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Abstract

Large-scale studies of genetic variation may be helpful for understanding the genetic con-
trol mechanisms of viral infection and, ultimately, predicting and eliminating infectious disease
outbreaks. We propose a new statistical model for detecting specific DNA sequence variants
that are responsible for viral infection. This model considers additive, dominance and epistatic
effects of haplotypes from three different genomes, recipient, transmitter and virus, through an
epidemiological process. The model is constructed within the maximum likelihood framework
and implemented with the EM algorithm. A number of hypothesis tests about population genetic
structure and diversity and the pattern of genetic control are formulated. A series of closed forms
for the EM algorithm to estimate haplotype frequencies and haplotype effects in a network of ge-
netic interactions among three genomes are derived. Simulation studies were performed to test
the statistical properties of the model, recommending necessary sample sizes for obtaining rea-
sonably good accuracy and precision of parameter estimation. By integrating, for the first time,
the epidemiological principle of viral infection into genetic mapping, the new model shall find an
immediate application to studying the genetic architecture of viral infection.

KEYWORDS: genetic mapping, haplotype, epidemiological model, viral infection, higher-order
genetic interaction
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1 Introduction

Several serious human diseases, such as AIDS, hepatitis B, and meningitis,
are caused by viruses. On exposure to a pathogen, some people may resist
infection, some become subclinically infected, whereas others progress through
several stages from mild to severe infection. Although such interpersonal
variability may be due to environmental risk factors, strong evidence suggests
that it may also involve a genetic component from the host genome [1,
2, 3, 4, 5, 6, 7]. A growing number of molecular genetic studies provide
new evidence that the spread of many infectious diseases is determined by
genetic interactions of loci from the host and viral genomes [8, 9, 10]. This
can be exemplified by the fact that the transmitted virus differs from the
virus that predominates in the transmitter [11]. Recent work identifies the
control mechanism of intricate host-pathogen interaction networks through
the effectors of microRNAs (miRNAs), a new class of 18–23 nucleotide long
non-coding RNAs [12, 13].

At present, genetic mapping aimed to detect genes for infection diseases is
limited to testing the association between genotypes at particular candidate
genes and disease progression with a familial design or a random set of patients
from a natural population [1], although the availability of whole-genome
polymorphic data allows a genome-wide screen of genes. It is likely that such
a mapping design is too simple to extract precise information from the data
about the genetic control of the disease given its transmission complexities.
It has been recognized that the occurrence, spread and outbreak of infectious
diseases are affected by the ways diseases are transmitted. Diseases are caused
by germs, which are transmitted from one person to another through direct
and indirect contacts. The integration of the transmission mechanisms of
diseases into an epidemiological model can help not only to construct a network
of pathogenic infection and predict the path of disease spread, but also to
simulate various intervention strategies to determine the one that might be
most effective.

In this article, we develop a statistical model for mapping genes and
genetic interactions for infection diseases by incorporating the epidemiological
principle of viral infection. We jointly model the genetic segregation of
the virus and the host. In particular, the host is considered in terms of
both the transmitter and recipient by assuming that the germs carrying
pathogens spread through the exchange of body fluids from sexual contact
or a blood transfusion. Other transmissions via indirect contacts by air,
water and insects, can also be modeled, but will not be considered in this
study. The genetic information of the virus and host will be modeled
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at the haplotype level constructed by high-throughput single nucleotide
polymorphisms (SNPs) [14, 15]. The haplotype model, proven to be powerful
for documenting, mapping and understanding the structure and patterns of
the human genome linked to a complex phenotype [16, 17, 18], can characterize
concrete nucleotides or their combinations that are associated with viral
infection. The model developed provides a quantitative framework for testing
the genetic control of disease infection through additive, dominance, and
different kinds of epistatic interactions. Computer simulation was conducted
to examine the statistical properties of the model and its utilization.

2 Method

2.1 Genetic Design

Suppose there is a natural population at Hardy-Weinberg equilibrium consisting
of patients who are infected by a type of virus. From this diseased population,
we randomly sample a set of patients which are sorted into two groups,
recipients and transmitters. The recipients receive the virus because of their
close contacts with the transmitters. We assume that the transmitter of each
recipient can be traced, allowing two or more recipients to have a common
transmitter. The virus of a transmitter was given by its preceding transmitters.
In this study, we will not consider the preceding transmitters. Now, viral loads
in both the recipients and transmitters are measured as a phenotypic trait. The
demographic factors of the patients, such as sex, age, race, and ethnicity, are
also recorded.

The host genes of these recipients and transmitters as well as the genes of
the virus these host carry are typed for SNPs genome-wide or at particular
candidate regions. Let us first consider two SNPs A (with two alleles A and a)
and B (with two alleles B and b) for the diploid host and two SNPs C (with
an allele C ) and D (with an allele D) for the haploid virus. We use p (and
1− p) to denote the frequency of allele A (and a) and q (and 1− q) to denote
the frequency of allele B (and b) in the host population, and r (and 1 − r)
to denote the frequency of allele C (and c) and s (and 1 − s) to denote the
frequency of allele D (d) in the virus population. The two SNPs for the host
and virus are associated with linkage disequilibrium DH and DV , respectively.
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The frequencies of four haplotypes for the two host SNPs are denoted as

p11 = pq +DH for AB

p10 = p(1− q)−DH for Ab

p01 = (1− p)q −DH for aB

p00 = (1− p)(1− q) +DH for ab.

