
Biostatistics (2007), 8, 2, pp. 357–367
doi:10.1093/biostatistics/kxl015
Advance Access publication on July 31, 2006

A statistical method for chromatographic alignment of
LC-MS data

PEI WANG∗,†, HUA TANG, MATTHEW P. FITZGIBBON, MARTIN MCINTOSH

Fred Hutchinson Cancer Research Center, 1100 Fairveiw Avenue N, M2-B500,
PO Box 19204, Seattle, WA, USA

pwang@fhcrc.org

MARC CORAM†

Department of Statistics, University of Chicago, Chicago, IL, USA

HUI ZHANG, EUGENE YI, RUEDI AEBERSOLD

Institute for System Biology, Seattle, WA, USA

SUMMARY

Integrated liquid-chromatography mass-spectrometry (LC-MS) is becoming a widely used approach for
quantifying the protein composition of complex samples. The output of the LC-MS system measures the
intensity of a peptide with a specific mass-charge ratio and retention time. In the last few years, this tech-
nology has been used to compare complex biological samples across multiple conditions. One challenge
for comparative proteomic profiling with LC-MS is to match corresponding peptide features from differ-
ent experiments. In this paper, we propose a new method—Peptide Element Alignment (PETAL) that uses
raw spectrum data and detected peak to simultaneously align features from multiple LC-MS experiments.
PETAL creates spectrum elements, each of which represents the mass spectrum of a single peptide in a
single scan. Peptides detected in different LC-MS data are aligned if they can be represented by the same
elements. By considering each peptide separately, PETAL enjoys greater flexibility than time warping
methods. While most existing methods process multiple data sets by sequentially aligning each data set to
an arbitrarily chosen template data set, PETAL treats all experiments symmetrically and can analyze all
experiments simultaneously. We illustrate the performance of PETAL on example data sets.

Keywords: Alignment; LC-MS; Regression; Retention time.

1. INTRODUCTION

An integrated system of liquid-chromatography mass-spectrometry (LC-MS) offers a versatile and high
throughput proteomics technology. In such a system, LC efficiently separates a peptide mixture (peptides
are short amino acid sequences) based on hydrophobicity; thousands of peptides can then be identified
and quantified using MS to address important biology questions (Mann and Aebersold, 2003).
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358 P. WANG AND OTHERS

While high precision LC-MS systems are available, bioinformatics tools remain incomplete. LC-MS
systems generate massive amounts of data, representing the intensity of peptides with specific mass-charge
ratios (mz) and LC column retention times (RT) (see Section 2.1 for more details). Statistical and com-
putational methods are required to detect and quantify the intensity of each feature. A more challenging
task is to compare multiple LC-MS profiles, which, for example, can be used to identify discriminating
peptides between distinct biological groups. Because the sequence identifications of the peptide are of-
ten unavailable at this stage, one relies on RT and mz to match corresponding peptides across different
samples. However, the retention time of a specific peptide depends on instrument conditions as well as
the underlying composition of the mixture; variation in RT between experiments is often nonnegligible
even when all samples are processed by the same LC-MS system. To a lesser extent, mz of a peptide also
varies as a result of instrument noise. For these reasons, a prerequisite for quantitative analysis of multiple
LC-MS experiments is to align output data with respect to both RT and mz. In Section 2.2, we review
two groups of existing methods. The first group align raw spectrum data before peak detection. These
methods search for optimal warping functions to map RT of one experiment to that of another. Since the
warping function only accounts for “global” variation in RT, these methods may not always align indi-
vidual peptides. The second group of alignment methods use the detected feature lists, and allow some
variation in RT of individual peptides. However, since this method relies on the detected peak and does
not take advantage of the raw spectrum information, the alignment decisions are vulnerable to inaccuracy
in the peak detection step. In addition, both groups of methods are formulated to work on data sets that are
similar to each other, and may produce bias when analyzing different samples, such as cancer and non-
cancer serum. In order for LC-MS-based analysis to become a routine procedure in biomedical research,
a computationally efficient and robust alignment procedure must be developed.

