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A statistical model is presented for computing prob-
abilities that proteins are present in a sample on the basis
of peptides assigned to tandem mass (MS/MS) spectra
acquired from a proteolytic digest of the sample. Peptides
that correspond to more than a single protein in the
sequence database are apportioned among all corre-
sponding proteins, and a minimal protein list sufficient
to account for the observed peptide assignments is
derived using the expectation-maximization algorithm.
Using peptide assignments to spectra generated from a
sample of 18 purified proteins, as well as complex H.
influenzae and Halobacterium samples, the model is
shown to produce probabilities that are accurate and have
high power to discriminate correct from incorrect protein
identifications. This method allows filtering of large-scale
proteomics data sets with predictable sensitivity and false
positive identification error rates. Fast, consistent, and
transparent, it provides a standard for publishing large-
scale protein identification data sets in the literature and
for comparing the results obtained from different experi-
ments.

The goal of proteomics is to identify and characterize all
proteins expressed in cells grown under a variety of conditions.1

Tandem mass spectrometry (MS/MS) has become the method
of choice for identification of proteins in high-throughput pro-
teomics studies.2,3 It has been particularly useful for cataloging
and quantifying proteins in a number of organisms,4-7 for protein
complex characterization and protein-protein network recon-

struction,8-11 for studying signaling pathways,12 and for metabolic
pathway reconstruction.13,14 Finally, mass spectrometry is expected
to play an important role in the ambitious task of modeling cell
behavior.15

A general view of the MS/MS-based approach to study
complex protein mixtures is illustrated in Figure 1. Sample
proteins are first proteolytically cleaved into smaller peptides, most
often by the enzyme trypsin. Protein digestion is required because
intact proteins are not amenable for mass spectrometric identifica-
tion, though some progress toward removing this limitation has
been recently reported.16,17 Complexity of the peptide mixture can
be reduced by strong cation exchange chromatography or other
available separation techniques. The resulting peptide mixture is
then subjected to reversed-phase chromatography directly coupled
with a mass spectrometer. Alternatively, peptides eluting from the
reversed-phase column can be deposited on a plate for subsequent
analysis by MALDI-MS/MS. Peptides are then ionized and
selected ions subjected to fragmentation in the collision cell to
produce tandem mass spectra. At this stage, computational
methods must be used to infer the peptides and proteins that gave
rise to the observed spectra.18,19 Database search programs such
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as SEQUEST,20 Mascot,21 MS-Tag,22 and Sonar23 are used to assign
peptides to MS/MS spectra. These programs compare each
acquired MS/MS spectrum against those obtained from a se-
quence database and use various scoring schemes to find the best
matching peptide. However, they are known to produce a
significant number of incorrect peptide assignments.24 The process
of validating peptide assignments often relies on time-consuming
manual verification. This data analysis bottleneck can be signifi-
cantly reduced by adopting statistical models for validation of
peptide assignments.25

The ultimate goal of inferring protein identities based upon
peptide assignments remains a challenge, even when statistical
models are employed for validating those assignments (Figure
1). One must initially group all assigned peptides according to
their corresponding proteins in the database. This is particularly
difficult when an assigned peptide is “degenerate”, in the sense
that its sequence is present in more than a single entry in the
protein sequence database. Such cases often result from the use
of eukaryotic databases, which contain homologous and redundant

entries, and make it difficult to infer the particular corresponding
protein(s) present in the original sample.26 Once grouping is
complete, the assigned peptides corresponding to an individual
protein, and their probabilities, must be combined to compute a
single protein confidence measure that is effective at distinguish-
ing the correct from incorrect protein identifications. A particular
challenge in that regard is the detection of correct protein
identifications with only a single corresponding assigned peptide
in the data set, since the majority of incorrect protein identifica-
tions also have only one corresponding peptide.

Several software tools have been described that facilitate the
identification of proteins based upon MS/MS data. Filtering and
visualization programs such as INTERACT,27 DTAselect,28 and
CHOMPER29 simply report the list of proteins corresponding to
the peptides assigned to MS/MS spectra, without attempting to
resolve the cases of degenerate peptides or to estimate probability-
based confidence measures. Mascot and Sonar group peptides
according to their corresponding proteins and report a score for
each protein intended to indicate the confidence of the identifica-
tion. Qscore30 estimates confidence levels of protein identifications
from SEQUEST search results by taking into account the total
number of identified peptides in the data set and the number of
identified peptides corresponding to each protein. The effect of
multiple peptides on the confidence of protein identifications was
also described for a modified version of SEQUEST.31 Though the
scores provided by these tools can be used as criteria for filtering
data in order to help separate correct from incorrect protein
identifications, they provide no means to estimate the resulting
false positive error rate (fraction of proteins passing the filter that
are incorrect) and sensitivity (fraction of correct proteins passing
the filter).

In this paper, we describe a model for computing accurate
probabilities that proteins are present in a sample on the basis of
peptides assigned to MS/MS spectra acquired from a proteolytic
digest of the sample. This model has as its input a list of assigned
peptides along with probabilities that those assignments are
correct. Probabilities that peptide assignments are correct can be
obtained, for example, according to the method described in ref
25, or any alternative method, as long as they are accurate.
Furthermore, the model does not require peptide assignments to
MS/MS spectra made by database search, but should be ap-
plicable to other computational approaches developed to analyze
MS/MS spectra as well, such as those based on a combination of
de novo sequencing and database search.32-34 It computes a
probability that a protein is present by combining together the
probabilities that corresponding peptides are correct after adjust-
ing them for observed protein grouping information. The model
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Figure 1. Simplified outline of the experimental steps and flow of
the data in a typical high-throughput mass spectrometry-based
analysis of complex protein mixtures. Each sample protein (open
circle) is cleaved into smaller peptides (open squares), which can be
unique to that protein or shared with other sample proteins (indicated
by dashed arrows). Peptides are then ionized and selected ions
fragmented to produce MS/MS spectra. Some peptides are selected
for fragmentation multiple times (dotted arrows) while some are not
selected even once. Each acquired MS/MS spectrum is searched
against a sequence database and assigned a best matching peptide,
which may be correct (open square) or incorrect (black square).
Database search results are then manually or statistically validated.
The list of identified peptides is used to infer which proteins are
present in the original sample (open circles) and which are false
identifications (black circles) corresponding to incorrect peptide
assignments. The process of inferring protein identities is complicated
by the presence of degenerate peptides corresponding to more than
a single entry in the protein sequence database (dashed arrows).
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handles cases when assigned peptides are degenerate by ap-
portioning each such peptide among all its corresponding proteins
in order to derive a minimal protein list sufficient to account for
the observed peptide assignments. Furthermore, the model
collapses redundant database entries into a single identification
and groups together those proteins that are impossible to
differentiate on the basis of peptides assigned to MS/MS spectra.
We evaluate the model using data sets of MS/MS spectra
generated from a sample of 18 purified proteins,24 as well as
complex Haemophilus influenzae and Halobacterium samples. We
demonstrate that it produces accurate protein probabilities with
high power to discriminate between correct and incorrect protein
identifications, including those corresponding to only a single
assigned peptide in the data set.