(1)

The frequencies of four haplotypes for the two virus SNPs are denoted as

q11 = rs+DV for CD

q10 = r(1− s)−DV for Cd

q01 = (1− r)s−DV for cD

q00 = (1− r)(1− s) +DV for cd.

(2)

The four host haplotypes derived from the maternal and paternal parents
are combined at random to generate 9 observable genotypes, AABB (coded
as 1), AABb (coded as 2), ..., aabb (coded as 9). Each of these genotypes
may carry one of four possible virus genotype CD (coded as 1), Cd (coded
as 2), cD (coded as 3), and cd (coded as 4), thus leading to 36 joint host-
virus genotypes. Let Njrjt/jv denote the observation of a joint genotype jrjt/jv
where jr and jt (jr, jt = 1, ..., 9) is a genotype of recipients and transmitters,
respectively, and jv (jv = 1, ..., 4) is a virus genotype. With the independence
assumption, the frequencies of joint host-virus genotypes are expressed as
the products of the host and virus genotype frequencies. Table 1 tabulates
the joint host-virus genotype frequencies expressed in terms of haplotype
frequencies ΩH = (p11, p10, p01, p00) for the host and ΩV = (q11, q10, q01, q00)
for the virus. Three-way composite diplotype frequencies for the recipients,
transmitters, and virus can be obtained by multiplying two-way composite
diplotype frequencies (Table 1) by virus haplotype frequencies q11, q10, q01, and
q00. The expression of genotypic value for a three-way composite diplotype is
given by assuming that AB is the risk haplotype for both the recipients and
transmitters and that CD is the risk haplotype for the virus.
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Table 1: The frequencies of two-way composite diplotypes (and genotypes) at a pair of SNPs from the recipient
and transmitter genomes expressed by host haplotype frequencies.

Transmitter

AABB AABb AAbb AaBB
AaBb

Aabb aaBB aaBb aabb
AB|ab Ab|aB

Recipients RTRT RT R̄T R̄T R̄T RT R̄T RT R̄T R̄T R̄T R̄T R̄T R̄T R̄T R̄T R̄T R̄T R̄T

AABB RRRR
p411 2p311p10 p211p

2
10 2p311p01 2p311p00 2p211p10p01 2p211p10p00 p211p

2
01 2p211p01p00 p211p

2
00

µ22/1 µ21/1 µ20/1 µ21/1 µ21/1 µ20/1 µ20/1 µ20/1 µ20/1 µ20/1

AABb RRR̄R
2p311p10 4p211p

2
10 2p11p310 4p211p10p01 4p211p10p00 4p11p210p01 4p11p210p00 2p11p10p201 4p11p10p01p00 2p11p10p200

µ12/1 µ11/1 µ10/1 µ11/1 µ11/1 µ10/1 µ10/1 µ10/1 µ10/1 µ10/1

AAbb R̄RR̄R
p211p

2
10 2p11p310 p410 2p11p210p01 2p11p210p00 2p310p01 2p310p00 p210p

2
01 2p210p01p00 p210p

2
00

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1

AaBB RRR̄R
2p311p01 4p211p10p01 2p11p210p01 4p211p

2
01 4p211p01p00 4p11p10p201 4p11p10p01p00 2p11p301 4p11p201p00 2p11p01p200

µ12/1 µ11/1 µ10/1 µ11/1 µ11/1 µ10/1 µ10/1 µ10/1 µ10/1 µ10/1

AaBb

AB|ab RRR̄R
2p311p00 4p211p10p00 2p11p210p00 4p211p01p00 4p211p

2
00 4p11p10p01p00 4p11p10p200 2p11p201p00 4p11p01p200 2p11p300

µ12/1 µ11/1 µ10/1 µ11/1 µ11/1 µ10/1 µ10/1 µ10/1 µ10/1 µ10/1

Ab|aB R̄RR̄R
2p211p10p01 4p11p210p01 2p310p01 4p11p10p201 4p11p10p01p00 4p210p

2
01 4p210p01p00 2p10p301 4p10p201p00 2p10p01p200

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1

Aabb R̄RR̄R
2p211p10p00 4p11p210p00 2p310p00 4p11p10p01p00 4p11p10p200 4p210p01p00 4p210p

2
00 2p10p201p00 4p10p01p200 2p10p200

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1

aaBB R̄RR̄R
p211p

2
01 2p11p10p201 p210p

2
01 2p11p301 2p11p201p00 2p10p301 2p10p201p00 p401 2p301p00 p201p

2
00

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1

aaBb R̄RR̄R
2p211p10p00 4p11p210p00 2p310p00 4p11p10p01p00 4p11p10p200 4p210p01p00 4p210p

2
00 2p10p201p00 4p10p01p200 2p10p200

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1

aabb R̄RR̄R
p211p

2
00 2p11p10p200 p210p

2
00 2p11p01p200 2p11p300 2p10p01p200 2p10p300 p201p

2
00 2p01p300 p400

µ02/1 µ01/1 µ00/1 µ01/1 µ01/1 µ00/1 µ00/1 µ00/1 µ00/1 µ00/1
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2.2 Haplotype Effects

