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A Statistical Model for Hourly Large-Scale Wind
and Photovoltaic Generation in New Locations

Jussi Ekström, Matti Koivisto, Ilkka Mellin, John Millar, Member, IEEE and Matti Lehtonen, Member, IEEE

Abstract—The analysis of large-scale wind and photovoltaic
(PV) energy generation is of vital importance in power systems
where their penetration is high. This paper presents a modular
methodology to assess the power generation and volatility of a
system consisting of both PV plants (PVPs) and wind power
plants (WPPs) in new locations. The methodology is based on
statistical modelling of PV and WPP locations with a vector
autoregressive model, which takes into account both the temporal
correlations in individual plants and the spatial correlations
between the plants. The spatial correlations are linked through
distances between the locations, which allows the methodology
to be used to assess scenarios with PVPs and WPPs in multiple
locations without actual measurement data. The methodology can
be applied by the transmission and distribution system operators
when analysing the effects and feasibility of new PVPs and
WPPs in system planning. The model is verified against hourly
measured wind speed and solar irradiance data from Finland. A
case study assessing the impact of the geographical distribution
of the PVPs and WPPs on aggregate power generation and its
variability is presented.

Index Terms—Monte Carlo simulation, photovoltaic (PV)
power generation, renewable energy, vector autoregressive model,
wind power generation.

I. INTRODUCTION

T
HE installed capacities and overall penetration of stochas-

tic renewable energy sources (RES), such as PVPs and

WPPs, have been increasing rapidly in past years, and this

progress is expected to continue in the future. As the penetra-

tion of RES increases, there arise several difficulties related

to the operation and planning of power systems due to the

variability in the generation caused by the stochastic nature

of these energy sources, such as severe power ramps, both up

and down, and increased volatility in the power generation in

general. Therefore, the modelling of the PV and wind power

generation, and especially its variability, together to understand

the combined effects of large-scale PV and wind power

generation on the power system becomes crucial. This applies

for both transmission and distribution system operators, and

also for power producers with RES in their portfolio.

Wind power variability modelling and long-term simulations

have been a topic of interest for several years, and have

been published extensively, [1]–[4]. Large-scale PV generation

has also been modelled and studied widely with different
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methodologies and objectives during past years [5]–[9]. The

methodologies to model PV and wind power generation and

variability separately in new generation locations without

actual measurement data, i.e. in non-measured locations, have

been presented in [10], [11]. The modelling of power systems

with both PV and wind power is a current topic, and is being

actively researched and published, [12]–[15]. The impacts of

the geographical distributions of the PV or wind generation

have been analysed separately in [10], [11], [16]. However,

statistical modelling of systems with both PV and wind gen-

eration in non-measured locations and the analyses of different

geographical distributions of the generation locations in such

systems are scarce.

The copula method has been commonly used with wind

and solar modelling to separate the dependency structures in

several locations from the marginal probability distributions

(margins) of the individual locations [2], [6], [17]. This

approach is used as the base of the modelling in this paper.

The dependency structures can be divided into spatial and

temporal dependencies, which can be modelled in various

ways. The temporal dependencies have been modelled for

each individual location with, e.g., autoregressive (AR) models

and the spatial correlations between the individual locations

with spatial correlation matrices in [10], [18]. Alternative

approaches have been to model the temporal and spatial

dependencies together with, e.g., artificial neural networks

(ANNs) [3], [4], or with vector autoregressive (VAR) models

[4], [17], [19].

The paper contributes to the literature by presenting a

modular statistical modelling methodology for both WPPs and

PVPs. The methodology combines the core functionality of

the wind power simulation model introduced in [10] and the

PV simulation model presented in [11]. The methodology

is based on a VAR model, which is able to capture both

the temporal correlations in both types of generation and the

spatial correlations between the installation locations. It is used

with Monte Carlo (MC) simulations to model the PV and wind

energy generation simultaneously, and to evaluate the volatility

and energy output of a generation mix consisting of both PVPs

and WPPs.

The methodology is able to model non-measured locations,

which is crucial for versatile applicability, as new generation is

constantly being planned and measurements are not available

from all locations of interest. Although applied in to Finnish

data in this paper, the methodology is applicable in any geo-

graphical area where measurements for parameter estimation

are available. One of the key benefits of the methodology

is also its modular structure, which allows the usage of

different WPP and PVP power generation models within the
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methodology.

This paper proceeds as follows. Section II presents the

data and the marginal distributions. Section III presents the

modelling of the dependency structures by specifying the

VAR model and its parameters. Section IV describes the

modelling of non-measured wind speed and solar irradiance

locations. Section V assesses the simulation results of the out-

of-sample test locations. Section VI conducts a case study of

the impact of the geographical distribution of the PV and wind

power generation locations on the aggregate power generation.

