
BIOINFORMATICS
Vol. 20 no. 17 2004, pages 3146–3155

doi:10.1093/bioinformatics/bth379

A statistical method for identifying differential

gene–gene co-expression patterns

Yinglei Lai1, Baolin Wu1, Liang Chen3 and Hongyu Zhao1,2,∗

1Department of Epidemiology and Public Health, 2Department of Genetics,

Yale University School of Medicine, New Haven, CT, USA and 3Department of

Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA

Received on April 21, 2004; revised on May 20, 2004; accepted on June 19, 2004

Advance Access publication July 1, 2004

ABSTRACT

Motivation: To understand cancer etiology, it is important to

explore molecular changes in cellular processes from normal

state to cancerous state. Because genes interact with each

other during cellular processes, carcinogenesis related genes

may form differential co-expression patterns with other genes

in different cell states. In this study, we develop a statistical

method for identifying differential gene–gene co-expression

patterns in different cell states.

Results: For efficient pattern recognition, we extend the

traditional F -statistic and obtain an Expected Conditional

F -statistic (ECF -statistic), which incorporates statistical

information of location and correlation. We also propose a

statistical method for data transformation. Our approach is

applied to a microarray gene expression dataset for prostate

cancer study. For a gene of interest, our method can select

other genes that have differential gene–gene co-expression

patterns with this gene in different cell states. The 10 most fre-

quently selected genes, include hepsin, GSTP1 and AMACR,

which have recently been proposed to be associated with pro-

state carcinogenesis. However, genes GSTP1 and AMACR

cannot be identified by studying differential gene expression

alone. By using tumor suppressor genes TP53, PTEN and

RB1, we identify seven genes that also include hepsin, GSTP1

and AMACR. We show that genes associated with cancer may

have differential gene–gene expression patterns with many

other genes in different cell states. By discovering such pat-

terns, we may be able to identify carcinogenesis related genes.

Availability: The R-codes for our study are available at

http://bioinformatics.med.yale.edu/microarray/BioSupp1.html

Contact: hongyu.zhao@yale.edu

INTRODUCTION

Microarrays enable us to simultaneously screen expression

of thousands of genes and generate enormous amount of

data (Schena et al., 1995; Lashkari et al., 1997). With such

techniques, it is possible to explore cellular processes at the

∗To whom correspondence should be addressed.

molecular level on a genomic scale (DeRisi et al., 1997).

Highly correlated genes are likely to be involved in the same

biological process (Eisen et al., 1998; Marcotte et al., 1999).

The correlation coefficient and its variants (Eisen et al., 1998;

Cherepinsky et al., 2003) are widely used to measure the

correlation of two genes.

To understand cancer etiology, it is important to explore

molecular changes in cellular processes from normal state

to cancerous state. Microarray techniques can be used for

molecular classification of cancer (Golub et al., 1999; van’t

Veer et al., 2002). Differentially expressed genes are potential

markers for clinical diagnoses and medical treatments. The

F -statistic and its variants are commonly used to identify dif-

ferentially expressed genes, e.g. t-test, signal-to-noise statistic

(Golub et al., 1999) and SAM method (Tusher et al., 2001).

However, since there may be no significant correlation

between protein and gene expression abundance (Gygi et al.,

1999; Chen et al., 2002; Washburn et al., 2003), some carci-

nogenesis related genes may not be identified by finding dif-

ferentially expressed genes. The genome-wide co-expression

dynamics (Li, 2002) shows that the pattern of gene–gene

co-expression may depend on another gene’s expression level.

Similarly, carcinogenesis related genes may also form differ-

ential co-expression patterns with other genes in different cell

states, which can be utilized as an alternative approach to

identifying carcinogenesis related genes.

There are many possible reasons for the existence of dif-

ferential gene–gene co-expression patterns. For example,

depending on different stimuli, the transcription factor nuc-

lear factor kappa B (NF-κB) can be either an activator or a

repressor of its target genes (Campbell et al., 2004). NF-κB

complexes are comprised of homo- or hetero-dimers formed

from the multigene family of RelA (p65), c-Rel, RelB,

NF-κB1 (p50/p105) and NF-κB2 (p52/p100). Stimulated with

tumor necrosis factor (TNF), NF-κB induces the expression

of antiapoptotic genes Bcl-XL, X-IAP and A20. There-

fore, NF-κB has an antiapoptotic effect. On the other

hand, stimulated with ultraviolet light (UV-C) or the chemo-

therapeutic drugs daunorubicin, NF-κB is converted into a
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Differential gene–gene co-expression