We will model the effects of haplotypes, constructed by alleles at different
SNPs on the same chromosome, on the phenotypic trait of viral infection.
Among the four haplotypes, one is assumed to be the risk haplotype, denoted
by RR for the recipients, RT for the transmitters, and RV for the virus, with
the rest as the non-risk haplotype, denoted by rR for the recipients, rT for the
transmitters, and rV for the virus. This will form three composite diplotypes
RRRR, RRrR, and rRrR for the recipients and RTRT , RT rT , and rT rT for the
transmitters. We use lrlt/lv (lr = 2 for RRRR, 1 for RRrR, 0 for rRrR, lt
= 2 for RTRT , 1 for RT rT , 0 for rT rT and lv = 1 for RV and 0 for rV ) to
denote a composite diplotype constructed by the recipient, transmitter, and
virus. According to the quantitative genetic principle [19], we partition the
genotypic value of composite diplotype into different additive, dominant, and
epistatic components as follows:

µ22/1 = µ+ ar + at + iarat + av + iarav + iatav + iaratav

µ21/1 = µ+ ar + dt + iardt + av + iarav + idtav + iardtav

µ20/1 = µ+ ar − at − iarat + av + iarav − iatav − iaratav

µ12/1 = µ+ dr + at + idrat + av + idrav + iatav + idratav

µ11/1 = µ+ dr + dt + idrdt + av + idrav + idtav + idrdtav

µ10/1 = µ+ dr − at − idrat + av + idrav − iatav − idratav

µ02/1 = µ− ar + at − iarat + av − iarav + iatav − iaratav

µ01/1 = µ− ar + dt − iardt + av − iarav + idtav − iardtav

µ00/1 = µ− ar − at + iarat + av − iarav − iatav + iaratav

µ22/0 = µ+ ar + at + iarat − av − iarav − iatav − iaratav

µ21/0 = µ+ ar + dt + iardt − av − iarav − idtav − iardtav

µ20/0 = µ+ ar − at − iarat − av − iarav + iatav + iaratav

µ12/0 = µ+ dr + at + idrat − av − idrav − iatav − idratav

µ11/0 = µ+ dr + dt + idrdt − av − idrav − idtav − idrdtav

µ10/0 = µ+ dr − at − idrat − av − idrav + iatav + idratav

µ02/0 = µ− ar + at − iarat − av + iarav − iatav + iaratav

µ01/0 = µ− ar + dt − iardt − av + iarav − idtav + iardtav

µ00/0 = µ− ar − at + iarat − av + iarav + iatav − iaratav ,

(3)

where

(1) µ is the overall mean,

(2) ar, at, and av are the additive genetic effects of risk haplotypes expressed
in the recipients, transmitters, and virus,
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(3) dr and dt are the dominance genetic effects due to interactions between
risk haplotypes and non-risk haplotypes in the recipients and transmitters,

(4) iarat , iardt , idrat , and idrdt are the additive × additive, additive ×
dominance, dominance× additive, and dominance× dominance epistatic
effects between the recipients and transmitters,

(5) iarav and idrav are the additive × additive and dominance × additive
epistatic effects between the recipients and virus,

(6) iatav and idtav are the additive × additive and dominance × additive
epistatic effects between the transmitters and virus,

(7) iaratav , iardtav , idratav , and idrdtav are the additive × additive × additive,
additive × dominance × additive, dominance × additive × additive,
and dominance × dominance × additive epistatic effects among the
recipients, transmitters, and virus, respectively.

All these genetic effect parameters are arrayed in ΩE.
Different from traditional quantitative genetic models, equation (3) includes

epistatic interactions between genes from different individuals. Individual-
individual interactions have been thought to contribute to the phenotypic
variation of a trait through indirect ways. The model proposed in this article
will provide a procedure for estimating these interaction effects and testing
their roles in the genetic control of complex traits.

2.3 Likelihood and Estimation

To simplify the description of the model being developed, we will ignore
covariate effects in the model although it is straightforward to incorporate
these effects. Thus, the phenotypic value of viral infection for recipient i is
expressed as the sum of genetic effects and residual errors, i.e.,

yi =
0∑

jr=2

0∑
jt=2

0∑
jv=2

ξiµlrlt/lv + ei, (4)

where ξi is the indicator variable defined as 1 if recipient i with composite
diplotype lr is given a virus of risk haplotype lv by a transmitter of composite
diplotype lt, and 0 otherwise, µlrlt/lv is the genotypic value explained in
equation (3), and ei is the residual error which is independently and identically
distributed with mean 0 and variance σ2. Because viral loads tend to have a
skewed distribution, the log-transformation of the data may be more suitable
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for this model which assumes normality of residual error. To preserve the
biological feature of parameters, a transforms-both-sides approach as used by
Wu et al. [20] may be used.

The joint likelihood of parameters given marker data for the recipients
(MR), transmitters (MT ), and virus (MV ) and phenotypic data for the
recipients (y) is constructed as

L(ΩH ,ΩV ,ΩE, σ
2|MR,MT ,MV , y)

= L(ΩH ,ΩV |MR,MT ,MV ) + L(ΩE, σ
2|MR,MT ,MV , y; ΩH ,ΩV ) (5)

where the first term is the likelihood of haplotype frequencies for the hosts and
virus and the second term is the likelihood of haplotype effects and variation
constructed on the haplotype frequencies. To maximize the likelihood (5), we
can maximize its two terms individually.