Section VII presents the conclusions drawn from the presented

models and results.

II. THE DATA AND THE MARGINAL DISTRIBUTIONS

This section presents the used datasets and the estimated

marginal distributions for wind speed and solar irradiance.

Fig. 1 shows the complete simulation procedure. The steps

are presented in detail in Sections II, III and IV.

Fig. 1. The flowchart of the MC simulation procedure. The tiles with the
blue background indicate simulated data and white background operations.

A. The Data

The wind speed simulation related dataset used in this paper

is the same utilized in [10]. Most importantly, it consists of

hourly high altitude wind speed time series measured from 12

locations and low altitude measurements from 19 locations in

Finland. The high altitude measurement height varies from 74

meters up to 150 meters above the surrounding ground level

and the measurement lengths vary from location to location

between one to three years. A more detailed specification of

the dataset can be found in [10].

The solar dataset is obtained from the Finnish Meteorologi-

cal Institute and consists of measured hourly global horizontal

irradiance (including both direct normal and diffuse horizontal

irradiance) and temperature time series from eight locations in

Finland. The measurement lengths vary from location to loca-

tion between one and five years. A more detailed specification

of the dataset can be found in [11].

As the wind speed and irradiance data both have the

resolution of one hour, it is the time resolution adopted in

this paper. The high altitude wind speed and global irradiance

measurement locations used for the estimation of the spatial

correlations and the two out-of-sample test locations are shown

in Fig. 2.

Fig. 2. The wind speed (blue circles) and global irradiance (red circles)
measurement locations and the two out-of-sample test locations (magenta
circles) in Finland.

B. The Marginal Distributions

Weibull distributions are widely utilized to represent the

distribution of wind speeds in a given location [10]. They

are also used as margins to describe the local wind speed

conditions in this paper.

For solar locations, clear-sky index distributions are used

as margins in the simulations, as in [11]. The clear-sky index

data are obtained by dividing the measured global irradiance

with the estimated clear-sky irradiance. The clear-sky irradi-

ance contains the theoretical maximums, i.e. the deterministic

component, caused by the movements of the earth and the

sun, of the global irradiance. The clear-sky index data contain

the stochastic component (the deviation from that theoretical

maximum) of the global irradiance, caused by e.g. the clouds.

For location i at time t, the clear-sky index is obtained as



1949-3029 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2017.2682338, IEEE

Transactions on Sustainable Energy

3

kTi,t =
Ei,t

ECS
i,t

, (1)

where Ei,t is the measured (or simulated) global irradiance and

ECS
i,t is the clear-sky irradiance. When the clear-sky irradiance

is zero, kTi,t is not defined, i.e. the clear-sky index data

are defined only during the hours when the sun is above

the horizon. The clear-sky index data kT,t are modelled as

a stochastic variable using the VAR model, and model the

deviation from the theoretical maximum irradiance (i.e. the

cloudiness).

The VAR model generally assumes normally distributed

margins [20]. Therefore, the wind speed and clear-sky index

data are transformed to data with normally distributed margins,

zwD
t with the probability integral transformation, where wD

means with day structures (i.e. diurnal structures are not yet

removed)

zwD
i,t = F−1

N [F̂i(yi,t)], (2)

where F−1

N is the inverse cumulative distribution function

(CDF) of the standard normal distribution, F̂i is the estimated

clear-sky index or Weibull margin for location i, and yi,t =
kTi,t for solar measurement locations and the wind speed

data for wind measurement locations. The transformation to

normally distributed margins, despite the t-distributed errors,

is an appropriate approach when the error terms are modelled

separately from the conditional mean model (the VAR model).

Separate modelling of the errors is commonly used, e.g.,

in ARMA-GARCH modelling, where the GARCH part can

include errors that are not normally distributed [21]. A similar

approach for modelling the error terms separately from the

VAR model is utilized in this paper.

The monthly diurnal day structures are then estimated and

removed from zwD
t by calculating hourly mean values for each

month in each location and then subtracting these from the

respective data, which yields zt = [z1,t, z2,t, ..., zk,t]
′. A more

detailed explanation of the calculation of the monthly diurnal

structures can be found in [11].

The VAR model also assumes stationarity [20]. There were

no trends, but seasonality was found from both the wind speed

and global irradiance data. However, the transformation to

clear-sky index data (1) and the removal of the monthly diurnal

structures eliminated the seasonality. To ensure the stationarity

of zt, the augmented Dickey-Fuller test [22] was utilized and

zt was found to be stationary, and therefore, suitable to be

modelled with the VAR model. zt is used to estimate the

VAR model parameters in the next section.

III. THE DEPENDENCY STRUCTURES

This section presents the time-varying VARk(3) model used

in the paper to model the dependency structures of solar

irradiance and wind speeds in multiple locations. First, the

VAR model is specified and then the calculation of the VAR

model parameters is presented.