In this paper, we propose a statistical method, called “Peptide Element Alignment” (PETAL), which
uses both raw spectrum data and peak detection results to simultaneously align features from multiple
LC-MS experiments. PETAL first creates spectrum elements to represent the relative intensity profiles of
individual peptides. It then models the variation in retention time and the instrument noise in intensity
measurements that produce error in the mz values. Peptides detected in different LC-MS data are aligned
if they are represented by the same element. By considering each peptide separately, this method offers
greater flexibility than simply matching retention time between profiles. In addition, PETAL treats all
experiments symmetrically and avoids the possible biases that may result from choosing one experiment
as a template.

The rest of the paper is organized as follows: Section 2 provides a brief description of the LC-MS
experiments. The PETAL method is described in Section 3. Section 4 is devoted to real data examples. In
Section 5, we make several remarks regarding the strength and weaknesses of our method in comparison
to existing methods and discuss the choices of parameters in the model.

2. LC-MS EXPERIMENT

2.1 Generic LC-MS experiment

Figure 1 is a cartoon of a typical LC-MS experiment. First, protein mixtures are isolated from biological
samples and enzymatically digested into peptides (short amino acid sequences). The peptides are then
separated by one or more steps of high-pressure LC, and are eluted into an electro-spray ion source, where
they are nebulized in small, highly charged droplets. After evaporation, multiple protonated peptides enter
the mass spectrometer, and a mass spectrum of the peptide eluting at each time point is taken (Mann and
Aebersold, 2003). A more detailed introduction to LC-MS can be found in Liebler (2002).

The output of an LC-MS experiment can be represented as a two-dimensional image. One dimension
represents the elution time (also called retention time and denoted as RT) and the other dimension indicates
the mass-charge ratio. Although RT is a continuous variable, the LC-MS system produces mass spectra at

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/357/231644 by guest on 21 August 2022



A statistical method for chromatographic alignment 359

Fig. 1. Outline of one LC-MS experiment. See text for details.

Fig. 2. Output from a LC-MS experiment. Left: Output of one LC-MS experiment in the region mz × RT ∈
(861.5, 867.9) × (540, 1300). The horizontal axis represents the retention time and the vertical axis represents the
mass-charge ratio. The color at each (mz, RT) indicates peptide intensity (scales are defined in the color bar). Each
peak feature identified in previous analysis steps is labelled by number (in black): the vertical coordinate of the num-
ber is its monoisotopic mass; the horizontal coordinate of the number is the index of the scan, in which the feature is
detected at the highest intensity; the value of the number indicates the estimated charge status. The plot is made with
R-package Nimbus (by Marc Coram, available at http://galton.uchicago.edu/∼coram/). Right: Mass spectrum of the
scan 943 for mz ∈ (861.5, 867.9), which corresponds to one column of the left image. The isotopic shape suggests
that this peptide has a charge of 3.

a discrete set of RT points, typically a few seconds apart. Thus, it is equivalent to represent RT by scan
indices. The mass spectrum at one RT point, i.e. in a single scan, measures the abundance of peptide ions
at each mz (each mass-charge ratio point). Figure 2 illustrates part of an LC-MS experiment result.

As shown in Figure 2, the mass spectrum of a peptide feature has a characteristic shape, consisting
of multiple peaks equally spaced along mz. This shape, referred to as isotopic pattern (or isotopic distri-
bution), arises as a result of the naturally existing rare isotopes in the sample. The dominant source for
isotopic distribution in mass spectrum is carbon-13, which accounts for 1.11% of all naturally occurring
carbon atoms. For a peptide with a charge of 1, the molecule with no carbon-13 and the molecule with
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one carbon-13 accumulate at locations that are one unit apart on the mass spectrum. More generally, for a
peptide of charge k, the gap between two adjacent isotopic peaks is 1

k . The peak where the analyte consists
of only light isotopes is called the mono-isotopic peak, indicating the ordinary mz value of this peptide.
Thus, in MS experiments, each peptide can be characterized by its mz value (the position of the mono-
isotope) and charge status (the isotope shape). This information can be used for peptide peak detection as
well as for subsequent alignment.