The estimates of haplotype frequencies are obtained via maximizing
L(ΩH ,ΩV |MR,MT , MV ) from which virus haplotype frequencies can be
estimated directly using

qjv =
1

N

9∑
jr=1

9∑
jt=1

Njtjv/jv , (6)

where N =
∑9

jr=1

∑9
jt=1

∑4
jv=1Njtjv/jv , and host haplotype frequencies are

estimated by implementing the EM algorithm. In the E step, the proportion
of a diplotype in a double heterozygote is calculated using

π =
p11p00

p11p00 + p10p00

. (7)

In the M step, the calculated proportion is used to estimate host haplotype
frequencies by

p11 =
1

4N

4∑
jv=1

[
4N11/jv + 3(N12/jv +N21/jv +N14/jv +N41/jv)+

+2(N22/jv +N44/jvN13/jv +N31/jv +N16/jv +N61/jv +N17/jv

+N71/jv +N18/jv +N81/jv +N19/jvN91/jv +N24/jv +N42/jv)
+N23/jv +N32/jv +N26/jv +N62/jv +N27/jv +N72/jv +N28/jv

+N82/jv +N29/jv +N92/jv +N34/jv +N43/jv +N46/jv +N64/jv

+N47/jv +N74/jv +N48/jv +N84/jv +N49/jv +N94/jv

+π(3N15/jv + 3N51/jv + 2N25/jv + 2N52/jv +N35/jv +N53/jv

+2N45/jv + 2N54/jv +N56/jv +N65/jv +N57/jv +N75/jv

+N85/jv +N58/jv +N59/jv +N95/jv) + (1− π)
(
2N15/jv

+2N51/jv +N25/jv +N52/jv +N45/jv +N54/jv

)
+ 2πN55/jv

]
,

(8)
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p10 =
1

4n

1∑
k=0

[
4N33/jv + 3(N23/jv +N32/jv +N36/jv +N63/jv)

+2(N22/jv +N66/jv +N13/jv +N31/jv +N26/jv +N62/jv +N34/jv

+N43/jv +N37/jv +N73/jv +N38/jv +N83/jv +N39/jv +N93/jv)
+N12/jv +N21/jv +N16/jv +N61/jv +N24/jv +N42/jv +N27/jv

+N72/jv +N28/jv +N82/jv +N29/jv +N92/jv +N46/jv +N64/jv

+N67/jv +N76/jv +N68/jv +N86/jv +N69/jv +N96/jv

+(1− π)
(
N15/jv +N51/jv + 2N25/jv + 2N52/jv + 3N35/jv + 3N53/jv

+N45/jv +N54/jv + 2N56/jv + 2N65/jv +N57/jv +N75/jv +N85/jv

+N58/jv +N59/jv +N95/jv

)
+ π
(
N25/jv +N52/jv + 2N35/jv

+2N53/jv +N56/jv +N65/jv) + 2(1− π)N55/jv

]
,

(9)

p01 =
1

4N

1∑
k=0

[
4N77/jv + 3(N47/jv +N74/jv +N78/jv +N87/jv)

+2
(
N44/jv +N88/jv +N17/jv +N71/jv +N27/jv +N72/jv +N37/jv

+N73/jv +N67/jv +N76/jv +N48/jv +N84/jv +N79/jv +N97/jv)
+N14/jv +N41/jv +N24/jv +N42/jv +N34/jv +N43/jv +N46/jv

+N64/jv +N18/jv +N81/jv +N28/jv +N82/jv +N38/jv +N83/jv

+N68/jv +N86/jv +N49/jv +N94/jv +N89/jv +N98/jv

+(1− π)
(
N15/jv +N51/jv +N25/jv +N52/jv +N35/jv +N53/jv

+2N45/jv + 2N54/jv +N56/jv +N65/jv + 3N57/jv + 3N75/jv

+2N85/jv + 2N58/jv +N59/jv +N95/jv

)
+ π
(
N45/jv +N54/jv

+2N57/jv + 2N75/jv +N58/jv +N85/jv

)
+ 2(1− π)N55/jv

]
,

(10)

p00 =
1

4N

1∑
k=0

[
4N99/jv + 3(N69/jv +N96/jv +N89/jv +N98/jv)

+2
(
N66/jv +N88/jv +N19/jv +N91/jv +N29/jv +N92/jv +N39/jv

+N93/jv +N49/jv +N94/jv +N79/jv +N97/jv +N69/jv +N96k

)
+N16/jv +N61/jv +N26/jv +N62/jv +N36/jv +N63/jv +N46/jv

N64/jv +N67/jv +N76/jv +N18/jv +N81/jv +N28/jv +N82/jv

+N38/jv +N83 +N48/jv +N84/jv +N78/jv +N87/jv

+π
(
N15/jv +N51/jv +N25/jv +N52/jv +N35/jv +N53/jv +N45/jv

+N54/jv + 2N56/jv + 2N65/jv +N57/jv +N75/jv + 2N85/jv + 2N58/jv

+3N59/jv + 3N95/jv

)
+ (1− π)

(
N65/jv +N56/jv +N85/jv +N58/jv

+2N95/jv + 2N59/jv

)
+ 2πN55/jv

]
.

(11)
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The E and M steps are iterated between equations (7) and (8)–(11) until
the estimates are stable. The estimated haplotype frequencies can be used to
solve the linkage disequilibrium between two SNPs in the host and virus using
equations (1) and (2).