A. The Time-Varying VAR Model

A VAR model is a multivariate generalization of a univariate

AR model. A k-dimensional p-order VARk(p) model for the

transformed zt = [z1,t, z2,t, ... , zk,t]
′ is defined as

zt = c+

p
∑

i=1

Aizt−i + ut, (3)

where c is a k-vector of intercept terms, Ai, . . . ,Ap are the

k × k AR coefficient matrices and ut is the error term of the

model [20].
In the paper, five appropriate stipulations are made in the

VAR model to enable the modelling of both solar irradiance

and wind speeds in non-measured locations. First, the intercept

terms are assumed to be zero, i.e., c = 0 (this can be done as

in (2) the transformation is to standard normal distribution).

Second, the model identification was done by analysing the

autocorrelation functions (ACFs) and partial autocorrelation

functions (PACFs) of zt. It was concluded that the order of

the VAR model should be three, i.e. p = 3. The model is

thus a VARk(3) model, where k is the number of locations.

Third, the AR coefficient matrices are assumed to be time-

dependent, i.e., they are A1,t,A2,t and A3,t, which gives a

specific set of coefficients for different t, and thus specifies

a time-varying VAR model. Time-dependency is necessary to

capture differences in temporal dependency structures in solar

irradiance depending on the time of the year [11]. Fourth, ut

is assumed to follow a multivariate t-distribution to handle the

peakedness of the residuals, as in [10], [11]. This is justified,

as the VAR model parameters are estimated with ordinary least

squares (OLS), which do not require normally distributed error

terms and allow separate modelling of the errors [21], [23].

Fifth, the off-diagonal components of A1,t,A2,t and A3,t are

assumed to be zero, yielding

Ai,t =











ai,t,1 0 · · · 0
0 ai,t,2 · · · 0
...

...
. . .

...

0 0 · · · ai,t,k











. (4)

The off-diagonals are assumed to be zero to allow a straight-

forward modelling of non-measured locations. This matter

is discussed in Section IV. Because of specification (4), all

spatial correlations between the components of zt must come

from the error terms ut = [u1,t, u2,t, ... , uk,t]
′. With the

above mentioned specifications, the utilized VAR model can

be written as

zt =
3

∑

i=1

Ai,tzt−i + ut, (5)

where A1,t,A2,t and A3,t are time-dependant. The adequacy

of the model presented in (5) was ensured by the assessment

of the ACFs, PACFs and cumulative periodogram of the model

residuals, and with the Ljung-Box Q-test [24]. The residuals

had no visible autocorrelation in neither of the location types

and the residuals passed the Ljung-Box Q-test. Therefore, the

model was considered adequate.
The next section introduces an approach to add the required

spatial correlations to zt through ut using the covariance

matrix Σu = cov(ut).



1949-3029 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2017.2682338, IEEE

Transactions on Sustainable Energy

4

B. Specifying the VAR Model Parameters

For solar locations, the time-varying coefficient matrices

A1,t,A2,t,A3,t are specified for six different groups, each

consisting of two month time periods, which was found to be

the most suitable approach to capture the seasons for the AR

models in [11]. For wind locations, the coefficient matrices

are the same for all t. Estimation of the AR parameters for

new locations is presented in Section IV A.

The covariance matrix Σu is specified as follows. First, the

spatial correlations (off-diagonal elements) in the autocorre-

lation matrices Rz(h) of the process zt are calculated for

all required lags h. The correlations are estimated from the

distances between the locations, as shown in Section IV B.

Second, the temporal correlations (the diagonal elements) of

Rz(h) of zt are specified. The temporal correlations for lags

h > 0 (as autocorrelation is 1 for h = 0) can be determined

with the AR coefficient matrices Ai, . . . ,Ap using the Yule-

Walker equations [20]. To simplify the calculations, and as

the AR coefficients do not vary greatly with different t, the

averages of A1,t,A2,t,A3,t are used.

Now the autocorrelation matrices Rz(h) are fully deter-

mined for all required lags. The autocorrelation matrices are

then transformed to corresponding autocovariance matrices

Γz(h), using the transformation

Γz(h) = DRz(h)D, (6)

where D is a diagonal matrix with the standard deviations

calculated for the components of zt (the k solar and wind lo-

cations) on the diagonal (these standard deviations are smaller

than 1, as the diurnal structures are subtracted from the N(0, 1)
distributed zwD

t ).