This method for estimating the probability that a particular
protein is present in the sample given the acquired mass
spectrometric information is of great importance to proteomics.
It is fully automated and fast and does not rely on subjective
“expert” judgment (manual validation). It allows filtering of large-
scale data sets with predictable sensitivity and false positive
identification error rates and provides a standardized way for
publishing large-scale proteomics data sets in the literature.
Finally, it makes the data analysis consistent and transparent,
providing a way to compare results of different experimental
groups obtained using different experimental protocols, different
mass spectrometers, and even different MS/MS database search
tools.

EXPERIMENTAL DATA SETS
A description of all experimental data sets used in this study

is given in Table 1. All MS/MS spectra were generated using a
similar experimental protocol. Protein samples were proteolyzed
with trypsin and analyzed by LC/MS on an ESI-ITMS (Thermo-
Finnigan, San Jose, CA) using a top-down data-dependent ion
selection approach.36 The spectra were searched with the SE-
QUEST program.20 All resulting peptide assignments in the data
set were analyzed using PeptideProphet, a software tool imple-
menting the statistical model described in ref 25, improved to
include the number of missed cleavages37 in the sequence of the

assigned peptide, and extended to analyze peptide assignments
to spectra of [M + H]+ ions (see Supporting Information). The
peptide probabilities computed by PeptideProphet have been
shown to be very discriminative and accurate and were used as
input to the protein statistical model described in this work. It
should be noted that the protein statistical model can accept as
input a list of probabilities corresponding to each peptide assign-
ment regardless of how these probabilities were computed, as
long as they are accurate.

RESULTS AND DISCUSSION
Peptide Probability Estimates. Since MS/MS spectra are

produced by peptides, and not by proteins, all conclusions about
what proteins are present in the sample are based upon the
identification of peptides that correspond to them. Thus, estimation
of the probability that a particular protein is present in the original
sample can be facilitated by having a statistical model for validation
of the identifications made at the peptide level. In ref 25, a robust
statistical approach was presented for estimation of the accuracy
of peptide assignments to MS/MS spectra made by database
search algorithms. This approach is based on the use of the
expectation-maximization (EM) algorithm to derive a mixture
model of correct and incorrect peptide identifications from the
data. Observed data (denoted as D) includes available information
regarding database search results, such as database search scores
and properties of the assigned peptides, that help to distinguish
the correct (denoted as “+”) and incorrect (denoted as “-”)
peptide assignments in the data set. By employing the observed
information about each peptide assignment, the method learns
to distinguish correctly from incorrectly assigned peptides in the
data set and computes for each peptide assignment to a spectrum
a probability of being correct, p(+|D), using Bayes’ Law:

where p(D|+) and p(D|-) are the probabilities of an assigned
peptide to an MS/MS spectrum having information D among
correctly and incorrectly assigned peptides, respectively, and p(+)
and p(-) are prior probabilities of a correct and incorrect peptide
assignment, respectively. The prior probabilities are the overall
proportions of correct and incorrect peptide assignments in the

(35) Extracted from ftp://ftp.ncicrf.gov/pub/nonredun/protein.nrdb.Z.
(36) Goodlett, D. R.; Keller, A.; Watts, J. D.; Newitt, R.; Yi, E. C.; Purvine, S.;

Eng, J. K.; von Haller, P.; Aebersold, R.; Kolker, E. Rapid Commun. Mass
Spectrom. 2001, 15, 1214-1221.
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Table 1. Experimental Data Sets Used in the Study

no. of MS/MS spectra f

data set sample database used for search
no. of LC/

MS/MS runs 1+ 2+ 3+

18prot_Hinf 18-protein mixa H. influenzaed + 18 proteinse 22 504 18 496 18 044
18prot_Dr 18-protein mixa Drosophilad + 18 proteinse 22 422 18 368 18 022
18prot_Hum 18-protein mixa humand + 18 proteinse 22 401 18 180 17 824
18prot.sub1_Hum 18-protein mixa H. influenzaed + 18 proteinse 1 26 694 664
18prot.sub4_Hum 18-protein mixa H. influenzaed + 18 proteinse 4 13 1 294 12 95
Hinf_Hum H. influenzaeb humand + H. influenzaed 15 2006 15 791 15 553
Halo_Hum Halobactereumc humand + Halobacteriumd 5 1834 5 829 5 285

a Sample composed of 18 highly purified proteins (from bovine, chicken, rabbit, E. coli, S. cerevisiae, and B. lichenformis).24 b H. influenzae
membrane fraction sample.43 c Halobacterium, soluble fraction sample.44 d Protein sequence databases extracted from ref 35. e Sequences of the
18 purified proteins and common sample contaminants such as keratin.24 f Number of MS/MS database searches performed on [M + H]+,
[M + 2H]2+, and [M + 3H]3+ spectra.

p(+|D) )
p(D|+)p(+)

p(D|+)p(+) + p(D|-)p(-)
(1)
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data set and can be considered as a measure of data quality. The
parameters governing the distribution of database search scores
and other information, as well as the prior probabilities, are learned
from the data itself. This ensures that this method is robust toward
variations in sample purity, mass spectral quality, proteolytic digest
efficiency, and other factors.25

Protein Probability Estimates. Accurate probabilities that
peptide assignments are correct, computed for example by the
mixture model EM method described above, can be used to
estimate the probability that a particular protein is present in the
original sample. In general, there can be many distinct peptides
assigned to spectra, each of which corresponds to the same
particular protein of interest. Furthermore, each distinct peptide
may be assigned to more than a single spectrum in the data set.
Probabilities that peptide assignments are correct vary for different
peptides and even for repeated observation of the same peptide.
These assigned peptides each contribute evidence for the presence
of the corresponding protein. For the sake of simplicity, this
section describes an analysis that neglects all peptide assignments
that correspond to more than a single entry in the protein
sequence database, since in those cases their true corresponding
proteins are ambiguous.