The construction of likelihood L(ΩE, σ
2|MR,MT ,MV , y; ΩH ,ΩV ) needs

the assumption of a risk haplotype (and therefore composite diplotypes). Table
1 shows the distribution of composite diplotypes by assuming that AB is the
risk haplotype for both the recipients and transmitters and that CD is the risk
haplotype for the virus. Based on this information, we construct the mixture
model-based likelihood as follows:

L(ΩE, σ
2|MR,MT ,MV , y; ΩH ,ΩV )

=

{n11/1∏
i=1

f22/1(yi)

n12/1∏
i=1

f21/1(yi) · · ·
n15/1∏
i=1

[
πf21/1(yi) + (1− π)f20/1(yi)

]
· · ·

×
n55/1∏
i=1

[
π2f11/1(yi) + π(1− π)f10/1(yi) + (1− π)πf01/1(yi)

+(1− π)2f00/1(yi)
]
· · ·

×
n95/1∏
i=1

[πf01/1(yi) + (1− π)f00/1(yi)] · · ·
n99/1∏
i=1

f00/1(yi)

}

×
4∏

jv=2

{n11/jv∏
i=1

f22/0(yi)

n12/jv∏
i=1

f21/0(yi)· · ·
n15/jv∏
i=1

[πf21/0(yi) + (1− π)f20/0(yi)]· · ·

×
n55/jv∏
i=1

[π2f11/0(yi) + π(1− π)f10/0(yi) + (1− π)πf01/0(yi)

+(1− π)2f00/0(yi)] · · ·

×
n95/jv∏
i=1

[πf01/0(yi) + (1− π)f00/0(yi)] · · ·
n99/jv∏
i=1

f00/0(yi)

}
, (12)

where flrlt/lv(yi) is assumed to be a normal distribution with mean µlrlt/lv and
variance σ2.

The EM algorithm is implemented to solve the likelihood (12). In the
E step, the posterior probability with which recipient i carries a particular
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composite diplotype is calculated using the following formulas:

Π21/1|i =
πf21/1(yi)

πf21/1(yi) + (1− π)f20/1(yi)
,

Π11/1|i =
πf11/1(yi)

πf11/1(yi) + (1− π)f10/1(yi)
,

Π01/1|i =
πf01/1(yi)

πf01/1(yi) + (1− π)f00/1(yi)
,

... (13)

Φ1i
=

π2f11(yi)

π2f11(yi) + π(1− π)f10(yi) + (1− π)πf01(yi) + (1− π)2f00(yi)
,

Φ2i
=

π(1− π)f10(yi)

π2f11(yi) + π(1− π)f10(yi) + (1− π)πf01(yi) + (1− π)2f00(yi)
,

Φ3i
=

(1− π)πf01(yi)

π2f11(yi) + π(1− π)f10(yi) + (1− π)πf01(yi) + (1− π)2f00(yi)
,

Φ4i
=

(1− π)2f00(yi)

π2f11(yi) + π(1− π)f10(yi) + (1− π)πf01(yi) + (1− π)2f00(yi)
.

In the M step, the genotypic values of each composite diplotype and
residual variance are estimated with the calculated posterior probabilities using
the log-likelihood equations as follows:

µ̂22/1 =

∑N11/1

i=1 yi
N11/1

,

µ̂21/1 =

∑N12/1

i=1 yi +
∑N14/1

i=1 yi +
∑N15/1

i=1 Π21/1|iyi

N12/1 +N14/1 +
∑N15/1

i=1 Π21/1|i
,

...

µ̂00/0 =

∑Ṅ
i=1 yi +

∑N̈
i=1 Π21/1|iyi +

∑N55/0

i=1 Φ4i
yi

Ṅ +
∑N̈

i=1 Π21/1|i +
∑N55/0

i=1 (1− Π21/1|i)2
,

σ̂2 =
1

N

[N11/1∑
i=1

(yi − µ22/1)2 +

N12/1∑
i=1

(yi − µ21/1)2 +

N14/1∑
i=1

(yi − µ21/1)2

+

N15/1∑
i=1

Π21/1|i(yi − µ21/1)2 + · · ·+
Ṅ∑
i=1

(yi − µ00/0)2

+
N̈∑
i=1

Π21/1|i(yi − µ00/0)2 +

N55/0∑
i=1

Φ4i
(yi − µ00/0)2

]
,

(14)
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where Ṅ = N33/0 + N36/0 + N63/0 + N37/0 + N73/0 + N38/0 + N83/0 + N39/0 +

N93/0 +
∑9

i=6

∑9
j=6Nij/0, N̈ = N35/0 +N53/0 +N56/0 +N65/0 +N57/0 +N75/0 +

N58/0 +N85/0 +N59/0 +N95/0.
The E and M steps are iterated between equations (13) and (14) until stable

estimates are obtained. The additive and dominance effects of risk haplotypes
in the recipients, transmitters, and virus, as well as the epistatic effects of
different kinds between these three different genomes, can be estimated with
equation (3).

In practice, we do not know real risk haplotypes for viral loads. The most
likely risk haplotypes for the recipients, transmitters, and virus are determined
from the likelihoods estimated for all possible (4×4×2 = 32) combinations of
risk haplotypes. The largest likelihood corresponds to the optimal combination
of risk haplotypes that fit the data.

2.4 Hypothesis Tests

The model proposed can formulate a number of hypotheses about the detailed
genetic control mechanisms of viral loads. The first hypothesis is about
the significance of risk haplotypes derived from the three different genomes,
recipients, transmitters, and virus. The null hypothesis for this test is

H0 : µlrlt/lv ≡ µ, for lr, lt = 2, 1, 0; lv = 1, 0 (15)

The likelihood ratio (LR) for the null and alternative hypotheses is calculated
and compared with the critical threshold determined from permutation tests
[21]. By reshuffling the phenotypic values among subjects, a new data set is
generated for which the LR value is calculated. This procedure is repeated
1000 times, obtaining the distribution of LR values under the null hypothesis
(15). Thus, by comparing the LR value calculated from real data with this
LR distribution, the empirical p-value can be determined. If significant risk
haplotypes are found to exist, the next is to test how these risk haplotypes
trigger an effect on viral loads. This can be done by testing individual
genetic effects in the following sequence, three-genome interactions, two-
genome interactions, and main effects (including the additive and dominance).