For further analyses, the VAR model has to be presented

in the VARkp(1) form (the state-space presentation) [20]. The

autocovariance matrix ΓZ(0) of the process zt in this form is

formed from the autocovariance matrices Γz(h) obtained with

(6), in the following manner

ΓZ(0) =





Γz(0) Γz(1) Γz(2)
Γz(−1) Γz(0) Γz(1)
Γz(−2) Γz(−1) Γz(0)



 . (7)

The kp × kp -dimensional A-matrix is then formed from

the AR coefficient matrices Ai (where the coefficients are the

averages of Ai,t) as

A =





A1 A2 A3

Ik 0 0
0 Ik 0



 , (8)

where Ik is a k × k identity matrix. Next, the kp × kp -

dimensional covariance matrix ΣU can be calculated with the

equation

ΣU = ΓZ(0)−AΓZ(0)A
′, (9)

as shown in [20]. Finally, the k × k -dimensional covariance

matrix Σu is obtained by taking the first k rows and first k

columns from ΣU . All parameters for the used VAR model

are now specified.

IV. THE SIMULATION OF NON-MEASURED WIND SPEED

AND SOLAR IRRADIATION LOCATIONS

The main objective for the methodology is to be able to

simulate future scenarios with non-measured wind speed and

solar irradiance locations. This section presents the specifi-

cation of the simulation parameters, the estimation of the co-

variance matrix for non-measured locations and the simulation

procedure.

A. The Simulation Parameters for Non-Measured Locations

As noted in Section III A, the residuals ut of the VARk(3)
model follow a t-distribution. The mean values of the degrees

of freedom, estimated from the residuals of the measured

locations, as done in [10], are considered for non-measured

locations (estimated separately for wind speed and solar irra-

diance locations).

The mean values of the estimated parameters (separate for

wind and solar locations) are used as the time-varying AR

parameters for non-measured locations. The monthly diurnal

variations are estimated from the geographically closest mea-

sured location of the same type.

The wind speed margins in the non-measured locations can

be obtained from Wind Atlas or a similar database [25]. The

Wind Atlas database, which is used in this paper, provides

Weibull distribution parameters, describing the local wind

speed conditions according to the provided coordinates.

Empirical cumulative distribution functions (ECDFs) of

the clear-sky index data obtained from the geographically

closest measured location are considered for the non-measured

locations for solar locations, as in [11].

The clear-sky irradiance distributions in non-measured loca-

tions are determined using a clear-sky irradiance model [26].

The clear-sky irradiance model estimates the clear-sky global

irradiance for the given coordinates, when the Linke turbidity

factors for the coordinates are provided [11], [26]. The Linke

turbidity factors are obtained from [27].

B. The Estimation of the Covariance Matrix

The underlying correlations, calculated from zt, between

wind and solar locations can be linked to the distances between

the locations. Fig. 3 shows the correlations, calculated from

zt, plotted against the distance between two wind locations.

Fig. 4 presents the correlation, calculated from zt, between

two solar locations. Fig. 5 shows the correlations, calculated

also from zt, between solar and wind locations.

Wind speeds and solar irradiances are negatively correlated,

as shown in [13], [14]. According to Fig. 5, wind speed

and global irradiance locations are also negatively correlated

when calculated from zt, where all deterministic components,

caused by the movements of the earth and the sun, in solar

irradiance and monthly day structures in solar irradiance and

wind speed have been removed from the data. This is a

crucial observation, and also indicates why PV and wind

power should be modelled together. As the model utilized in

the paper is VARk(3), it requires spatial correlations also for

lags h = 0, 1, 2 (the fitted curves to do this are shown in
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Figs. 3−5. Nine curves (lags h = 0, 1, 2 for each of the three

cases) are fitted to allow the estimation of the non-diagonal

components of Rz(h) for non-measured locations.

The diagonal temporal correlations for each non-measured

location for lags h = 0, 1, 2 are obtained using the average val-

ues of the estimated time-dependent AR coefficient matrices

A1,t,A2,t,A3,t, as explained in Section III B.

The diagonal standard deviation matrices D required to

transform Rz(h) to Γz(h) with (6) are estimated from the

measurement data and average values of the standard devi-

ations of the wind speed or global irradiance measurements

are used for non-measured locations, respectively. With this

approach, the covariance matrix Σu for the simulation of new

locations can be determined.

Fig. 3. Spatial correlations ρ estimated from zt between wind speed locations
at high and low altitudes (at lag 0) plotted against the distances between the
locations, with fitted curves for spatial correlations at lags 0, 1 and 2.

Fig. 4. Spatial correlations ρ estimated from zt between solar irradiance
locations (at lag 0) plotted against the distances between the locations, with
fitted curves for spatial correlations at lags 0, 1 and 2.

C. The Simulation Procedure

This section describes the MC simulation procedure for

the simulation of non-measured locations illustrated in Fig.