repressor of antiapoptotic gene transcription through inducing

its association with histone deacetylases, which reduces the

expression of Bcl-xL, X-IAP and A20. Therefore, NF-κB

can also be proapoptotic. Another example is p53, a tumor

suppressor gene (Willis et al., 2004). p53 is mutated in

many human cancers, which generally results in the loss

of its function. However, some of the p53 mutations are

dominantly-negatively inhibiting the function of wild-type

p53. These p53 mutants reduce the binding of wild-type p53 to

the p53 responsive element in the target genes of p21, MDM2

and PIG3. Therefore, p53 positively correlates with its target

genes in the p53+/+ wild-type, and negatively correlates with

its target genes in the p53DN/+ dominant-negative mutant.

Motivated by Li’s study (2002), we study differential

gene–gene co-expression patterns in different cell states to

understand molecular changes in cellular processes from

normal state to cancerous state. Such study may provide

insight to cancer etiology at molecular level. In contrast to

Li (2002), who analyzed microarray gene expression data for

yeast cell cycle (Spellman et al., 1998), we focus on clas-

sification data, and apply our method to a microarray gene

expression dataset for prostate cancer (Singh et al., 2002).

We chose to analyze this dataset because of its relatively large

sample size and the importance of prostate cancer. In the

United States, prostate cancer is one of the most common

malignancies in men. It was estimated that about one in six

men would be diagnosed with this disease, and there were

about 189 000 diagnoses and 30 200 deaths in 2002 (DeMarzo

et al., 2003a). A main problem with the prostate cancer is

that its molecular mechanisms still remain unclear. Although

numerous genes were discovered to be associated with pro-

state cancer, there is no detection of major predisposition

genes (Visakorpi, 2003). Exploring differential gene–gene

co-expression patterns in different cell states may lead to

uncover major predisposition genes.

For the rest of the paper, we first introduce the microarray

gene expression dataset used for our study, and then describe

our statistical method for pattern recognition by extending

the traditional F -statistic. We also propose a method for data

transformation to handle outliers. Finally, we present our

analysis results and discuss significance of biological findings.

METHODOLOGY

Gene expression data

In this study, we use a published microarray gene expression

dataset for prostate cancer (Singh et al., 2002). Gene expres-

sion levels were measured for samples of prostate tumors

(‘cancerous’) and adjacent prostate tissues not containing

tumor (‘normal’). Data were generated using Affymetrix

oligonucleotides microarrays and GeneChip Software. The

dataset contains probes for 12 600 genes and expressed

sequence tags (ESTs). There are 50 normal samples and 52

cancerous samples, and no missing values in the dataset.

Before analyzing the data, we perform the following

thresholding and filtering according to Singh et al. (2002).

Any measurements below 10 are set as 10, and any measure-

ments above 16 000 are set as 16 000. After thresholding, we

find the maximum (Max) and the minimum (Min) measure-

ments for each gene. A gene is excluded from the analysis if

Max/Min <5 or Max−Min <50. There are 6034 genes left

after filtering.

Expected conditional F -statistic

Suppose that there are g different sample groups. For a gene

X, let xij be the j -th observation in the i-th group, ni be the

number of observations, x̄i be the sample mean for the i-th

group and x̄ be the sample mean for all observations, where

i = 1, 2, . . . , g and j = 1, 2, . . . , ni . Also, let n =
∑

i ni be

the total number of observations. The following F -statistic is

widely used to test whether gene X is differentially expressed

in different sample groups:

F =

∑
i ni(x̄i − x̄)2/(g − 1)∑
i,j (xij − x̄i)2/(n − g)

.

Under normality, when limn→∞ ni/n = pi > 0, we have a

weak convergence of the modified F -statistic

g − 1

n − g
F =

∑
i ni(x̄i − x̄)2

∑
i,j (xij − x̄i)2

→

∑
i pi(µi −

∑
j pjµj )

2

∑
i piσ

2
i

in probability, as n → ∞; where µi and σ 2
i are the mean

and variance of the i-th group, respectively. Let λ denote the

above limit. Following simple algebra, we have

λ =

∑
i pi(µi −

∑
j pjµj )

2

∑
i piσ

2
i

=

∑
i<j pipj (µi − µj )

2

∑
i piσ

2
i

.