2.2 Existing alignment methods

The goal of alignment is to match corresponding peptide features in the mz-scan plot (e.g. Figure 2) from
different experiments in the presence of retention time variation and experimental noise. Bylund and oth-
ers (2002) proposed a time warping method based on raw spectrum for alignment of LC-MS data, which
is a modification of the original correlated optimized warping algorithm (Nielsen and others, 1998). After
choosing one file as a template, the method warps the time coordinate (RT axis) of another file to give max-
imal similarity between the two images. This framework was also used by Wang and others (2003), who
implemented a dynamic time warping algorithm allowing every RT point to be moved. However, com-
pared with the classical one-dimension chromatography profiles, LC-MS data have an added dimension
of mass spectral information, which makes the alignment problem more complicated. Different peptides
with different mz values may have different retention time shifting between two experiments. In other
words, two peptides eluting at the same time in one experiment may not necessarily elute at the same time
in another experiment. Therefore, only mapping the retention time coordinates between two LC-MS files
is not sufficient to provide alignment for individual peptides.

Instead of using raw spectrum data, Radulovic and others (2004) performed alignment based on the
(mz, RT) values of detected features. It first divides the mz domain into several intervals and fitted different
piece-wise linear time warping functions for each mz interval. After the time warping, a “wobble” function
is then applied wherein a peak is allowed to move (±1–2% of total scan range) in order to match with
the nearest adjacent peak in another file. Here, the stratification of mz achieves improved flexibility and
accuracy. Since the method relies on only the (mz, RT) values of detected peptide features, it fails to take
advantage of other information in the raw image (such as isotope distribution). In addition, the wobble
function may produce ambiguous findings when complex mixtures like human serum are processed, where
multiple peptides may exist within the ±1–2% window.

Recent software platforms, “msInspect” (Bellew and others, 2006), “SpecArray” (Li and others,
2005), and “MZmine” (Katajamaa and Orešic, 2005) provide alignment solutions by allowing variation
in RT of individual peptides within the detected feature lists. However, since these methods rely on the
peak detection result and do not take advantage of the raw spectrum information, the alignment deci-
sions are vulnerable to any inaccuracy estimation in the peak detection step. Moreover, most methods
process multiple data sets by sequentially aligning each to an arbitrarily chosen template profile, which
may lead to unpredictable errors. Most methods work best on data sets that vary similar to each other.
They are likely to produce bias when analyzing samples from different disease classes such as cancer and
noncancer tissues.

Other related algorithms are discussed in Listgarten and others (2005) including a hierarchical clus-
tering method for aligning MALDI/SELDI spectra (Tibshirani and others, 2004), a multi-scale wavelet
decomposition approach for aligning MALDI data along the mz axis (Randolph and Yasui, 2004), and
a Hidden Markov Model for multiple alignments of time series. Prakash and others (2006) recently
proposed a novel signal mapping algorithm to perform comparisons directly on the signal level of MS
experiments.

To overcome the drawbacks of current methods, we propose a new alignment algorithm, PETAL, for
LC-MS data. It uses both the raw spectrum data and the information of the detected peak features for
peptide alignment.
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3. PETAL FOR LC-MS

In LC-MS profiles, each peptide is characterized by two things: its mass spectrum and its retention time
range. The mass spectrum of one scan is a vector recording the intensity measurements along mz for
peptides eluting in this scan. For any given peptide, its “element spectrum vector” is defined as the mass

spectrum with no experimental noise that contains only one unit abundance of this peptide
→
b :

∑L
l=1 bl =

1, where L is the total pixel number along mz and bl is the intensity value at the lth pixel. One spectrum

element vector
→
b can be uniquely determined by the mono-isotope position and the charge status (isotopic

pattern) of the corresponding peptide. In addition, we denote the theoretical retention time range of one

peptide as RT = (rtbegin, rtend). The kth peptide can then be represented as PEPk = ( →
bk, RTk

)
.