1. First, multivariate normal random numbers, whose margins

are then transformed to the appropriate t-distributions, as

Fig. 5. Spatial correlations ρ estimated from zt between wind speed and
solar irradiance locations (at lag 0) plotted against the distances between the
locations, with fitted curves for spatial correlations at lags 0, 1 and 2.

in [16], are generated for all k locations for the desired

simulation period t = 1, ... , T . These data are then used as the

input (innovations) for the time-varying VARk(3) model. This

results in a multivariate time series zt containing the desired

spatial and temporal correlations.

The estimated monthly diurnal variations (day structures)

are then added to zt, and thus, zwD
t is obtained. The next

step is to transform the time series zwD
t to the wind speed

and clear-sky index domains through the transformation

yi,t = F̂−1

i [FN (zwD
i,t )], (10)

where F̂−1

i is the inverse of the estimated CDF of the wind

speed margin (in wind locations) or the clear-sky index margin

(in solar locations) for location i, FN is the CDF of the

standard normal distribution and yi,t are the simulated wind

speed or clear-sky index (yi,t = kTi,t) time series. kTt are

further transformed to the global irradiance domain using the

clear-sky irradiances obtained with the clear-sky irradiation

model [26]. Multivariate time series (with the spatial and

temporal correlations) consisting of both wind speed and solar

irradiance data from the desired k locations are now obtained

for power generation analyses.

V. THE SIMULATION RESULTS FOR THE OUT-OF-SAMPLE

TEST LOCATIONS

This section presents the long term MC simulation results

for the two out-of-sample test locations shown in Fig. 2.

The data from these two locations were excluded from the

estimation process. 1000 MC simulation runs, with a length

of one year and time resolution of one hour, were carried out,

yielding 8.76 × 106 simulated samples for both locations. In

addition, 1000 MC simulation runs were also carried out for

both locations with the separate wind and solar simulation

models (referred to as separate simulations) presented for

wind in [10] and solar in [11]. The following compares the

simulated data to the measured and separately simulated wind

and solar data.
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A. The Spatial Correlations

The cross-correlation functions (XCFs) between the two

test locations, for simulated and measured data, are illustrated

in Fig. 6. The correlations between the wind and solar test

locations are negative and relatively small, but still notable,

especially near lag 0. The simulation model is able to capture

the shape of the XCF calculated from the data and the XCFs

are relatively similar (especially near lag 0). This applies both

when all hours are included in the calculation of the XCFs

and when only the hours when the sun is above the horizon

are included. It should be noted, though, that the simulated

XCF values are slightly lower than the XCF values calculated

from measurements. However, some differences are expected

in an out-of-sample test, as e.g., the actual monthly diurnal

structures in the test locations can vary slightly from the ones

used for out-of-sample locations.

It should be noted, that the separate simulations also show

some correlation structure as the daily variations in wind

speeds and solar irradiance are negatively correlated. However,

the impact of the distance between the out-of-sample locations

is not modelled, and thus, its effect is left out from the

XCF. Consequently, the separate modelling of wind and solar

has a major deficiency when modelling both wind and solar

locations.

Fig. 6. The XCFs between the simulated and measured wind speed data
and the separate simulations from test location 1 and solar irradiance data
from test location 2. In the upper figure, all hours are considered and in the
lower figure only hours when the sun is above the horizon are considered.
The simulation results are averages of the 1000 MC runs.

B. The Temporal Correlations

The ACFs of the simulated and measured data are presented

for test locations 1 and 2 in Fig. 7. In can be seen that both

of the ACFs calculated from the simulated data are similar to

the ACFs calculated from the measurements, although small

differences can be seen between the simulated and measured

data near the 24-hour lag. In addition, the simulated data

captures the behaviour of the measurement data as closely

as the data simulated with the separate simulations.

Fig. 7. The ACFs of the simulated and measured wind speed data from
test location 1, the simulated and measured global irradiance data from test
location 2 and the separate simulations. The simulation results are averages
of the 1000 MC runs.

C. The Probability Density Functions

The probability density functions (PDFs) calculated from

the simulated and measured data are illustrated in Fig. 8. It

can be observed that the shapes of the simulated PDFs are

very similar to those estimated from the measurement data for

both wind and solar test locations. Additionally, the simulated

data depicts the measurement data as accurately as the data

simulated with the separate simulations.

Fig. 8. The PDFs of the simulated and measured data and the separate
simulations for test locations 1 and 2. The simulation results are averages
of the 1000 MC runs.

D. The Ramp Rates

The PDFs for the ramp rates for one hour ramps calculated

from the simulated and measured data are illustrated in Fig. 9.
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It can be seen that the shapes of the simulated ramp rate PDFs

are close to those estimated from the measurement data for

both wind and solar test locations. Furthermore, the simulated

data represents the ramps of the measurement data similarly

as the data simulated with the separate simulations.

Fig. 9. The ramp rate PDFs of the simulated and measured data and the
separate simulations for test locations 1 and 2. The simulation results are
averages of the 1000 MC runs.