If each peptide assignment to a spectrum is considered
independent evidence for its corresponding protein, then the
probability P that a protein is present in the sample can be
computed as the probability that at least one peptide assignment
corresponding to the protein is correct,

where each distinct peptide i corresponds to the protein of interest
and p(+|Di

j ) is the computed probability that the jth assignment
of peptide i (its peptide assignment information denoted Di

j ) to a
spectrum in the data set is correct. This formula likely overesti-
mates the probability, however, since assignments of the same
peptide to multiple spectra are not justifiably independent events
when those spectra have nearly identical fragmentation patterns,

as is often the case.21,30 For example, multiple spectra correspond-
ing to a peptide that is not in the database, perhaps due to a
posttranslational modification, would each likely be assigned the
same incorrect peptide, leading to a misleadingly high probability
for the corresponding protein. To illustrate this, eq 2 was applied
to the data set of 22 LC/MS/MS runs generated from a mixture
of 18 known proteins and searched against the Drosophila
sequence database, 18prot_Dr (see Table 1 and also ref 25). As a
result, four incorrect protein identifications were assigned a
probability 0.99 or greater, and eight incorrect protein identifica-
tions were assigned a probability 0.9 or greater, all based on a
single corresponding peptide observed several times in the data
set. For example, the same peptide corresponding to incorrect
protein GP:AY010604_1 was assigned to three different spectra
in the data set, with probabilities of being correct 0.42, 0.52, and
0.64, respectively. Using eq 2, GP:AY010604_1 was then assigned
a combined protein probability of 0.9. This inappropriately high
computed probability suggests that multiple identifications of the
same peptide in a data set should not result in increased
confidence that the corresponding protein is correct.

A more conservative estimate of the probability that a protein
is present in the sample can be computed as

using only a single contribution for all j assignments to spectra
of each distinct peptide i that corresponds to that protein, the
contribution determined by the maximum probability for all
assignments of that peptide, maxj p(+|Di

j ). An illustration of how
eq 3 is used to compute protein probabilities is shown in Figure
2. This conservative approach results in more accurate protein
probabilities and is implemented in the model. For example, using
eq 3 in place of eq 2, the computed probability of the incorrect
protein identification GP:AY010604_1 described above was re-
duced from 0.9 to 0.64, and overall, no probabilities of incorrect
proteins were 0.99 or greater, and three fewer were 0.9 or greater.

Figure 2. Illustration of how eq 3 is used to compute protein probabilities. A protein is identified by several distinct peptides assigned to
MS/MS spectra. Probabilities that the peptide assignments are correct are combined together to estimate the probability that the corresponding
protein is present in the sample. Assignments of the same peptide to multiple MS/MS spectra make a single contribution with the maximum
probability of all instances of that peptide in the data set.

P ) 1 - ∏
i

(1 - maxj p(+|Di
j )) (3)

P ) 1 - ∏
i

∏
j

(1 - p(+|Di
j )) (2)
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For the purpose of clarity, in all subsequent discussions it will
be assumed that all assignments to spectra of each distinct peptide
are represented by a single contribution having maximum prob-
ability. Note, however, that unlike the situation of multiple
assignments of a peptide to MS/MS spectra of the same precursor
ion charge state, assignments corresponding to the same peptide
but with different charge state all contribute to the evidence for
the presence of the corresponding protein. This conclusion is
supported by the observation that peptides with different charge
state have significantly different MS/MS fragmentation patterns,38

and it is rare to observe an incorrect peptide assigned with
significant probabilities to spectra of multiple precursor ion charge
states.

Adjusting Peptide Probabilities for Observed Protein
Grouping Information. The grouping of peptides according to
their corresponding proteins in eq 3 provides valuable new
information regarding the validity of the peptide assignments. That
is because correct peptide assignments, more than incorrect ones,
tend to correspond to “multihit” proteins, those to which other
correctly assigned peptides correspond.39 In contrast, incorrect
peptide assignments tend to correspond to proteins to which no
other correctly assigned peptide corresponds. This trend is
particularly pronounced for “high coverage” data sets, i.e., data
sets consisting of a relatively large number of acquired MS/MS
spectra with respect to the complexity of the sample (number of
proteins in the sample). As a result, even when computed
probabilities of correct peptide assignments are accurate in the
context of the complete data set for which they are calculated,
they may not be as accurate for subsets of peptides grouped
according to corresponding protein. For example, in the case of
“multihit” proteins, greater than the expected half of all corre-
sponding assigned peptides with computed probability 0.5 are
likely to be correct. Consequently, before applying eq 3, computed
peptide probabilities must be made accurate for subsets of
peptides grouped according to corresponding proteins by adjusting
them to reflect whether the protein is multihit in the data set.

A measure of whether a peptide corresponds to a multihit
protein in a data set is its estimated number of sibling peptides
(NSP), defined as the expected number of other correctly
identified peptides that correspond to the same protein. The NSP
value for peptide i, NSPi, is computed as the sum of probabilities
of correct assignments to spectra of the other peptides that
correspond to the same protein:

where peptide m is another distinct peptide corresponding to the
protein of interest, and p(+|Dm) is the maximum probability of
all assignments of peptide m in the data set. For example, in the
situation shown in Figure 2, peptide VYVEELKPTPEGDLEILLQK
has an NSP value 1.56 (calculated as 0.91 + 0.65, the sum of the
probabilities of its sibling peptides, TPEVDDEALEK and LS-
FNPTQLEEQCHI).

The difference in NSP values between correct and incorrect
peptide assignments is particularly pronounced for the data sets
of 22 LC/MS/MS runs generated from a sample containing only
18 control proteins, which, given the number of acquired spectra,
should be considered a high coverage data set. For example, in
the 18prot_Dr data set, the majority (92%) of correct peptide
assignments have NSP values above 5, with average value around
7, reflecting the fact that all of the identified control proteins were
identified by multiple peptides. In contrast, fewer than 1% of the
incorrect peptide assignments, namely, those that are chance hits
to one of the control proteins,24 have NSP values above 5, and
the majority of incorrect assignments have NSP values below 0.25,
with the average value of 0.01. The difference between NSP
distributions among correct and incorrect peptide assignments
is expected to be somewhat smaller, though still significant, for
lower coverage data sets such as those typically produced from
complex protein samples.

The probabilities that database search results are correct based
upon peptide assignment information, D, p(+|D), can be adjusted
to take into account NSP making the reasonable assumption that
NSP is independent of the parameters included in D, i.e., database
search scores, number of tryptic termini, and number of missed
cleavages, among correctly and incorrectly assigned spectra:

where p(+|D,NSP) is the probability that peptide assignment is
correct given its D and its estimated number of sibling peptides,
NSP, and p(NSP|+) and p(NSP|-) are the probabilities of having
a particular NSP value according to the distribution of correct or
incorrect peptide assignments, respectively. For simplicity, NSP
values are made discrete by binning. The probability that a
correctly assigned peptide has an NSP value in bin k can then be
computed by summation over only those peptides with NSP value
in bin k:

where N is the total number of peptide assignments and p(+) is
the prior probability of a correct peptide assignment, computed
by summation over all peptides i:

The NSP distribution among incorrect peptide assignments is
computed in an analogous manner. The adjusted probabilities that
peptide assignments to MS/MS spectra are correct, given by eq
5, have improved power to discriminate correct and incorrect
database search results (See Supporting Information.). Further-
more, they are more accurate among subsets of peptides grouped
according to corresponding protein and thus suitable for substitu-
tion into eq 3 to compute probabilities that those proteins are
present in the sample.