We define a peptide element library {PEPk}K
k=1 as a collection of all possible peptides appearing in

the target samples. Given a library of peptide elements, the goal of alignment can be easily achieved by
matching the peak features in each profile to this common library. Peak features from different profiles
matched to the same peptide element are features representing the same peptide and should be aligned.

We now introduce a loss function and seek the solution of alignment by solving an optimization
problem.

3.1 Loss function

We first consider the mass spectrum of one scan. Suppose there are H different peptides {PEPkh }H
h=1

eluting in this scan, and the measurable abundance (the abundance of peptides that can be measured in
LC-MS experiment) of PEPkh is βkh . The entire mass spectrum of one scan is the sum of all individual

peptide spectra eluting in the scan. The observed mass spectrum
→
Y can therefore be represented as a

linear combination of the spectrum element vectors of the H peptides:
→
Y = ∑H

h=1 βkh ·
→
bkh + →

ε , where
→
ε = (ε1, . . . , εL) is the instrument noise and

→
bkh is the spectrum element vector of PEPkh .

In reality, we would not know which peptides elute in an observed scan
→
Y . However, with a peptide

element library {PEPk}K
k=1, we can estimate the peptide abundances by fitting a L1 penalized least square

regression model
→
Y ∼ ∑K

k=1 βk
→
bk :

{βk}K
k=1 = argmin{βk }k ,βk�0

∥∥∥∥∥→
Y −

K∑
k=1

βk

→
bk

∥∥∥∥∥
2

+ λ1

K∑
k=1

w(t ; RTk) · |βk |, (3.1)

where λ1 is a nonnegative parameter, t is the retention time of scan
→
Y , and w(t ; RTk) is a weight function

depending on the scan retention time t as well as the theoretical retention time of each peptide RTk . The
L1 norm penalty controls in the coefficient solution the total number of nonzero coefficients (Tibshirani,
1996). The weight function w(t ; RTk) gives larger penalty to peptides whose theoretical retention time
RTk is further from the scan retention time t , so that the corresponding predictors (bk) are selected less
often. A simple example for w(t ; RTk) is

w(t, RTk) =
{

1, if t ∈ [RTk
begin − δ, RTk

end + δ],

∞, otherwise,
(3.2)

where δ is a nonnegative parameter.

In the solution of (3.1), a nonzero estimate of βk indicates that part of the signal in
→
Y matches the kth

peptide in the peptide element library. Thus, if we have the proper regression models for two scans,
→
Y
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and
→
Y ′ from two different profiles, the alignment between these two scans can be achieved by comparing

the coefficient sets {βk}k and {β ′
k}k .

Suppose there are N profiles and each profile has Mn observed scans. Given a peptide element library
{PEPk}K

k=1, we are interested in {βm
n,k}n,m,k satisfying

{βm
n,k}n,m,k = argmin{βm

n,k :βm
n,k>0}

N∑
n=1

Mn∑
m=1

⎧⎨⎩
∥∥∥∥∥ →
Y m

n −
K∑

k=1

βm
n,k

→
bk

∥∥∥∥∥
2

+ λ1

K∑
k=1

βm
n,k · w(tm

n ; RTk)

⎫⎬⎭ , (3.3)

where
→
Y m

n and tm
n are the mass spectrum vector and the retention time of the mth scan in the nth profile.

In most cases, the peptide element library {PEPk}K
k=1 is not available at this point. We therefore also

need to identify the peptide element library ({PEPk}K
k=1) that best explains all mass spectrum scans ob-

served in the experiments ({→
Y m

n }). Thus, we introduce the overall “loss function”:

L̃({
→
Y m

n , tm
n }n,m |{{βm

n,k}n,m, PEPk}k) =
N∑

n=1

Mn∑
m=1

⎡⎣∥∥∥∥∥ →
Y m

n −
K∑

k=1

βm
n,k

→
bk

∥∥∥∥∥
2

+ λ1

K∑
k=1

βm
n,k · w(tm

n ; RTk)

]
+ λ2K , (3.4)

and search for

{{βm
n,k}n,m, PEPk}k = argmin{βm

n,k :βm
n,k�0;PEPk }L̃({

→
Y m

n , tm
n }n,m |{{βm

n,k}n,m, PEPk}k), (3.5)

where λ2K is a penalty term for overall model complexity. The choices of λ1 and λ2 are discussed in
Section 5.