E. The Numerical Results

This section presents the most relevant numerical statistics,

shown in Table I, estimated from the simulated and measured

data. It can be seen that all of the statistics estimated from

the simulated data are similar to those estimated from the

measured data. It should be noted that the simulated data

performs as well as the separate simulations in each statistic,

except the spatial correlations, where the separate simulations

perform poorly as the distance related correlation between

wind and solar locations is not included in the models.

To summarize, the results for the out-of-sample locations

are satisfactory with all measures considered and the model is

able to assess the spatial correlations between wind and solar

locations and the temporal correlations, margins and ramp

rates in individual locations.

VI. THE COMPARISON OF THE GEOGRAPHICAL

DISTRIBUTIONS AND PROPORTIONAL YEARLY ENERGIES

OF THE WPP AND PV GENERATION

This section presents a case study consisting of 12 scenarios,

assessing the effects of different geographical distribution

and proportional yearly generated energies of WPPs and PV

generation on the volatility of the aggregate power generation.

The geographical distributions considered in the scenarios can

be seen in Fig. 10. In addition, a short analysis that shows the

effect of the proportional yearly installed capacities of WPPs

and PVPs on the volatility is also presented.

A. The Simulation Setup for the Scenarios

The scenarios in the case study assess 12 different scenarios,

which are presented in Table II. Each scenario consists of 12

WPPs (all with equal capacities) and 12 PVPs (also with equal

capacities) located in Finland, so that the expected aggregated

annual energy is fixed at 1 TWh, in each case (to provide well

comparable scenarios). Due to the fixed generated energy, the

installed capacities vary between the cases.

Fig. 10. The dispersed (blue circles) and concentrated (red circles) geograph-
ical distributions of wind and PV generation used in the scenarios.

The VAR24(3) model produces wind speed and global

irradiance time series, and therefore, these have to be converted

to power through wind turbine and PV panel power generation

models. For WPPs, a wind turbine model, including the

modelling of the wake effect in a wind farm, introduced in

[10] is utilized to transform the wind speeds to wind power.

Gamesa G128-5.0 turbines [28] with 140 meter towers are

used for all turbines. Depending on the scenario, the number

of turbines in one WPP varies from 6 to 14. The wake

effect inside WPPs is considered as in [10]. To focus on the

effects of the geographical distribution of the generation, the

locations were chosen so that the wind generation potential

(i.e. the Weibull parameters) are similar in all locations,

yielding similar annual wind energy generation. The Weibull

parameters for the locations are obtained from [25].

For PV power generation, polycrystalline silicone panels

facing south and with a tilt angle of 45 degrees are con-

TABLE I
STATISTICS ESTIMATED FROM THE MEASURED AND SIMULATED DATA

AND THE SEPARATE SIMULATIONS FOR THE OUT-OF-SAMPLE TEST

LOCATIONS. σ DEPICTS STANDARD DEVIATION AND ρ CORRELATION. ALL

ESTIMATES FROM THE SIMULATED DATA ARE AVERAGES OF THE 1000
SIMULATION RUNS.

Statistic Measured

Data

Simulated

Data

Separate

simulations

Mean for test loc 1 (m/s) 6.85 6.84 6.84

Mean for test loc 2
(kJ/m2)

96.91 97.67 98.12

σ for test loc 1 (m/s) 2.75 2.82 2.82

σ for test loc 2 (kJ/m2) 167.75 169.06 168.23

Temporal ρ at lag 1 for
test loc 1

0.93 0.93 0.93

Temporal ρ at lag 1 for
test loc 2

0.94 0.92 0.92

Spatial ρ at lag 0 between
locs 1 and 2

-0.23 -0.22 -0.12
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TABLE II
THE SPECIFICATIONS OF THE 12 SCENARIOS.

Scenario WPP

Geograph.

Distr.

PV

Geograph.

Distr.

WPP

Yearly

Energy

(%)

PV Yearly

Energy

(%)

Scenario 1 Dispersed Concentrated 70 30

Scenario 2 Dispersed Concentrated 80 20

Scenario 3 Dispersed Concentrated 90 10

Scenario 4 Dispersed Dispersed 70 30

Scenario 5 Dispersed Dispersed 80 20

Scenario 6 Dispersed Dispersed 90 10

Scenario 7 Concentrated Concentrated 70 30

Scenario 8 Concentrated Concentrated 80 20

Scenario 9 Concentrated Concentrated 90 10

Scenario 10 Concentrated Dispersed 70 30

Scenario 11 Concentrated Dispersed 80 20

Scenario 12 Concentrated Dispersed 90 10

TABLE III
THE NUMERICAL RESULTS FOR THE 12 SCENARIOS. σ DEPICTS STANDARD

DEVIATION. THE < 10% AND > 90% CASES PRESENT THE PERCENTAGE

OF HOURS IN A SIMULATION RUN WHEN THE HOURLY AGGREGATED

GENERATION IS WITHIN THE RESPECTIVE LIMITS. ALL ESTIMATES ARE

AVERAGES OF THE 1000 MC RUNS.