11

Li et al.: Genetic Mapping of Viral Infection

Published by The Berkeley Electronic Press, 2009



Although studies of three-way interactions have not received adequate
attention, their role in the genetic control of complex diseases may be dramatic.
The model developed allows the identification of three-way epistasis among the
recipients, transmitters, and viruses. The null hypothesis for doing this can
be formulated as

H0 : iaratav = iardtav = idratav = idrdtav = 0. (16)

Whether the risk haplotypes from the recipients interact with those from
the transmitters can be tested using

H0 : iarat = iardt = idrat = idrdt = 0. (17)

If each of these epistatic interactions between different genomes is tested,
the model allows the characterization of specific genetic control mechanisms
for viral infection. For example, among four kinds of epistatic interactions,
additive × additive, additive × dominance, dominance × additive, and
dominance × dominance, which one is the most important in affecting
viral infection. Similarly, epistatic interactions between the recipients or
transmitters and viruses can also be tested, respectively, using

H0 : iarav = idrvv = 0, (18)

H0 : iatav = idtvv = 0. (19)

The influences of risk haplotype derived from the recipients, transmitters,
and virus can be tested, respectively, using

H0 : ar = dr = 0, (20)

H0 : at = dt = 0, (21)

H0 : av = 0. (22)

The additive and dominance effects due to risk haplotypes of the recipients
and transmitters can be tested individually.

Because the null hypotheses (16)–(22) are nested within their alternative,
the likelihood ratios calculated can be thought to asymptotically follow a χ-
distribution with the degree of freedom equal to the difference in the number of
parameters between the alternative and null hypotheses. Also, the estimates
of genotypic values for each composite diplotype under the null hypotheses
can be obtained with a similar EM procedure derived under the alternative
hypothesis, although a series of constraints that define relationships between
specific genotypic values need to be incorporated.
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3 Monte Carlo Simulation

Simulation studies with the aid of computer were performed to investigate
the statistical properties of the model proposed. A group of patients from a
natural population were simulated as recipients and the people who transmit
virus into these recipients are assumed to be known. We simulated marker
data for the recipients, transmitters, and virus at a candidate gene for viral
infection using given haplotype frequencies (calculated from allele frequencies
at different SNPs and their linkage disequilibria in the hosts and virus; Table
2). Meanwhile, the phenotypic data of viral loads in the recipients were
simulated by assuming that they follow a normal distribution. The simulation
was conducted under several scenarios including different sample sizes of
recipients (200 to 2000) and different heritabilities (0.1 and 0.4). The true
additive, dominance and epistatic effects of different kinds and orders in the
recipients, transmitters, and virus are given in Tables 3 and 4, which were used
to simulate the phenotypic data under different heritabilities.

The model was used to analyze the simulated data, showing reasonably
good estimates of all population and quantitative genetic parameters. Not
surprisingly, haplotype frequencies in the hosts can be very well estimated
even with a modest sample size (200), partly because we derived a closed
form for the EM algorithm within the mixture model framework (Table 2).
When sample sizes increases to 2000, a small linkage disequilibrium with a
value being its lower bound can be precisely estimated (results not shown).
Although our simulation considers highly heterozygous markers (for which the
frequencies of two alternative alleles are similar), haplotype frequencies and
linkage disequilibria for less heterozygous markers (for which the frequencies of
two alternative alleles are very different) can also be reasonably estimated with
a modest sample size (200) (results not shown). The estimates of haplotype
frequencies in the virus are not shown since these estimates are obtained
directly from an analytical expression.

Tables 3 and 4 give the results of estimation of haplotype effect parameters
using the model. First, the additive and additive × additive epistatic
effects can be very well estimated for the recipients, transmitters, and virus
because these parameters hold a linear relationship with the number of risk
haplotypes. As an interaction parameter between the risk haplotype and
non-risk haplotype, the dominance effects are more difficult to estimate as
compared to the additive and additive × additive epistatic effects. The
estimates of the epistatic effects involving the dominance are also less precise;
this is particularly for the dominance × dominance epistasis. Second, epistatic
effects of higher orders among the recipients, transmitters, and virus show
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similar estimation precision compared to those of lower order because only
the additive effect is included for the virus gene. This results suggests that it
is methodologically feasible to include the estimates of higher-order epistasis
given its possible important role in disease infection. Third, sample size and
heritability are two important factors for the precision of parameter estimation.
For the additive and additive × additive epistatic effects, a modest sample
size (200) and heritability level (0.1) would be sufficient for their precise
estimation. Under such a modest heritability, the estimation of dominance
effects needs a sample size of 400 or more, whereas a sample size of 800 or
more is required for the estimation of dominance × dominance epistatic effects.
When heritability increases to 0.4, a much smaller sample size is sufficient for
parameter estimation.