The main part of the loss function in (3.4) can also be deemed as the negative log joint likelihood

of {→
Y m

n }n,m under some reasonable assumptions as discussed in Section A of the supplementary material
available at Biostatistics online.

Note that besides the random variation in retention time due to individual peptides, there is always
some systematic retention time shifting across LC-MS experiments. Thus, we first apply a global trans-
formation to adjust for the systematic trend and then use the adjusted time to calculate w(tm ; RTk). The
details of the global transformation are described in Section B of the supplementary material available at
Biostatistics online.

3.2 Optimization strategy

From the loss function in (3.5), we can see that if {PEPk}k is given, the optimal solution for {βm
n,k} can be

easily calculated with L1-regression techniques such as “lasso” (Tibshirani, 1996) and “lars” (Efron and
others, 2003). Thus, our main obstacle is to find the appropriate peptide element library {PEPk}k .

It is difficult to directly search the whole vector space of element spectra. We therefore approach this
problem using two steps. First, we build an initial collection of peptide elements based on all profiles
subjected to alignment. This initial collection is expected to represent all peptides appearing in the experi-
ments, but it may also contain redundant or incorrect elements. Then, we search for the subset of the initial
collection that minimizes the target loss function. The details of these two steps are described below.
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Initial collection. To build the initial set, we include one peptide element for every peak feature detected
in the profiles. To do so, we first need to estimate the ideal isotopic shapes. Since, at a given mass, the
variation of isotopic shapes resulting from the differences between amino acid sequences is much less
than the variation introduced by experimental noise, we assume that the peptides with similar mass values
and at the same charge status have the same isotopic pattern. Thus, the “ideal” isotopic shape of a certain
charge and mass can be approximated by averaging all feature spectra of the same charge status and

similar mass values. With these empirical isotopic shapes, we make spectrum element vectors {→
bk} based

on the estimated mono-isotope positions and charge values of detected features. Details are provided in
Section C of supplementary material available at Biostatistics online.

We denote this initial collection as �0.

Subset selection. There are two major strategies for subset selection, forward-stepwise and backward-
stepwise. In this section, we focus on the backward-stepwise strategy, which enjoys a higher computa-
tional efficiency than the forward-stepwise strategy (discussed in Section D of the supplementary material
available at Biostatistics online).

Backward-stepwise begins with the whole collection �0 and removes redundant elements iteratively.
Instead of eliminating the redundant elements one by one as is usually done, we propose a more efficient
procedure. As mentioned before, each peptide in the experiments may correspond to more than one pep-
tide element in the initial collection contributed by different profiles. If we can cluster peptide elements in
some appropriate way, such that elements representing the same peptide are grouped together, we will be
able to eliminate the redundancy of multiple clusters simultaneously.

For this purpose, we apply a sparse regression approach called elastic net (Zou and Hastie, 2005),
which aims to minimize the loss function L(λ1, λ2, β) = |y − Xβ|2 + λ2|β|2 + λ1|β|. The ridge penalty
term encourages a grouping effect: strongly correlated predictors tend to be in or out of the model together.
And the Lasso penalty term enables the algorithm to have a more sparse representation.

The new backward-stepwise procedure is as follows:

1. Take all M feature scans of target profiles and the initial collection of peptide elements �0 (|�0| =
N0).

2. For j = 1 to M , do elastic net regression for
→
Y j∼ { 1

d(RT j ,RTk )

→
bk

}N0
k=1 with a fixed number of

maximum steps. Thus, each element gets M coefficients from M regression models.
3. Cluster elements based on the coefficient vector (length of M), such that elements representing the

same peptide are grouped together. Representing each cluster with one element, we get a new set of
N1(<N0) elements.