Scenario Hourly σ (MWh/h) <10% >90%

Scenario 1 65.0 11.3 0.1

Scenario 2 57.8 7.2 0.1

Scenario 3 58.7 5.0 0.2

Scenario 4 62.4 9.9 0.1

Scenario 5 56.7 6.4 0.1

Scenario 6 58.5 4.6 0.4

Scenario 7 72.2 18.5 0.1

Scenario 8 68.5 14.1 0.1

Scenario 9 72.5 11.5 0.2

Scenario 10 70.5 17.1 0.1

Scenario 11 68.5 14.1 0.1

Scenario 12 72.6 11.1 0.2

sidered and the power transformation is conducted with a

widely utilized power generation model for polycrystalline

silicon PV panels, presented in [29] and utilized in similar

applications e.g., in [11]. The ambient temperatures used for

the PV generation models are taken from the closest measured

location (measurements from 2013).

B. The Simulation Results

The simulation results using 1000 hourly MC simulation

runs with a length of one year for the 12 scenarios are

presented in Fig. 11 and in Table III. Fig. 11 illustrates

the uncertainty in hourly aggregate generation with estimated

PDFs of the generation in different scenarios and Table III

presents the key numerical results.

As Table III and Fig. 11 show, there are notable differences

between the cases in terms of PDFs, standard deviations and

percentage of hours when the generation is less than 10% or

more than 90% of the aggregate installed capacity. It should

Fig. 11. The PDFs of the hourly aggregate generation in the 12 scenarios.
The lines with the same colors have the same geographical distribution. The
PDFs are averages of the 1000 MC runs.

be noted, that the values in > 90% column are small as they

require excellent generation conditions in all plants and as the

wake effect decreases the efficiency of the WPPs and e.g. the

inverters the efficiency of the PVPs. When both WPPs and

PVPs have a dispersed geographical distribution (Scenarios 4,

5 and 6), the standard deviation of the aggregate generation

is low. However, Scenarios 1, 2 and 3 where WPPs are dis-

persed and PVPs concentrated, are also good in terms of low

volatility. The highest volatilities can be found in Scenarios

7−12, where wind generation is geographically concentrated.

In addition, Fig. 11 also illustrates that in scenarios where the

geographical spread of the WPPs is concentrated, a notable

drop can be seen in the PDFs when the WPP generation

reaches its maximum aggregate capacity.

The most optimal proportion of annual generated energies,

considering low volatility of the aggregate generation, can be

found in Scenarios 2, 5, 8 and 11, where the WPPs generate

80% and the PVPs 20% of the annual energy. Despite the

geographical distribution, volatility increases if the proportion

of energy generated with WPPs decreases to 70% or increases

to 90%. This is caused by the negative correlation between

WPPs and PVPs and the greater hourly variability of the PVPs

compared to the WPPs. The relative standard deviation (RSD),

which is the sample standard deviation divided by the sample

mean, is 0.592 for WPPs and 1.615 for PVPs in Scenario 5.

If the PVP share increases to 30%, the greater variability

of the PVPs outweighs the benefits of the negative correlation

between wind and solar generation on the volatility of the

aggregate generation. If the PVP share decreases to 10%, the

benefit of the increased share of the WPPs (which have lower

hourly variability than PVPs) is not sufficient to compensate
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TABLE IV
THE PROBABILITIES THAT THE AGGREGATED POWER GENERATION

EXCEEDS OR IS LESS THAN A SPECIFIED LIMIT IN THE 12 SCENARIOS.
ALL ESTIMATES ARE AVERAGES OF THE 1000 MC RUNS.

Scenario Less than 20% of the

installed capacity for 3

consecutive hours (%)

Exceeding 80% of the

installed capacity for 3

consecutive hours (%)

Scenario 1 27.83 0.0006

Scenario 2 18.83 0.0022

Scenario 3 14.75 0.0081

Scenario 4 24.50 0.0003

Scenario 5 16.18 0.0038

Scenario 6 13.64 0.0245

Scenario 7 30.78 0.0021

Scenario 8 24.49 0.0045

Scenario 9 21.53 0.0452

Scenario 10 28.87 0.0016

Scenario 11 24.48 0.0045

Scenario 12 21.39 0.0726

for the lost benefit from the negative correlations between

WPPs and PVPs. This is a similar balancing between the

volatility in individual locations and the correlations between

the locations as was studied with wind generation in [16].