(38) Sonsmann, G.; Römer, A.; Schomburg, D. J. Am. Soc. Mass Spectrom. 2002,
13, 47-58.

(39) Choudhary, J. S.; Blackstock, W. P.; Creasy, D. M.; Cottrell, J. S Proteomics
2001, 1, 651-667.

NSPi ) ∑
{m|m*i}

p(+|Dm) (4)

p(+|D,NSP) )
p(+|D)p(NSP|+)

p(+|D)p(NSP|+) + p(-|D)p(NSP|-)
(5)

p(NSP|+) )
1

Np(+)
∑

{i|NSPi ∈k}
p(+|Di,NSPi) (6)

p(+) )
1

N
∑

i

p(+|Di, NSPi) (7)
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NSP distributions are expected to vary from data set to data
set, reflecting a number of parameters such as data set size,
protein sequence database size, number of proteins in the original
sample and their relative concentrations, and data quality. The
NSP distributions can be derived from each data set as a mixture
model using the EM algorithm.40 Initially, the unadjusted peptide
probabilities p(+|D) are used to compute the estimated number
of sibling peptides, NSPi, for each peptide assignment i in the
data set (eq 4). Applying the EM algorithm, adjusted probabilities
are then computed according to eq 5 alternatively with mixture
model NSP distributions among correctly and incorrectly assigned
spectra, p(NSP|+) and p(NSP|-), respectively, according to eqs
6 and 7, until a fixed point is reached. The resulting adjusted
peptide probabilities p(+|D,NSP) are then substituted into eq 3
to compute protein probabilities. This multistep approach facili-
tates the robust analysis of alternative groupings of data. Initial
probabilities that peptide assignments are correct based upon
peptide assignment information D can be computed independently
for disparate data sets (e.g., spectra collected from different
samples or using different mass spectrometers) and then adjusted
to take into account NSP only in the final combined data set for
which protein probabilities are desired.

Figure 3 illustrates how NSP distributions vary depending on
sample complexity and data set size. Figure 3A plots the logarithm
of the ratio p(NSP|+)/p(NSP|-) learned by the model in each
NSP bin k for the 18prot_Hum and Hinf_Hum data sets. A ratio
greater than unity (positive logarithm) indicates that the prob-
abilities are boosted by including NSP information, whereas a ratio
less than unity (negative logarithm) indicates that the NSP
adjustment reduces the probability that a peptide assignment is
correct. These two data sets have approximately the same number
of spectra searched against databases of nearly identical size, yet
whereas the 18prot_Hum data set was generated from a sample
with only 18 proteins, the Hinf_Hum data set was generated from
a complex sample containing hundreds of proteins. Thus, one
would expect a greater percent of correctly identified proteins in
the former to be multihit. Indeed, log p(NSP|+)/p(NSP|-) for
the 18prot_Hum data set is more strongly positive at high NSP
bins relative to the Hinf_Hum data set and more strongly negative
at low NSP bins (Figure 3A). As a result, incorporating NSP
information boosts probabilities of peptides with high NSP values
(corresponding to multihit proteins) and penalizes those with low
NSP values to a greater degree in the case of the 18prot_Hum
data set than in the case of the Hinf_Hum data set. NSP
distributions are also affected by the number of spectra in the
data set. As the number of MS/MS spectra generated from a
protein sample increases, more of the correctly identified proteins
will be multihit. Figure 3B plots log p(NSP|+)/p(NSP|-)
learned by the model for three data sets of increasing size,
18prot.sub1_Hum (1 LC/MS/MS run), 18prot.sub4_Hum (4 runs),
and 18prot_Hum (all 22 runs), all generated from the same sample
of 18 purified proteins. It is expected that as the size of the data
set increases with the sample complexity kept constant, sample
coverage increases whereby more correctly identified proteins are
multihit. As a result, the amount of peptide probability adjustment
for peptides with low or very high NSP increases with increasing
data set size (Figure 3B). The effect of data set size on the learned

NSP distributions is expected to be more significant in the case
of protein samples of higher complexity than the 18-protein mix.

For each peptide, the amount of adjustment for NSP should,
in principle, also depend on the likelihood of observing a particular
number of its sibling peptides. For any protein, the likelihood of
observing a particular number of peptides depends on a number
of factors such as its abundance in the sample, length, the number
of expected tryptic peptides (if proteins are digested using trypsin)
or, in case of ICAT experiments,41 the number of cysteine-
containing peptides. In addition, some peptides are rarely, if ever,
identified using mass spectrometry methods because their phys-
icochemical properties result in poor ionization efficiency or
incomplete fragmentation. As a result, some proteins might be
expected to produce only one distinct peptide that could possibly
be identified in an experiment. Such peptides, if indeed observed,
should therefore not have their probability of being correct
adjusted downward due to a low NSP value (no sibling peptides),
even if the majority of other proteins are identified by multiple
distinct peptides. Note, however, that the amount of adjustment

(40) Dempster, A.; Laird, N.; Rubin, M. J. R. Stat. Soc. 1977, B39 (1), 1-38.
(41) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R.

Nat. Biotechnol. 1999, 17, 994-999.

Figure 3. Dependence of NSP (expected number of sibling
peptides) distributions on sample complexity and data set size. (A)
The logarithm of the ratio p(NSP|+)/p(NSP|-) learned by the model
for each NSP bin k for comparable numbers of spectra generated
either from a low-complexity sample, 18prot_Hum, (triangles) or from
a high-complexity sample, Hinf_Hum, (squares). (B) Same for three
data sets of increasing size, 18prot.sub1_Hum, 1 LC/MS/MS run
(squares), 18prot.sub4_Hum, 4 runs (circles), and 18prot_Hum, 22
runs (triangles), each generated from the same sample. NSP bins k
are defined as 0 e NSP < 0.1 (bin 0), 0.1 e NSP < 0.25 (bin 1),
0.25 e NSP < 0.5 (bin 2), 0.5 e NSP < 1 (bin 3), 1 e NSP < 2 (bin
4), 2 e NSP < 5 (bin 5), 5 e NSP < 15 (bin 6), and 15 e NSP (bin
7).
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for having a low NSP value depends not only on the ratio
p(NSP|+)/p(NSP|-) learned by the model but also on the
unadjusted peptide probability p(+|D); see eq 5. As a result,
among all peptides in the data set having a low NSP value, peptides
with the unadjusted probability p(+|D) close to 1 are penalized
to a lower degree then those in the intermediate- or low-probability
range. This ensures that, in practice, adjustment for NSP does
not result in the loss of protein identifications based on only one
or two distinct peptides corresponding to them, which is often
the case with very small or low-abundant proteins, as long as they
are identified by at least one high-probability peptide.