To extend F -statistic for identifying differential gene–gene

co-expression patterns, we assume that two genes X and Y

are normally distributed in the i-th group,

(Xi , Yi) ∼ N

[
(µXi , µY i),

(
σ 2

Xi ρiσXiσY i

ρiσXiσY i σ 2
Y i

)]
.

The conditional distribution of Xi given Yi = y is

Xi |Yi =y ∼ N
[
µXi + ρi(y − µY i)σXi/σY i , σ

2
Xi

(
1− ρ2

i

)]
.
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Replacing means and variances in the formula of λ with the

corresponding conditional means and variances, we have

λX|Y=y =

[∑

i

piσ
2
Xi

(
1 − ρ2

i

)]−1 ∑

i<j

pipj [(µXi − µXj )

− (µY iρiσXi/σY i − µYjρjσXj/σYj )

+ (ρiσXi/σY i − ρjσXj/σYj )y]2.

For gene Y , let fYk(y) ∼ N(µYk , σ 2
Yk) be the probabil-

ity density function (p.d.f.) of group k, and fY (Y ) =∑
k pkfYk(y). Taking expectation over variable Y , we have

EY (λX|Y=y)

=

∫

Y

λX|Y=yfY (y)dy

=
∑

k

pk

∫

Y

λX|Y=yfYk(y)dy

=

[∑

i

piσ
2
Xi

(
1 − ρ2

i

)]−1∑

i<j

∑

k

pipjpk

{[
(µXi − µXj )

− (µY iρiσXi/σY i − µYjρjσXj/σYj )

+ (ρiσXi/σY i − ρjσXj/σYj )µYk

]2

+ (ρiσXi
/σYi

− ρjσXj/σYj )
2σ 2

Yk

}
.

If σXi = σX and σY i = σY for all i, then EY (λX|Y=y) can be

simplified as

EY (λX|Y=y)

=

[∑

i

pi

(
1 − ρ2

i

)]−1∑

k

∑

i<j

pkpipj

{[
(µXi − µXj )/σK

− ρi(µY i − µYk)/σY + ρj (µYj − µYk)/σY

]2

+ (ρi − ρj )
2
}
.

This simplified formula incorporates two types of statistical

measurements: non-central parameters of t-distribution and

correlation coefficients. In general, EY (λX|Y=y) incorporates

both location and correlation information.

We estimate EY (λX|Y=y) by estimating the parameters

in the formula, and we obtain a statistic. We name this

statistic Expected Conditional F -statistic (ECF-statistic)

EY (FX|Y=y). The parameters in the formula are estimated

using standard methods, i.e.

µ̂Xi =
1

ni

ni∑

j=1

xij ,

σ̂ 2
Xi =

1

ni − 1

ni∑

j=1

(xij − µ̂Xi)
2.

For observations of a pair of genes (X, Y ) in group i, we

estimate

ρ̂i =

∑ni

j=1(xij − µ̂Xi)(yij − µ̂Y i)√∑ni

j=1(xij − µ̂Xi)2
√∑ni

j=1(yij − µ̂Y i)2
.

Data transformation

To estimate the ECF-statistic for a pair of genes, we need to

estimate the means and variances of two genes for each sample

group. For this particular dataset, the sample sizes (50 normal

samples and 52 cancerous samples) are adequate to obtain

robust estimations for these statistics using traditional estima-

tion methods. However, the sample sizes may not be adequate

for robust bivariate analysis (e.g. correlation coefficient), and

the existence of outliers may seriously influence the estima-

tion of correlation coefficients. Therefore, we propose data

transformation to handle potential outliers.

Another reason for data transformation is the underlying

distribution of the data. The ECF-statistic is derived based on

the normal distribution assumption. To achieve statistical effi-

ciency, we propose data transformation so that the underlying

distribution of the data agrees with the normal distribution.

In Li’s study on genome-wide co-expression dynamics (Li,

2002), rank and inverse standard normal transformations were

used for data transformation. In our study, we assume that

gene expression has different distributions for different sample

groups. Therefore, we generalize the data transformation used

by Li (2002) and propose the following procedure.

For each gene passing the filtering criterion (see previous

data description), let X = (x1, x2, . . . , xn) be the data before

thresholding, and X′ =
(
x′

1, x′
2, . . . , x′

n

)
be the data after

thresholding. Also, let �(µ,σ 2) be the cumulative distribu-

tion function (c.d.f.) for normal distribution with mean µ

and variance σ 2. We perform the following transformation

procedure.

• Estimate µi and σ 2
i for each group i using X′.