We also examined the power of the model to detect epistatic effects (Table
4). It is found that the model has great power to detect epistatic effects
between genes from different genomes even with a modest sample size and
under a modest heritability level. Because risk haplotypes are not known for
a practical data set, we tested the model’s power to correctly identify risk
haplotypes for the hosts and virus. One can always correctly detect the risk
haplotype of the virus since no missing data exist. Our power analysis focuses
on the detection of risk haplotypes for the hosts (Table 5). When heritability
is 0.1, the sample size of 200 will have about 70% to correctly detect risk
haplotypes. The power will increase to 99% if heritability is 0.4, or 0.86 if

Table 2: The means (upper) and standard errors (lower) of maximum
likelihood estimates of haplotype frequencies for a pair of SNPs from the hosts
obtained from 100 simulation replicates under different sample sizes.

n pa pb DH

200
0.601 0.598 0.079

0.0018 0.0017 0.0011

400
0.601 0.601 0.080

0.0012 0.0013 0.0007

800
0.601 0.600 0.0789

0.0009 0.0009 0.0005

2000
0.600 0.599 0.080

0.0005 0.0006 0.0003
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sample size is doubled. From the above precision and power analysis, we
recommend that a sample size of 400 is required when the heritability of a
viral infection trait is high (0.4), whereas at least 800 patients are needed if
the trait has a modest heritability (0.1). Under each simulation scheme, type
I error rates were calculated by analyzing the data simulated under the null
hypothesis. Type I error rates are in a range of 0 to 0.10, suggesting that the
size of the test is preserved.

4 Discussion

We develop a new statistical model for mapping and identify genes for viral
infection at the DNA sequence level. The model will find its immediate
application to disease gene discovery given the increasing availability of single
nucleotide polymorphisms (SNPs) stemming from a rapid development of high-
throughput genotyping techniques. The model is particularly appealing to
a genome-wide association study (GWAS), in which half a million or more
SNPs are typed [22], aimed to uncover all of the DNA sequence variants
that affect an individual’s risk of disease. Different from existing mapping
approaches, this model is characterized by several features. First, it integrates
the epidemiological behavior of infectious disease into a statistical model for
genetic mapping, thus allowing the test of genetic control of the spread of
viral infection. According to mathematical analyses by Meyers and colleagues,
the contact patterns of disease transmission in a community are central to
understanding the outbreak or epidemics of an infectious disease [23, 24].
Thus, our model incorporating the genetic influence of contact people shall
be more useful and relevant for mapping disease genes.

Second, the new model constructs a general framework for estimating
and testing epistatic interactions between genes from different genomes
including recipients, transmitters, and viruses. It has been recognized that
genome-genome or individual-individual interactions play an important role
in increasing genetic diversity and variation [25] and therefore organisms’
adaptation to changing environments [26]. The model will provide a procedure
for testing the effects of genome-genome interactions on viral dynamics and
evolution. Also, the model allows the characterization of epistatic interactions
of high orders. In the past, higher-order epistasis involving three genes or more
has been generally ignored for simplifying analyses, but its importance should
be re-appreciated given the complexity of a genetic network for a complex
trait [27]. We provide a series of hypothesis tests about the effects of various
epistatic interactions, providing an analytical approach for understanding the
genetic control mechanisms of disease infection.
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Table 3: The means (upper) and standard errors (lower) of maximum
likelihood estimates of quantitative genetic parameters for three-way
haplotypes derived from the recipients, transmitters, and virus obtained from
100 simulation replicates under different heritabilities (H2) and sample sizes
(N). True values for quantitative genetic parameters are given in parentheses.
The second half of the model parameters are presented in Table 4.

µ ar at dr dt iarat iardt idrat idrdt

H2 N (10) (1) (0.8) (0.5) (0.8) (0.6) (0.5) (0.5) (0.4)

0.1

200
10.124 0.939 0.671 0.427 0.598 0.826 0.646 0.654 0.534
0.1011 0.0986 0.0853 0.1427 0.1458 0.1189 0.1348 0.01450 0.1931

400
10.022 1.042 0.757 0.521 0.858 0.645 0.497 0.700 0.280
0.0705 0.0689 0.0685 0.1052 0.0998 0.0674 0.0876 0.0967 0.1569

800
9.960 0.937 0.866 0.574 0.889 0.541 0.514 0.397 0.275
0.0436 0.0502 0.0421 0.0676 0.0688 0.0433 0.0778 0.0716 0.0930

2000
10.036 1.022 0.818 0.484 0.761 0.573 0.463 0.473 0.409
0.0312 0.0277 0.0265 0.0392 0.045 0.0281 0.0433 0.0416 0.0652

0.4

200
10.010 1.001 0.797 0.588 0.773 0.621 0.486 0.523 0.382
0.0389 0.0408 0.0439 0.0573 0.0584 0.0416 0.0588 0.0669 0.0796

400
10.033 0.997 0.805 0.483 0.728 0.600 0.475 0.484 0.455
0.0289 0.0316 0.0312 0.0400 0.0426 0.0259 0.0432 0.0480 0.0602

800
9.973 1.001 0.788 0.572 0.804 0.601 0.513 0.557 0.365
0.0190 0.0202 0.0184 0.0247 0.0272 0.0196 0.0298 0.0253 0.0384

2000
10.007 1.007 0.801 0.500 0.812 0.612 0.514 0.489 0.386
0.0120 0.0120 0.0111 0.0188 0.0181 0.0118 0.0179 0.0169 0.0264
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Table 4: This is a continuation of Table 3. True values for quantitative genetic
parameters are given in parentheses. The power to detect all genetic effects
(including the main and across-genome epistatic of all orders) is given.

av iarav iatav idrav idtav iaratav iardtav idratav idrdtav Power
H2 N (1) (0.4) (0.3) (0.15) (0.3) (0.2) (0.12) (0.08) (0.05)