Degenerate Peptides. Peptides assigned to MS/MS spectra
that correspond to more than a single entry in the protein
sequence database are “degenerate” and present a challenge since
their true corresponding proteins are uncertain. Such cases most
often result from the presence of homologous proteins, splicing
variants, or redundant entries in the protein sequence database.26

Degenerate peptides are more prevalent with searches using large
databases. For example, they routinely comprise 20% or more of
all peptides assigned to MS/MS spectra upon searching a human
sequence database.

The most likely protein(s) corresponding to degenerate pep-
tides can be inferred by apportioning such peptides among their
possible corresponding proteins according to the estimated
probabilities of those proteins in the sample, while in turn
computing the protein probabilities taking into account those
estimated apportionments. For the sake of clarity, this section
describes an analysis neglecting NSP information. The full analysis
combining treatment of degenerate peptides and adjustment of
peptide probabilities for NSP is presented in the next section. If
peptide i corresponds to Ns different proteins, then the relative
weight, wi

n, that this peptide actually corresponds to protein n
(n ) 1 ... Ns) is determined according to the probability of protein
n relative to those of all Ns proteins:

In turn, the protein probabilities are computed according to eq 3
taking into account the weights as well as the peptide probabilities:

where the contribution of peptide i is weighted by its estimated
apportionment to protein n, wi

n, and p(+|Di) is the maximum
probability among multiple assignments of peptide i to spectra in
the data set, maxj p(+|Di

j ). The model learns the degenerate
peptide weights iteratively using an EM-like algorithm. Peptides
are initially equally apportioned among their possible correspond-
ing proteins, and the protein probabilities calculated according
to eq 9. Then, both eqs 8 and 9 are applied iteratively until a fixed
point is reached.

The weights learned by the model reflect the likelihood that
each of the proteins corresponding to degenerate peptides is
present in the sample. Equation 8, requiring that the weights for
each degenerate peptide sum to unity, is based upon the

supposition that each degenerate peptide has only one corre-
sponding protein in the original sample. This is aimed at deriving
the simplest list of proteins sufficient to explain the observed
peptides assigned to MS/MS spectra in the data set and can be
described in essence as Occam’s razor, “plurality should not be
posited without necessity”.42 For example, Figure 4 shows a
common situation in which a degenerate peptide, with a probability
p(+|D) ) p1 of being a correct identification, corresponds to two
different proteins, A and B. There are no peptide identifications
in the data set corresponding to protein A and not protein B. On
the other hand, protein B has nondegenerate evidence in the form
of peptide 2, with a probability p(+|D) ) p2, which corresponds
only to protein B. Initially, both proteins are assumed equally
likely, PA ) PB, and the weights w1

A and w1
B are equally ap-

portioned according to eq 8. The weight w2
B is equal to 1 and

fixed at that value throughout all iterations since peptide 2
contributes to no proteins other than B. Substitution of the weights
and peptide probabilities in eq 9 updates protein probabilities and,
due to presence of peptide 2, PB becomes greater than PA, and
consequently, w1

B becomes greater than w1
A. The iterations

continue until a fixed point is reached. In this particular case, the
solution given by eqs 8 and 9 is that protein B acquires all the
weight from peptide 1, i.e., w1

B ) 1 and w1
A ) 0, so that PA ) 0 and

PB ) 1 - (1- p1)(1 - p2). In the above example, any nondegen-
erate evidence for protein B, regardless of how low its probability,
would result in the same apportionment of w1

B ) 1 and w1
A ) 0.

Since in any realistic data set there is a large number of incorrect
peptide identifications with low probabilities, i.e., chance assign-
ments of peptides corresponding to randomly selected proteins
in the database, improved performance of the model was achieved
by introducing an empirically selected minimum probability
threshold of 0.2 for peptides used in eq 9 to compute protein
probabilities. It should be noted that, in large data sets, the
network of degenerate peptides and their corresponding proteins
becomes quite complex relative to the simple example illustrated
in Figure 4. Such complexity, however, presents no problem for
the approach described above.

It is not uncommon, even in organisms with small genomes,
to encounter a situation when several database entries share a
set of observed peptides and are in essence indistinguishable given
the available mass spectrometric data. Such entries may include
various isoforms or splicing variants that could be products of
the same gene or products of different but related genes. In
addition, they may simply reflect a significant number of redun-

(42) Good, I. J. Proc. R. Soc. London A 1977, 354, 303-330.
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Pn

∑
s ) 1...Ns
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(8)

Pn ) 1 - ∏
i

(1 - wi
np(+|Di)) (9)

Figure 4. Illustration of a degenerate peptide case. Peptide 1,
having probability p1 of being a correct identification, corresponds to
two different proteins, A and B. Protein B has nondegenerate evidence
in the form of peptide 2 with probability p2, which corresponds to
protein B, and not A. Apportionments of peptide 1 among the two
proteins, w1

A and w1
B, and the protein probabilities, PA and PB, are

learned iteratively using an EM-like algorithm.
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dancies present in many databases due to incomplete protein
sequences or sequencing errors. To facilitate interpretation of the
model results, the indistinguishable proteins are reported together
in a group and assigned a single probability that any member is
present in the sample.

Combined Treatment of Degenerate Peptides and NSP.
Inclusion of NSP and treatment of degenerate peptide cases can
be combined in a single step. If peptide i is shared between Ns

different proteins, then that peptide would have Ns different NSP
values, one for each protein n (n ) 1 ... Ns) computed by summing
over other peptides m also corresponding to that protein

The NSP distributions among correct and incorrect peptide
assignments, p(NSP|+) and p(NSP|-), are calculated for each bin
k in a similar way:

where N is the total number of peptide assignments and p(+) is
the prior probability of a correct peptide assignment. The protein
probabilities are computed according to eq 9 using peptide
probabilities adjusted for NSP:

Initially, estimates of the weights wi
n are calculated using eq 8,

after which NSP values are computed using eq 10. The NSP
distributions are then estimated according to eq 11, and the
peptide and protein probabilities according to eq 5 and eq 12
iteratively until a fixed point is reached. Note that if a peptide is
shared between Ns different proteins and, as a result, has Ns

different NSP values, then that peptide gives as many contributions
to the negative and positive NSP distributions. Upon termination
of the algorithm, the model learns accurate NSP distributions
reflecting the prevalence of multihit proteins in the data set and
the proteins corresponding to degenerate peptides that are more
likely to be present in the sample, given the Occam’s razor
constraint. Finally, it computes an accurate probability that each
protein is present in the sample.