• Construct a mixture c.d.f. of normal distributions,

�(x) =
∑

i pi�(µi ,σ
2
i )(x).

• Rank all the observations using X, (x1, x2, . . . , xn) →

(r1, r2, . . . , rn).

• Invert the mixture function, z = �−1[r/(n + 1)],

(r1, r2, . . . , rn) → (z1, z2, . . . , zn).

In general, it is difficult to calculate the inverse function

�−1(x), so we utilize a large number of simulations to approx-

imate the inverse function. The purpose of using the data

before thresholding for ranking is to preserve the original

order.

Significance assessment

To assess the significance level for an ECF-statistic,

we consider the following null hypothesis for a pair of
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Differential gene–gene co-expression

genes (X, Y ).

• There is no distribution difference among sample groups

for any gene expression.

• Two genes are independently expressed in any sample

group.

We can simply use permutation test on the observed data

to assess the significant level for an ECF-statistic. However,

as there are about 18 201 561 possible pairs, this approach

requires extremely intensive computation. Therefore, we

choose not to use this method in our study.

Instead, we use simulations to generate a distribution for

the null hypothesis to assess significance. When genes (X, Y )

are normally distributed, our null hypothesis is equivalent to

µ·i = µ·j , σ·i = σ·j and ρi = 0 for any i, j . Therefore, we run

a large number of simulations from two independent standard

normal distributions and obtain an approximate distribution

for the ECF-statistic.

Differential gene–gene co-expression patterns

identification

We propose the following procedure for identifying differ-

ential gene-gene co-expression patterns in different sample

groups. For a gene X of interest, this procedure screens

all the other genes Y and select genes that have differential

gene–gene co-expression patterns with gene X.

• Calculate two ECF-statistics: EY (FX|Y=y) and

EX(FY |X=x).

• Select Y for X when both ECF-statistics are significant.

Note that the ECF-statistic is not symmetric. For a

pair of genes (X, Y ), two ECF-statistics EY (FX|Y=y) and

EX(FY |X=x) may not be the same. For consistency purpose, a

pair of genes will be considered to be significant and selected

if both ECF-statistics are greater than a threshold value.

When multiple pairs of genes are selected, we rank them by

the combined ECF score that is defined as ECF(X, Y ) =

EY (FX|Y=y) + EX(FY |X=x).

RESULTS

Data transformation

For comparison, we use both F -statistic and ECF-statistic

to analyze the data. Considering multiple comparison adjust-

ments, we set a threshold value 10−6 for the P -value. The

corresponding F -statistic is ∼27.2 from the theoretical F -

distribution, and the corresponding ECF-statistic is ∼0.32

from the simulations. First, we show that our data transform-

ation method is efficient based on the following observations.

We use the Shapiro–Wilk normality test (Shapiro and Wilk,

1965; Royston, 1982) to evaluate whether the underlying dis-

tribution of the data agrees with normal distribution. From

Figure 1, before data transformation, we observe that most

of the P -values are quite significant both in the normal
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Fig. 1. Effect of data transformation on normality test. P -value

of the Shapiro–Wilk normality test is calculated for each gene in

the normal group and the cancerous groups. x-axis represents the

P -value before data transformation andy-axis represents theP -value

after data transformation.

group and the cancerous group, indicating deviation from the

normal distribution for most of the gene expressions. After

data transformation, only a small portion of the P -values

are significant. Therefore, the underlying distribution of the

data agrees more with the normal distribution after the data

transformation.

Before data transformation, 101 differentially expressed

genes are selected based on our criterion. The most significant

gene is hepsin, which was recently proposed as a potential

marker for prostate cancer (DeMarzo et al., 2003b; Stephan

et al., 2004). In Figure 2, F -statistic after data transformation

is compared to F -statistic before data transformation. Only

two genes that are selected before data transformation are

not selected after data transformation. But 65 genes that are

not selected before data transformation are selected after data

transformation. GSTP1, which is associated with prostate

cancer (DeMarzo et al., 2003a,b; Visakorpi, 2003), is among

these 65 additionally selected genes.

In Figure 3, ECF-statistic for gene TP53 [fix gene X as

TP53 in EX(FY |X=x)] after data transformation is compared to

ECF-statistic before data transformation. The ECF-statistics

can be very different before and after data transforma-

tion. Figure 4 shows that outlier impact is reduced by

data transformation. The pair of genes (TP53 and cDNA

DKFZp564G013) in the figure are selected by our method

before data transformation. But this pair is selected simply

because of the existence of an outlier, which makes the dif-

ference of correlation coefficients overestimated. After data

transformation, this pair is no longer selected.

