural bloat:
obviously, if there’s no finite-length program with optimal error, then reaching
the optimal error is, at best, only possible with an infinite growth of code), and ii)
code bloat can be avoided by simultaneously bounding the length of the programs
with some ad hoc limit and using some parsimony pressure in the fitness function
(functional bloat), i.e. by combining Structural Risk Minimization and Sieves.
An important point is that all methods leading to no-bloat use a regularization
term; in particular, cross-validation or hold-out methods do not reach no-bloat.
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