Evaluation of the Model. To evaluate the performance of the
statistical model, it was first applied to data sets generated from
a sample with 18 known proteins. Table 2 shows the number of
correct and incorrect protein identifications with probability
greater than or equal to 0.7 computed with or without adjusting
peptide probabilities to account for NSP. The first three data sets,
18prot_Hinf, 18prot_Dr, and 18prot_Hum, were generated from
the same data set of MS/MS spectra, yet searched against
databases of increasing size (Table 1). The 18prot_Hum data set
has a significant number of degenerate peptides, since the human
sequence database contains many homologous proteins, splicing
variants, and redundant entries. By comparison, the 18prot_Dr
data set has very few, and the 18prot_Hinf data set, even fewer,

degenerate peptides. Table 2 shows that the model performed
well on all data sets, regardless of the database used in the search.
Employing NSP information, it produced 18 correct protein
identifications and only 1 (18prot_Hum) or 0 (18prot_Hinf,
18prot_Dr) incorrect identifications with computed probability 0.7
or greater. In contrast, when NSP was not employed to adjust
peptide probabilities, the number of incorrect proteins assigned
probabilities 0.7 or greater increased significantly (34 in the case
of 18prot_Hum).

Table 2 also shows the results obtained for different data set
sizes. The model was applied to subsets of the 18prot_Hum data
set containing data from only 1 (18prot.sub1_Hum) or 4
(18prot.sub4_Hum) LC/MS/MS runs, as well as to the entire data
set of 22 runs (Table 1). The model learned different NSP
distributions in these three data sets (Figure 3) and in each case
employed the learned distributions to compute accurate and
discriminating protein probabilities. In all three cases, many more
correct than incorrect proteins were assigned probabilities 0.7 or
greater. Similar results were obtained for the number of correct
and incorrect proteins with computed probability greater than or
equal to 0.9.

To evaluate the accuracy and discriminating power of com-
puted protein probabilities for more realistic data sets generated
from samples with large numbers of proteins, the analysis was
applied to database search results of MS/MS spectra generated
from complex H. influenzae,43 Hinf_Human, and Halobacterium,44

Halo_Hum, samples. All MS/MS spectra were searched against
a human protein sequence database appended with the much
smaller database of the corresponding sample organism (see Table
1 for details). Figure 5 shows the accuracy of the protein
probabilities computed by the model. All protein identifications
were sorted according to the computed probability that those
identifications are correct, and the actual probabilities (fraction

(43) Kolker, E.; Purvine, S.; Galperin, M. Y.; Stolyar, S.; et al., submitted to J.
Bacter.

(44) Ng, V. et al. Manuscript in preparation.
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Table 2. Evaluation of Model Performance on Data
Sets Generated from the Mixture of 18 Purified
Proteinsa

no. of protein identifications

P g 0.7 P g 0.9

data set model + - + -

18prot_Hinf with NSP 18 0 18 0
without NSP 19 26 19 8

18prot_Dr with NSP 18 0 18 0
without NSP 19 29 19 12

18prot_Hum with NSP 18 1 18 1
without NSP 18 34 18 12

18prot.sub1_Hum with NSP 9 0 8 0
without NSP 9 2 9 1

18prot.sub4_Hum with NSP 12 0 12 0
without NSP 12 5 12 2

a The numbers of correct (+) and incorrect (-) protein identifica-
tions having computed probability (P) equal to or greater than the
indicated minimum probability thresholds are shown. Since the samples
also contained several common contaminants such as keratin, the total
number of protein identifications considered to be correct can exceed
18.
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of correct proteins) were determined within a sliding window of
20 identifications. All identifications of human proteins, with the
exception of common contaminants such as keratin, were con-
sidered to be incorrect, whereas all identifications of the proteins
of the sample organism were inferred to be correct, with the
exception of those due to chance peptide assignments.24 The
frequency of chance assignments was determined empirically as
a ratio of the number of assignments to proteins of the sample
organism with computed probability close to 0, to the total number
of incorrect assignments in the same probability range, and was
found to be around 4% for the Hinf_Hum data set and 7% for the
Halo_Hum data set. Figure 5 shows that the protein probabilities
calculated by the model are accurate (results of an ideal model
are represented by the 45° line). Figure 5 also plots the accuracy
of protein probabilities calculated without adjustment of peptide
probabilities for NSP, which are significantly overestimated,
especially in the range of intermediate probabilities. For example,
in the Hinf_Hum data set, there were 36 proteins having a
probability computed without adjustment for NSP between 0.4 and
0.6, when only 6 of those proteins (17%) were actually present in
the sample. At the same time, the peptide probabilities used as
an input in the model were shown to be accurate, if slightly
underestimated (see Supporting Information). The overestimation
of protein probabilities calculated without adjusting peptide
probabilities to account for NSP can be explained by noting that
nearly all of the 36 proteins not present in the sample were
identified (incorrectly) on the basis of only one peptide having a
significant probability of being correct. NSP adjustment penalizes
just such peptides with low NSP values, resulting in more accurate
protein probabilities, with 5 out the 12 proteins (42%) having
assigned probabilities (computed with adjustment for NSP)
between 0.4 and 0.6 being present in the sample.

The discriminating power of computed protein probabilities
is illustrated in Figure 6A, which plots for the Hinf_Hum data set
the false positive error rate versus sensitivity resulting from
filtering data on the basis of various minimum computed prob-
ability thresholds. Each point along the curve represents the
results of using a different filter (minimum probability threshold)
to accept all protein identifications with computed probabilities

at least as great. The results indicate that the probabilities
computed by the model have high power to discriminate the
correct protein identifications from the incorrect ones. For
example, employing a minimum probability threshold of 0.7 yields
94% sensitivity (240 correct protein identifications) with a false
positive error rate of 1.2% (3 incorrect identifications), which is
close to 100% sensitivity (255 correct protein identifications) and
0% error rate (0 incorrect identifications) expected in this data
set from an ideal filter. Interestingly, in this data set, 39% of all
correct identifications passing the 0.7 filter (95 correct identifica-
tions) had only one peptide corresponding to them. Traditionally,
these proteins, which often include low-abundance and low
molecular weight proteins, are among the most challenging
identifications and would be lost using suggested filtering criteria
requiring two or more corresponding peptides.30 Figure 6A also
demonstrates that filtering the data on the basis of protein
probabilities computed without adjustment for NSP results in
lower sensitivity (and thus, number of correct protein identifica-
tions) for any given false positive error rate. Similar results were
observed for the Halo_Hum data set. Accurate computed prob-
abilities can be used to compute the estimated number of correct
protein identifications in the data set (by summing the probabilities
of all protein identifications in the data set). They can also be used
predict the false positive error rate and sensitivity resulting from

Figure 5. Accuracy of computed protein probabilities. The actual
probability (fraction of protein identifications that are correct) among
identifications with indicated computed probabilities derived from the
H. influenzae sample, Hinf_Hum (solid line), and the Halobacterium
sample, Halo_Hum (dashed line). Also shown is the accuracy of
probabilities computed without adjusting peptide probabilities to
account for protein grouping information (NSP). The expected prob-
ability for an ideal model is indicated by the dotted 45° line.