4. Repeat steps 2–3 until Nk = Nk−1.

We choose not to cluster directly on the original element spectrum vector space because it is not
straightforward to define an appropriate distance measurement between elements, taking into consid-
eration of the meaning of isotopic pattern and retention time. However, after we map elements to the
coefficient space through regression, we can easily use Euclidean distance for clustering. In addition, the
regression procedure enjoys a “selection” effect, such that incorrect basis will not enter the models and
will be eliminated from the library directly.

The performance of the algorithm is illustrated with data examples in Section 4.

4. DATA EXAMPLE

PETAL is applied on a data example from a spike-in experiment, and its performance is compared with the
performance of two other alignment methods implemented in public available softwares msInspec (Bellew
and others, 2006) and SpecArray (Li and others, 2005). (A more detailed illustration on how PETAL
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Table 1. Alignment results. Column names: FD, feature detection method; Align, alignment method;
TN, total number of features in all files after alignment; N3R, number of features appearing in all three
replicates of any biological sample (bovine protein, human serum, or bovine + serum mixture); N2R,
number of features appearing in at least two replicates of any biological sample; NBF, number of features

in the bovine + serum mixture that corresponds to bovine proteins (see text for details)

Label FD Align TN N3R N2R NBF

MM msI msI 18001 3942 (21.9%) 7686 (42.7%) 32
MP msI PETAL 12397 5269 (42.5%) 8058 (65.0%) 56

SS specA specA 4555 2193 (48.1%) 3088 (67.8%) 12
SP specA PETAL 3718 2383 (64.2%) 3510 (94.2%) 58

works to solve the challenges of the alignment problem is shown in Section E of the supplementary mate-
rial available at Biostatistics online, where PETAL is applied on a data example of human serum samples.)

In the spike-in experiment, three different biological samples were analyzed with LC-MS instruments†.
The three samples were (1) 20 µg of four bovine glycoprotein mix, (2) 80 µl of normal human serum
sample, and (3) a mix sample of bovine glycoproteins and 80 µl of human serum in a concentration of
20 µg/ml bovine glycoproteins in human serum. Three LC-MS replica were collected for each biological
sample, which resulted in a total of nine LC-MS profiles.

Peak signals corresponding to peptide features in each LC-MS profile were first detected using both
msInspect (msI) and specArray (specA). msI returns ∼6000 peptide features for each LC-MS profile and
specA returns ∼3000 peptide features. Comparing quality of the feature detection algorithms requires
more than comparing features counts for each individual profile. However, since the feature detection step
is not the focus of this paper, we will not discuss in further here.

The alignment method of specA makes use of information computed specifically by its own feature
detection methods, whereas msI uses only mz, RT, and charge information. Thus, to better characterize the
advantages of the different alignment methods, we compare the performance of PETAL and the alignment
method in msI using feature lists returned by msI, and we compare the performance of PETAL and the
alignment method in specA using feature lists returned by specA.

We assessed the performance of alignment using two criteria: one is the efficiency of recognizing
features corresponding to the same peptide and the other is the degree of false-alignment—incorrectly
matched features corresponding to different peptides.

First, we use replicate profiles to examine the alignment efficiency. Since the majority of the peptides
in a sample should behave the same across replicate LC-MS experiments, we expect to see majority of
the features aligned across replicate profiles. In Table 1, column N3R (column N2R) shows the number
(percentage) of features aligned across the three replicates (two replicates) of any biological sample by
different alignment methods. We can see that PETAL recognized many more matching peptide features
across replicate profiles than either msI (8058 vs. 7686) or specA (3510 vs. 3088).