0.1

200
0.895 0.266 0.321 0.214 0.274 0.125 0.038 0.039 -0.010 0.95
0.1049 0.1041 0.0987 0.1386 0.1285 0.1046 0.1336 0.1400 0.1991

400
0.990 0.359 0.313 0.067 0.293 0.140 0.206 -0.092 0.123 1
0.0732 0.0669 0.0685 0.1045 0.1043 0.0720 0.0913 0.1085 0.1431

800
0.997 0.352 0.200 0.139 0.294 0.208 0.253 0.210 0.071 1
0.0467 0.0497 0.0508 0.0714 0.0700 0.0479 0.0689 0.0791 0.1046

2000
0.998 0.399 0.322 0.118 0.296 0.183 0.129 0.105 0.038 1
0.0295 0.0312 0.0311 0.0426 0.0469 0.0287 0.0470 0.0437 0.0582

0.4

200
1.050 0.402 0.336 0.097 0.292 0.120 0.127 0.005 0.069 1
0.0455 0.0411 0.0461 0.0664 0.0617 0.0406 0.0605 0.0630 0.0894

400
1.039 0.432 0.313 0.155 0.236 0.191 0.081 0.060 0.042 1
0.0290 0.0292 0.0272 0.0392 0.0425 0.0305 0.0433 0.0402 0.0543

800
1.012 0.417 0.323 0.110 0.283 0.189 0.069 0.030 0.089 1
0.0176 0.0171 0.0198 0.0274 0.0265 0.0183 0.0261 0.0287 0.0394

2000
1.008 0.399 0.277 0.154 0.293 0.206 0.120 0.099 0.050 1
0.0128 0.0101 0.0123 0.0182 0.0182 0.0112 0.0178 0.0170 0.0280

Although the model has a complex structure (see Table 1), parameter
estimation is found to be efficient in terms of the choice of initial values
and convergence rate because the estimation is based on the closed form
solutions for the EM algorithm. We performed computer simulation to
examine the precision of parameter estimation and power of the model
by considering different sample sizes and heritabilities. In general, the
model provides reasonably good estimates of all population and quantitative
genetic parameters, although the influences of sample size and heritability
are different, depending on the type of parameters. From simulation results,
we recommend the use of appropriate sample sizes under different heritability
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Table 5: The means of log-likelihood ratios for detecting significant haplotype
effects from 100 simulated data sets by assuming that risk haplotype is any
one of four possible haplotypes for the host. The true risk haplotype for
the simulated data sets is haplotype AB. The power to correctly detect risk
haplotype for the host is given.

Assumed Risk Haplotype

H2 N AB Ab aB ab Power

0.1 200 29.43 16.86 16.23 19.20 0.67

0.4 200 98.05 44.32 43.59 55.70 0.99

0.1 400 46.27 25.66 24.57 29.11 0.86

0.4 400 181.15 80.32 76.46 101.07 1

0.1 800 80.69 43.92 39.02 50.96 1

0.4 800 352.41 151.54 150.56 195.94 1

0.1 2000 194.47 97.84 91.20 117.09 1

0.4 2000 862.63 365.85 360.20 481.12 1

levels. If an infection trait has a high heritability (say 0.4), 400 patients will be
sufficient to get reasonable parameter estimates and power for all genetic effect
parameters including dominance × dominance epistasis. Yet, this number
should increases to 800 or more with a modest heritability (say 0.1).

The model is founded on viral transmission from one person to other
through sexual intercourse. This mechanism is thought to be a major cause of
HIV transmissions worldwide [11]. The epidemiological mechanisms of virus
transmission can be better understood by identifying the events that occur in
genital or rectal mucosa during transmission. The model assumes the same
extent of sexual transmission for all the transmitters, but new data indicate
that the extent depends on the phase of the infection, and is much higher
during acute infection [28, 29]. It is crucial to incorporate such information and
other mechanisms of viral transmission via indirect contacts into the mapping
model, making it clinically more relevant.
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There are a number of issues in both statistics and genetics which can
be or need to be addressed. First, we consider a single phenotypic trait,
but this is often insufficient to capture the comprehensive picture of genetic
control of viral infection. Joint modeling of viral dynamics and human immune
response traits, implemented with functional mapping [30, 31, 32, 33], will
help to elucidate the dynamic and pleiotropic pattern of genes for infectious
diseases. Also, when the model is applied in practice, we will need to
incorporate covariate effects due to race, gender, age, body mass, etc. Second,
the model considers haplotypes constructed by two SNPs, but the extension
to including a large number of SNPs is technically straightforward although
the computing requirements are much greater. All these haplotype models
should be embedded into a general framework of GWAS. By scanning every
set of SNPs across the genome, the genome-wide distribution, organization,
and effects of significant haplotypes can be illustrated. But a critical issue of
correcting the false-positive rate should be addressed here where corrections
are ubiquitous between different pairs of SNPs through linkage disequilibria.

Third, the idea of the model proposed can be used in modeling the genetic
interactions for malaria that include the co-evolution of three eukaryotic
genomes, parasites, mosquitoes, and humans [34]. A recently launched global
network for malaria genomic epidemiology is assembling genome data from
these genomes [35], from which new discoveries for the genetic basis of
malaria can be made with our model. In any case, a rapidly evolving body
of knowledge about host genes and their interactions with viral genes and
stochastic epidemiological models used to better describe infectious processes
will strengthen our ability to understand the genetic control of infectious
diseases. By integrating this knowledge into clinical and public health practice,
we will be in a good position to control and prevent infectious disease in ways
that provide the greatest benefit and least harm at a reasonable cost.
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