Figure 6. Sensitivity and false positive identification error rates using
minimum computed protein probability thresholds. (A) Sensitivity/error
rate tradeoff employing thresholds based upon probabilities computed
with (solid line) or without (dashed line) adjustment for protein
grouping information (NSP) for the H. influenzae sample, Hinf_Hum.
The result of using an ideal filter (100% sensitivity and 0% error rate)
is indicated by an asterisk. (B) Observed (solid line) and model
predicted (dashed line) sensitivity and error rate as a function of
minimum computed probability threshold derived for the same data
set.
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the use of any minimum probability threshold data filter.25 Figure
6B shows for the Hinf_Hum data set that there is good agreement
between the actual sensitivity and error rates and those predicted
by the model. Thus, researchers can choose minimum probability
thresholds that confer a desired sensitivity or error rate for any
data set.

Data sets Hinf_Hum and Halo_Hum both contain a number
of degenerate peptides, each corresponding to more than a single
protein in the database, which can be used to evaluate how the
model handles such cases. Figure 7A illustrates a case taken from
the Halo_Human data set, where a peptide VAFGPK is shared
between two unrelated proteins, Q9HQJ9 from the sample organ-
ism, Halobacterium (correct protein identification) and a human
protein GPN:AF414401_1 (incorrect identification). The initial
(unadjusted for NSP) probability that the peptide VAFGPK is a
correct identification, given its database search scores, number
of tryptic termini, and number of missed cleavages, is 0.86. Both
proteins sharing this peptide have other nondegenerate peptides
corresponding to them. Q9HQJ9, however, has a significantly
larger number of peptides that correspond to it, while
GPN:AF414401_1 has only one other peptide in the data set,
RCMPSGPR, with initial probability 0.33, which is an incorrect
assignment. Thus, peptide VAFGPK has many sibling peptides
and a very high NSP value with respect to protein Q9HQJ9 (NSP
value 14.66, NSP bin 6) and only one low probability sibling, and
a much lower NSP value, with respect to protein GPN:AF414401_1
(NSP value 0.33, NSP bin 1). After adjustment for NSP, its
probability is increased to 0.97, assuming it corresponds to protein
Q9HQJ9, and decreased to 0.35, assuming it corresponds to GPN:
AF414401_1, and its apportionments between the two proteins are
estimated to be 0.72 and 0.28, respectively. Thus, the model
correctly predicts that it is much more likely that peptide VAFGPK
is present in the tryptic digest due to the presence in the original
sample of protein Q9HQJ9 rather than GPN:AF414401_1. Since
GPN:AF414401_1 does not have any other significant evidence,
it is assigned a relatively low probability (0.39) of being present
in the sample. In contrast, it would have been assigned a
probability of 0.91 without adjustment of peptide probabilities to
account for NSP and assuming a full contribution from degenerate
peptide VAFGPK.

Another example, taken from the Hinf_Hum data set, is shown
in Figure 7B. A peptide DAAANTMTEVK, identified with very
high probability, is present in two protein sequence database
entries corresponding to two predicted coding regions, HI1339
and HI1462.1. The only difference between these two entries is
that HI1462.1 has an additional stretch of six amino acids at its N
terminus (Figure 7B). No other peptide corresponding to either
of these two proteins was found in the data set. Therefore, given
the available mass spectrometric information, and without any
additional knowledge such as the molecular weight of the sample
protein, it is impossible to distinguish between these two protein
entries and to determine which protein is more likely to be present
in the sample. As a result, both entries, HI1339 and HI1462.1, are
reported together as a single identification. This example il-
lustrates an important point that a high-throughput peptide
sequencing approach might not be sufficient to distinguish
between proteins with a high degree of sequence similarity, such
as splicing variants of the same gene product. In the particular

case shown in Figure 7B, for example, to distinguish HI1462.1
from HI1339, one would need to look specifically for a peptide
spanning the N terminal region of the former.

Figure 7C shows an even more complicated situation observed
in the Halo_Hum data set. A total of five peptides were identified
corresponding to a group of flagellin precursor proteins. In
addition, there are no peptides corresponding to only one of the
proteins in the group and not another. One of the proteins,
FLA4_HALN1, corresponds to five peptides, while all other
proteins in the group correspond to only a subset of the five
identified peptides. In accordance with the Occam’s razor approach
implemented in the model, FLA4_HALN1 is considered the most
probable candidate since it is sufficient to explain the presence
of all five identified peptides in the tryptic digest of the sample.
Thus, FLA4_HALN1 is assigned a probability close to 1 and is
apportioned the full weights of its shared peptides, while all other
proteins in the group are assigned 0 probability. Nevertheless,
the presence of FLA4_HALN1 is not required to explain the
observed data. For example, the observed peptides could have
originated from the presence of both FLA_HALN1 and Q9HQX4
in the sample. The model therefore presents the entire set of
similar flagellin precursor proteins as a group in order to assist
the user in interpretation of the data. Note that situations of the
kind discussed here, while quite rare in the H. influenzae or
Halobacterium test data sets used to evaluate the performance of
the model in this work, occur more frequently in data sets
generated from higher eukariotic organisms. Preliminary results
of applying this method to analyze the data generated in large-
scale experiments performed on human raft cells are encouraging
and demonstrate satisfactory grouping of similar proteins and
apportioning of degenerate peptides among their corresponding
proteins.45

General Utility of the Model. Probabilities computed by the
model are accurate measures of confidence to accompany protein
identifications and provide a standardized way of publishing large-
scale proteomics data sets in the literature. For example, research-
ers can filter data below a low minimum probability threshold,
such as 0.1, to remove the majority of incorrect results, and then
publish the remaining protein list along with the computed
probabilities that those identifications are correct. This allows
users to have access to the most complete data set possible to
interpret or further utilize at their discretion, as long as the
reported protein probabilities are given full consideration. A
researcher desiring only the most confident identifications, as is
often the case for high-throughput experiments, can accept only
those reported identifications with a high probability (for example,
at least 0.9). On the other hand, a researcher interested in a
particular protein has the opportunity to observe the evidence for
its presence in the sample, no matter how slight. Inconclusive
evidence might be sufficient justification for additional experiments
to determine the validity of that identification. Published protein
identifications accompanied by accurate probabilities would also
provide maximal information to higher level computational analy-
ses based on proteomics data, such as those concerned with the
identification of protein-protein interactions, as long as they take
the protein probabilities into account.