Most frequently selected genes

We perform our pattern recognition procedure for every gene

passing filtering criterion (see previous method description).
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Fig. 2. Effect of data transformation on F -statistic. x-axis represents the F -statistic before data transformation and y-axis represents the

F -statistic after data transformation. The dashed line represents where two values are equal. Two dotted lines represent the threshold values

to select differentially expressed genes.
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Fig. 3. Effect of data transformation on ECF-statistic. x-axis represents the ECF-statistic before data transformation and y-axis represents

the ECF-statistic after data transformation for gene TP53 and another gene. The dashed line represents where two values are equal. Two

dotted lines represent the threshold values to select differential gene–gene co-expression patterns.
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Fig. 4. Effect of data transformation on outliers. Before data transformation, our method selects a pair of genes TP53 and cDNA

DKFZp564G013. After data transformation, this pair is no longer selected. Circles represent observations from the normal group and

crosses represent observations from the cancerous group.
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Fig. 5. Comparison between the F -statistic for a gene and the number of genes selected for this gene. x-axis represents the F -statistic after

data transformation and y-axis represents the number of selected genes.

For each gene, the number of genes selected for it varies in

a wide range. Among 6034 genes, there are 484 genes with

no genes selected for them; 3574 genes with more than 10

genes selected; 583 genes with more than 100 genes selected;

and 51 genes with more than 1000 genes selected. Figure 5

gives the comparison between the F -statistic for a gene and

the number of genes selected for this gene. We observe

that some genes with significant F -statistic have a small

number of selected genes, and some genes with insignificant

F -statistic have a large number of selected genes. Therefore,

there is no trivial connection between the F -statistic and the

ECF-statistic.

Table 1 lists 10 most frequently selected genes. Hepsin and

GSTP1 are among these genes, which can be identified by
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Table 1. The most frequently selected genes

Gene S F(R)

X07732: hepatoma mRNA for serine protease hepsin 4513 123.3 (1)

M30894: T-cell receptor Ti rearranged gamma-chain mRNA V-J-C region 3701 83.5 (4)

M22382: mitochondrial matrix protein P1 (nuclear encoded) mRNA 3401 100.4 (2)

AF045229: regulator of G protein signaling 10 mRNA 3288 61.6 (11)

J03592: ADP/ATP translocase mRNA, 3′ end, clone pHAT8 2826 62.0 (10)

AL049969: mRNA for cDNA DKFZp564A072 2800 60.3 (12)

M84526: adipsin/complement factor D mRNA 2445 75.8 (5)

U21689: mRNA for glutathione S-transferase-P1c gene (GSTP1) 2358 30.7 (135)

X17620: mRNA for Nm23 protein, involved in developmental regulation 2334 43.8 (36)

AJ130733: mRNA 2-methylacyl-CoA racemase (AMACR) 2219 13.0 (842)

S represents the number of being selected, which is used for ranking; F represents the F -statistic for the gene and R in parentheses represents the number of corresponding ranks

among 6034 genes.
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Fig. 6. Transformed data for six genes associated with prostate cancer. Circles represent observations from normal group and crosses represent

observations from cancerous group.

the F -statistic. However, GSTP1 ranks only 135 by the F -

statistic. Furthermore, AMACR, which is another gene associ-

ated with prostate cancer (Rubin et al., 2002; DeMarzo et al.,

2003a,b), is on this list. However, from Figure 6, we observe

that gene AMACR cannot be identified by the F -statistic.

Selected pairs of genes

Figure 7 shows plots for six selected pairs of genes with the

most significant combined ECF scores. Hepsin is always in

these pairs. For the 5th pair, there is negative correlation in the

normal group, and positive correlation in the cancerous group.

For the other five pairs, there are strong positive correlations

in the normal group, but no clear pattern in the cancerous

group. These observations suggest differential gene–gene

co-expression patterns in different cell states. Such molecular

changes at ‘pattern’ level may provide important information

to understand cancer mechanisms.

Tumor suppressor genes

Tumor suppressor genes play crucial roles in cancer pathways

(Hahn and Weinberg, 2002). A recent review (DeMarzo et al.,

2003b) summarizes several tumor suppressor genes associated

with prostate cancer. Among them, PTEN, RB1 and TP53 are

in the dataset and passed filtering criterion.
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Fig. 7. Plots for six most significant pairs of genes selected by our method after data transformation. Circles represent observations from

normal group and crosses represent observations from cancerous group.