On the other hand, since the same peptide should have similar intensities across LC-MS replica exper-
iments and since none of the alignment methods takes into consideration the intensity information when
matching features across different profiles, we can use the correlation of intensities of aligned features
between two replicate profiles to assess the alignment quality: the more the false-aligned pairs, the less
correlated the intensities of aligned features tend to be. The correlation coefficient of log-intensities of
aligned features between each replicate pair is illustrated in Figure 3 (log scale is used to adjust the heavy

†The LC-MS system consists of a Bruker Daltonics Micro-TOF mass spectrometer equipped and a home-built nanospray device.
Glycopeptides were first isolated from proteins in 80 µl (Zhang, 2005; Zhang and others, 2003), and peptides from 5 µl of original
serum were used in each MS analysis.
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Fig. 3. Correlation coefficients of log-intensities of aligned features. The x-axis indicates the sample pair: B1–2,
B1–3, and B2–3 are the three replicate pairs of the bovine protein sample; S1–2, S1–3, and S2–3 for the human serum
sample; SB1–2, SB1–3, and SB2–3 for the bovine + serum sample. The y-axis represents the values of the correlation
coefficients. The labels in the legend indicate the different combination of feature detection and alignment methods
(see Table 1).

right tail of the intensity distribution). From the figure, we can see that feature pairs aligned by PETAL
have more similar intensities than the feature pairs aligned by msI and specA, which suggests that PETAL
achieves better alignment quality.

In addition, with the spike-in design of the experiment, it is of interest to investigate the efficiency
of detecting the spiked-in bovine peptides in the bovine + serum sample for different methods. Peptide
features are deemed as candidate spiked-in bovine peptides if they appear in at least two replicates of
the bovine + serum sample, as well as in at least two replicates of the bovine protein sample, but not in
any replicates of the serum sample. The numbers of candidate bovine peptides resulting from different
methods are listed in column NBF of Table 1. PETAL detects more than 55 candidate bovine peptides
on both sets of feature detection results, which is almost twice the number of candidate bovine peptides
detected by msI and four times the number of specA. (With the newly developed LTQ-FT instrument,
which simultaneously provides intensity measurements and tandem mass spectrum measurements for
each target peptide ion, it is possible to further validate those candidate features as bovine peptides by
deriving the peptide sequence IDs from the tandem mass spectra through database searching. However,
due to the limitation of the facilities, such a data set is not available at this point.)

Overall, we conclude that with the same alignment quality as (if not better than) the other two align-
ment methods, PETAL achieves the highest alignment efficiency.

5. DISCUSSION

In this paper, we introduce a new alignment method, PETAL, which uses both raw spectrum data and
peak detection results to simultaneously align features from multiple LC-MS experiments. By considering
each peptide separately, this method offers more flexibility than simply matching retention time between
different profiles. It treats all experiments symmetrically and avoids the possible biases that may result
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from choosing one experiment as a template. In addition, although PETAL is based on feature lists from
the peak detection procedure, the ability to consider spectrum information and jointly learn from multiple
profiles enables PETAL to improve the peak detection in return.

The backward-stepwise optimization strategy, whose computational complexity is about O(N · K )
(where N is the total number of samples, and K is the total number of peptide features in the study) is
more efficient compared with the forward-stepwise strategy, whose computational complexity is about
O(N · K 3). For further computational simplicity, we can divide the entire mz domain into multiple mz
blocks, and then conduct alignments for individual mz blocks parallel. The L1 norm penalty parameter λ1
is controlled by forcing the total number of nonzero coefficients smaller than Sλ1 in each regression model.
For the data example in Section 4, we used 100 mz blocks with each block averaging 5–10 mz. We choose
Sλ1 = 3 in the forward-stepwise strategy and Sλ1 = N + 1 in the backward-stepwise strategy, where N is
the total number of samples. The model complexity penalty parameter λ2 is also controlled differently in
the two strategies. For forward-stepwise, controlling λ2 is equivalent to controlling the stopping constant
ελ2 with smaller ελ2 corresponding to larger value of K. For backward-stepwise, λ2 corresponds to the
cutoff criterion in the clustering steps. The number of clusters represents the number of selected elements
in the library (K ).