(45) von Haller, P. D. et al. Manuscript in preparation.
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Figure 7. Examples of model results with degenerate peptides (see text for details). (A) In the Hinf_Hum data set, identified peptide VAFGPK
is shared between an unrelated correct (Q9HQJ9) and incorrect (GPN:AF414401_1) protein. The model correctly determines that it is much
more likely that peptide VAFGPK is present in the tryptic digest due to the presence in the original sample of protein Q9HQJ9 rather than
GPN:AF414401_1. (B) In the Hinf_Hum data set, two protein database entries, HI1339 and HI1462.1, are not distinguishable on the basis of the
single observed peptide identification and are reported together as a single identification. (C) In the Halo_Hum data set, a total of five peptides
are identified corresponding to a group of flagellin precursor proteins, none of which has any nondegenerate evidence. One of the proteins,
FLA4_HALN1, contains all five peptides, while all other proteins in the group contain only a subset of the five identified peptides. FLA4_HALN1
is therefore the most probable candidate since its presence in the sample is sufficient to explain the presence of all identified peptides in the
tryptic digest of the sample. These proteins are presented by the model as a group (“flagellin_precursor”).
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The model can predict the number of correct protein identifica-
tions in data sets, as well as the error rates resulting from filtering
the data with any minimum probability threshold. This information
could serve as objective criteria by which related data sets are
compared, regardless of differences in the experimental or
computational methods used to generate the data. For example,
one can compare unfiltered protein identification data sets using
the total number of correct protein identifications predicted by
the model. In addition, one can compare filtered data sets
objectively by specifying a uniform error rate and applying to each
data set the corresponding minimum probability threshold. The
model predicted error rate and the number of correct protein
identifications can similarly be used to compare the performance
of different computational methods, such as different database
search tools, and different experimental protocols.

At present, this model has been applied to large-scale data sets
of peptide assignments produced by MS/MS database search
tools. It should be stressed that it can be applied to data sets of
peptide assignments produced by any database search tool, or
by a combination of several such tools, as long as each peptide
assignment is accompanied by an accurate probability that it is
correct. Peptide probabilities can be considered accurate (in the
context of the complete data set for which they are calculated), if
upon selection of all peptides in the data set having any given
computed probability, the corresponding proportion of them is
correct. Suitable peptide probabilities for any database search tool
can be obtained using the software PeptideProphet or a similar
implementation of the peptide statistical model described in ref
25. Note that the probabilities that peptide assignments are correct
can be computed independently for disparate data sets (e.g.,
spectra collected from different samples or using different mass
spectrometers) and then combined prior to analysis. Finally, the
statistical model can in principle be applied to peptides assigned
to MS/MS spectra using computational methods not relying
exclusively on the database search, as well as to peptides identified
using experimental methods other than MS/MS sequencing.

Future Work. One possible improvement of the model is
related to the definition of NSP, given in eq 4. More accurate
protein probabilities might be achieved by renormalizing NSP to
account for the differences in the expected number of peptides
among different proteins. In addition, an empirical factor reflecting
common knowledge about the protein digestion process can be
introduced in eq 4.46 Various ways of renormalizing NSP are being
investigated.

An interesting future pursuit is to explore various ways to
incorporate prior knowledge about the biological system in
general, and the samples analyzed by mass spectrometry in
particular, when such information is available. For example,
assume that it is known that the given sample consists of
predominantly nuclear fraction proteins. If then a peptide is
observed that is shared between two proteins, A and B, with
protein A being more likely to be present in a nuclear fraction
than B, it could then be inferred more likely that the peptide is
present in the peptide mixture due to the presence of protein A
in the original sample rather than protein B. Thus, in this particular
example, the prior knowledge regarding cellular localization could
be useful for resolving some cases of degenerate peptides. In

another example, corresponding to the situation shown in Figure
4, assume that it is determined, e.g., via the ICAT labeling
approach, that both peptides, 1 and 2, are present in the sample
at significantly different relative abundances with respect to a
control sample. This, in turn, would indicate that both proteins, A
and B, are likely to be present but at different relative abundance
levels. In general, prior information could be any knowledge
available in the literature or obtained from other kinds of
measurements performed on the same systems in the course the
study. In fact, all pieces of information mentioned above are
routinely taken into consideration by biologists analyzing and
validating protein identifications obtained in their experiments.

CONCLUSIONS
The described method for computing probabilities that proteins

are present in a sample on the basis of peptides assigned to MS/
MS spectra acquired from a proteolytic digest of the sample
enables high-throughput analysis of large-scale proteomics experi-
ments. It produces accurate probabilities that proteins are present
in the sample, with high power to discriminate correct from
incorrect protein identifications. It is fully automated and fast and
does not rely on subjective manual validation. The method allows
filtering of large-scale data sets with predictable sensitivity and
false positive identification error rates. It presents results in an
organized manner by collapsing redundant protein sequence
database entries into single identifications and by grouping
together proteins that are not distinguishable on the basis of
peptides assigned to MS/MS spectra. It provides a new standard
for publishing large-scale proteomics data sets in the literature
and enables the comparison of results from different research
groups, obtained using different experimental protocols, different
mass spectrometers, and even different MS/MS database search
tools. Resulting lists of protein identifications along with their
computed probabilities can also serve as useful inputs to compu-
tational tools being developed that rely on the data generated in
high-throughput proteomics studies, such as those concerned with
the analysis of protein-protein interaction networks and metabolic
pathway reconstruction.

The software ProteinProphet implementing the statistical
model described in this work will be available to the public at
http://systemsbiology.org/research/software.html.
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SUPPORTING INFORMATION AVAILABLE
Coefficients of the derived discriminant function used to

compute probabilities that SEQUEST search results of singly
charged precursor ion spectra are correct, as well as data
demonstrating improved discriminating power of peptide prob-
abilities computed with adjustment for NSP and accuracy of
computed peptide probabilities for the Halo_Hum and Hinf_Hum

data sets. This material is available free of charge via the Internet
at http://pubs.acs.org.
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