Table 2. The number of selected genes for three tumor suppressor genes

Gene PTEN RB1 TP53

U92436: PTEN 15 11 8

L41870: RB1 — 66 35

X02469: TP53 — — 67

The number in the diagonal cell represents the number of genes selected for the

corresponding tumor suppressor gene. The number in the non-diagonal cell represents

the number of genes that are selected in common for the two corresponding tumor

suppressor genes.

PTEN, RB1 and TP53 all play a critical role in cell apoptosis

(Hahn and Weinberg, 2002; Vousden and Lu, 2002; Chau and

Wang, 2003), which is an important cellular mechanism to

prevent cell proliferation and is targeted in cancer therapy to

repress tumor cell proliferation. From Figure 6, we observe

that there is almost no distribution differences in the normal

group and the cancerous groups for these genes. However,

they have different number of genes selected for them to

form differential gene–gene co-expression patterns. Table 2

gives these numbers of genes selected for them. From these

three sets of selected genes, there are seven genes in common

including hepsin, GSTP1 and AMACR, which implies the

involvement of these genes in cancer pathways, and further

supports the importance of these genes in prostate cancer

studies.

Figure 8 shows plots for these differential gene–gene

co-expression patterns. Tumor suppressor genes have sim-

ilar patterns with hepsin, GSTP1 and AMACR. Hepsin and

AMACR are positively correlated with PTEN, RB1 and TP53

in the normal group; but there is no clear pattern in the can-

cerous group. GSTP1 is negatively correlated with PTEN,

RB1 and TP53 both in the normal group and the cancerous

group; but the patterns varies in different groups at an

elevated level.

DISCUSSION

There are complicated molecular changes during cellular

processes from normal state to cancerous state, such as gain

or loss some transcription factors, and change of chemical

compounds. Such changes may result in differential gene–

co-expression patterns in normal state and cancerous state.

Our statistical method is capable of identifying differential

gene–gene co-expression patterns. These patterns are cer-

tainly helpful for us to further understand cancer mechanism

at molecular level.

We have proposed a statistical method for identifying pairs

of genes with differential gene–gene co-expression patterns.
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Fig. 8. Plots for genes hepsin, GSTP1 and AMACR versus tumor suppressor genes PTEN, RB1 and TP53. Circles represent observations from

the normal group and crosses represent observations from the cancerous group.

We extend the traditional F -statistic to obtain the ECF-

statistic, which incorporates statistical information of location

and correlation. Our method is applied to a microarray gene

expression dataset for prostate cancer, and numerous pairs of

genes with differential gene–gene co-expression patterns are

identified. Based on the number of being selected in pairs,

genes are ranked by their importance. Several genes associ-

ated with prostate cancer are on the top list. Some of these

genes cannot be identified by univariate analysis, such as the

F -statistic and its variants. In addition, the results show differ-

ential gene–gene co-expression patterns in different cell states

for genes associated with prostate cancer.

We observe that an efficient data transformation method can

improve simple statistical methods. After data transformation,

the underlying distribution of data agrees more with normal

distribution. Also, more genes with biological significance

are identified using F -statistic. Furthermore, outlier impact

is reduced, leading to fewer false identified differential gene–

gene co-expression patterns.

Since our ECF-statistic incorporates both location and

correlation information, it can be used to identify various

types of differential gene–gene co-expression patterns. In

contrast, Li’s method (2002) only focuses on the difference

of correlations. There are some differential gene–gene

co-expression patterns not identifiable using Li’s method.

For examples, our method identified pairs of genes GSTP1

with tumor suppressor PTEN, RB1 or TP53. Such pairs

cannot be identified by Li’s method because there are neg-

ative correlations in both the normal group and the cancerous

group.

Our statistical method can also be applied to other types

of data, such as mass spectrometry proteomics data. A

biologically interesting topic for future research is to seek

explanations for differential gene–gene co-expression pat-

terns in the normal state and the cancerous state. Statistically,

it is necessary to study the significance of the number of

being selected for a gene. Also, the recent study on multiple

hypothesis testing problem (Benjamini and Hochberg, 1995)

will be useful for false control on numerous selected pairs of

genes. Furthermore, it will be interesting to understand stat-

istical properties of the ECF-statistic, such as its theoretical

distribution and asymptotic behaviors.
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