PETAL can be easily applied to the scenario where an AMT (Accurate Mass and Time Tag) database
is available (Fang and others, 2006). In such cases, the peptide element library {PEPk}k can be derived
directly from the AMT database, and then only the regression coefficients {βm

n,k}n,m,k need to be estimated.
Furthermore, for LC-MS experiments with isotopic labeling, viewing scan spectra as linear combinations
of peptide element spectra, as well as the regression techniques discussed in this paper, can be used to
accurately estimate the intensity ratio of light versus heavy forms when the mass of the labeling materials
does not allow for complete separation of the two forms.

The R-package implementing the PETAL algorithm is available at http://peiwang.fhcrc.org/research-
project.html.
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KATAJAMAA, M. AND OREŠIC, M. (2005). Processing methods for differential analysis of lc/ms profile data. BMC
Bioinformatics 6, 179.

LI, X., YI, E., KEMP, C., ZHANG, H. AND AEBERSOLD, R. (2005). A software suite for the generation and com-
parison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Molecular &
Cellular Proteomics 4, 1328–40.

LIEBLER, D. C. (2002). Introduction to Proteomics. Totowa, NJ: Humana Press.

LISTGARTEN, J., NEAL, R. M., ROWEIS, S. T. AND EMILI, A. (2005). Multiple alignment of continuous time
series. In: Saul, L. K. et al. (editors), Advances in Neural Information Processing Systems 17 (aka NIPS*2004).
Cambridge, MA: MIT Press.

MANN, M. AND AEBERSOLD, R. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.

NIELSEN, N. P., CARSTENSEN, J. M. AND SMEDSGAARD, J. (1998). Aligning of single and multiple wavelength
chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chro-
matography A 805, 17–35.

PRAKASH, A., MALLICK, P., WHITEAKER, J., ZHANG, H., PAULOVICH, A., FLORY, M., LEE, H., AEBERSOLD, R.
AND SCHWIKOWSKI, B. (2006). Signal maps for mass spectrometry-based comparative proteomics. Molecular &
Cellular Proteomics 5, 423–32.

RADULOVIC, D., JELVEH, S., RYU, S., HAMILTON, T. G., FOSS, E., MAO, Y. AND EMILI, A. (2004). Informat-
ics platform for global proteomic profiling and biomarker discovery using liquid-chromatography-tandem mass
spectrometry. Molecular & Cellular Proteomics 3, 984–97.

RANDOLPH, T. W. AND YASUI, Y. (2004). Multiscale processing of mass spectrometry data. Biometrics 62, 589–97.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B 58, 267–88.

TIBSHIRANI, R., HASTIE, T., NARASIMHAN, B., SOLTYS, S., SHI, G., KOONG, A. AND LE, Q. (2004). Sample
classification from protein mass spectrometry by peak probability contrasts. Bioinformatics 20, 3034–44.

WANG, W., ZHOU, H., LIN, H., ROY, S., SHALER, T. A., HILL, L. R., NORTON, S., KUMAR, P., ANDERLE, M.
AND BECKER, C. (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic
labeling or spiked standards. Analytical Chemistry 75, 4818–26.

ZHANG, H., YI, E. C., LI, X.-J., MALLICK, P., KELLY-SPRATT, K. S., MASSELON, C. D., CAMP, II, D. G.,
SMITH, R. D., KEMP, C. J. AND AEBERSOLD, R. (2005). High throughput quantitative analysis of serum pro-
teins using glycopeptide capture and liquid chromatography mass spectrometry. Molecular & Cellular Proteomics
4, 144–55.

ZHANG, H., LI, X., MARTIN, D. AND AEBERSOLD, R. (2003). Identification and quantification of n-linked gly-
coproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnology 21,
660–6.

ZOU, H. AND HASTIE, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society. Series B 67, 301–20.

[Received December 20, 2005; first revision May 26, 2006; second revision July 11, 2006;
accepted for publication July 13, 2006 ]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/357/231644 by guest on 21 August 2022