Table IV shows the probabilities for events where the

aggregated power generation is less than 20% or exceeds

80% of the installed capacity for three consecutive hours.

It can be observed that the probabilities for the generation

remaining less than 20% for at least three consecutive hours

are large. However, the probabilities for events where the

generation remains more than 80% of the capacity for at least

three consecutive hours are very low. It can be seen that the

dispersed geographical distribution for both generation types

and the 90% share of WPPs are both beneficial for reducing

the likelihood of the low generation events. On the other hand,

the concentrated geographical distribution of WPPs increases

the likelihood of the high generation events.

To summarize the results, the smallest volatility is achieved

in Scenario 5, where both the WPPs and PVPs are dispersed

and the WPPs produce 80% and PVPs 20% of the annual

energy. The inclusion of both generation types is beneficial

due to the negative spatial correlations between wind speeds

and global irradiance, as shown in Fig. 5. In addition, the

geographical distribution of the WPPs seems to have a larger

impact on the volatility of the generation compared to the

distribution of the PVPs.

C. The Fixed Aggregate Installed Capacities Instead of Fixed

Yearly Energies

The fixed energy enables a clear comparison between the

cases, but the power system operator might be also interested

in a similar comparison, but with a fixed installed capacity

(power) instead of the yearly energy. Scenarios with the same

simulation setup as with the fixed yearly energy were analysed

also with an aggregated fixed capacity of 1200 MW in each

scenario, so that the proportional installed capacity of WPPs

and PVPs varied between the scenarios, as shown in Table V.

TABLE V
THE SPECIFICATIONS OF THE FIXED AGGREGATE INSTALLED CAPACITY

SCENARIOS AND RSDS FOR EACH SCENARIO.

WPP

Geograph.

Distr.

PV

Geograph.

Distr.

WPP

installed

cap. (%)

PV

installed

cap. (%)

RSD

Dispersed Concentrated 50 50 0.5456

Dispersed Concentrated 60 40 0.5067

Dispersed Concentrated 70 30 0.5032

Dispersed Dispersed 50 50 0.5312

Dispersed Dispersed 60 40 0.4977

Dispersed Dispersed 70 30 0.4982

Concentrated Concentrated 50 50 0.6174

Concentrated Concentrated 60 40 0.6008

Concentrated Concentrated 70 30 0.6141

Concentrated Dispersed 50 50 0.6081

Concentrated Dispersed 60 40 0.5961

Concentrated Dispersed 70 30 0.6119

The different capacity factors (the ratios between installed

capacity and the actual output) made the comparison more

difficult, as the PVPs had an average capacity factor of 0.1195

and the WPPs of 0.3132. Therefore, the RSD was used when

comparing the volatility between the scenarios. As shown in

Table V, the scenarios where both WPPs and PVPs have

a dispersed geographical distribution have also the lowest

volatility compared to other geographical distributions. This

is the same observation as with the fixed yearly energy.

In addition, for fixed power the most optimal proportional

capacities were 60% of WPPs and 40% PVPs for three out of

the four different combinations of geographical distributions.

The lowest hourly volatility, in terms of RSD, was achieved in

the scenario where both locations had dispersed geographical

distribution and the proportional capacities were 60% of the

WPPs and of 40% the PVPs.

VII. CONCLUSION

This paper has introduced an MC simulation based method-

ology to model systems with WPPs and PVPs in multiple

existing or new locations. A VAR model was presented to

capture the temporal correlations in individual locations and

the spatial correlations between the locations. The spatial cor-

relations were linked to the geographical distances between the

locations to enable the addition of non-measured generation

locations to the model.

The model was verified against two out-of-sample test

locations, one wind and one solar location, which were both

excluded from the estimation. It was shown that the model

was able to produce simulated data with the correct temporal

and spatial correlation structures and probability distributions

for the test locations.

The methodology can be utilized in long-term simulations

and scenario analyses focusing on the variability of the aggre-

gate RES generation in power systems with multiple WPPs

and PVPs. The methodology can be applied in any geograph-

ical area where measurement data for the estimation of the

model parameters are available. The modular structure of the
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model allows it to be combined with several different wind

turbine or PV panel models, as the model provides simulated

wind speed and global irradiance data instead of power data.

The methodology can be beneficial for both transmission and

distribution system operators alike, and for power producers

that have both wind and solar energy generation in their

portfolio.

In addition, a case study was conducted with 12 scenarios

assessing different geographical distributions of wind and

PV generation with various proportional annual generated

energies. It was found that the scenario where WPPs and

PVPs were both geographically dispersed and the WPPs

generated 80% and the PVPs 20% of the annual energy was

the most favourable in terms of small variability. The dispersed

geographical spread of WPPs was more important than the

spread of PV generation for decreasing the variability of the

aggregate RES generation.
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