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Abstract We present a highly simplified model to describe the diurnal evolution of a convective cloud

field in idealized large eddy simulations. The life cycles of individual precipitation events are detected by a

storm tracking algorithm which records the autonomous appearance and decay, as well as the merging and

fragmentation of convective precipitation cells. Conditioned on the area covered by each cell, the tracking

method records the time evolution of the precipitation intensity, the anomalies of near-surface temperature

and moisture, convective available potential energy, and convective inhibition. For tracks that do not merge

or split (termed solitary), many of these quantities show generic, often nearly linear relations that hardly

depend on the forcing conditions of the simulations, such as surface temperature. This finding allows us

to propose a simple idealized model of precipitation events, where the surface precipitation area is circular

and a cell's precipitation intensity falls off linearly with the distance from the respective cell center. The

drop-off gradient is nearly independent of track duration and cell size. Multiple track properties, that

is, track duration, peak, and mean intensity, as well as the associated cell area can hence be specified by

knowing only one remaining parameter. In contrast to the simple and robust behavior of solitary tracks,

tracks that result from merging of two or more cells show a much more complicated behavior. The most

intense, long lasting, and largest tracks stem from tracks involved in repeated merging.

1. Introduction

Recent studies, using both observational and simulated data, argued that future warmer climate conditions

may result in an intensification of convective precipitation (Lenderink & van Meijgaard, 2008; Lenderink

et al., 2017; O'Gorman & Schneider, 2009; Westra et al., 2014), potentially increasing the risk of flood

(Kendon et al., 2014). Historical high-resolution data show that convective precipitation intensities are par-

ticularly sensitive to temperature changes (Berg et al., 2013; Lenderink & van Meijgaard, 2008; Lenderink

et al., 2009; Molnar et al., 2015), but the exact mechanisms causing extreme convective precipitation or its

temperature dependence are, to date, not fully understood.

A recent paper suggested that disappearance of local convective inhibition (CIN) in a given location is a nec-

essary prerequisite for the onset of convection there (Moseley et al., 2016). Negative buoyancy contributions,

defined as CIN, are hence a plausible indicator of times and locations at which convection is suppressed.

Convective available potential energy (CAPE) is a traditional predictor for convective intensity and updraft

speed, repeatedly used in subgrid closure schemes for convective parametrization in large scale models

(Arakawa, 2004; Arakawa & Schubert, 1974). Failure of convective parametrizations was found to be more

likely under nonequilibrium conditions, that is, departures from the quasi-equilibrium assumption (Neelin

et al., 2008). In those situations CAPE is rapidly modified with the onset of convection and not balanced by

large scale processes (Done et al., 2006; Zimmer et al., 2011).

CAPE and CIN are conceptual, idealized quantities, based solely on the adiabatic ascent of a test parcel

originating at a certain height above the surface but neglect the effects of mixing. Here we aim to address

the interplay between CAPE, CIN, and local precipitation production as well as other thermodynamic

quantities. The local thermodynamic conditions before and during the initiation of precipitation cells are

influenced in three different ways: first, by surface latent and sensible heat fluxes as well as the redistribu-

tion of moisture and temperature within the boundary layer. Second, by latent heat release within the cloud

that eliminates the temperature differences between the parcel and the ambient air temperature (Done et al.,

2006), and third, due to mixing with the environment within the cloud. To show that the latter two play
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only a minor role for local CAPE, we define CAPE and CIN as local quantities by lifting a test parcel from

the lowest model level and vertically integrating its buoyancy within the local air column and alternatively

versus the horizontal mean air column. However, other authors (e.g., Zimmer et al., 2011) have in contrast

assumed that tropospheric heating and boundary layer cooling and drying contribute approximately equally

to the reduction of CAPE.

Storm tracking algorithms have proven useful in studying the interaction of convective rain cells (Dawe

& Austin, 2013). In recent years, a number of methods for the tracking of individual clouds and convec-

tive storms have been developed. These methods identify single convective cells and follow their evolution

throughout the life cycle, that is, from the formation of a cell to the dissolution. Storm tracking methods

have been developed for different purposes and are therefore specialized in one way or the other. Elaborate

and optimized storm tracking methods in two and three dimensions have been geared toward the nowcast-

ing of thunderstorms (Dixon & Wiener, 1993; Hering et al., 2005; Kober & Tafferner, 2009); other methods

identify clouds and thermals to study the cloud statistics in shallow (Heiblum et al., 2016; Heus & Seifert,

2013) or deep convection (Senf et al., 2018; Tsai & Wu, 2017).

Our current tracking method focuses on the life cycle of convective precipitation tracks in both observed

and simulated 2-D data, such as 2-D radar precipitation observation products and surface precipitation from

large eddy simulations (LES) output. We build on the Iterative Rain Cell Tracking (IRT) originally developed

for the analysis of radar data (Moseley et al., 2014). IRT is simple, but it is able to distinguish merging and

fragmentation incidents and therefore caters to statistical analysis of different track types.

Mergers have been described both observationally (Byers & Braham, 1949; Simpson et al., 1980) and by

computer simulations (Glenn & Krueger, 2017; Tao & Simpson, 1989), suggesting that combined cells can

produce more intense precipitation and that merging can lead to larger detrainment heights (Glenn &

Krueger, 2017). In IRT, instantaneous contiguous objects of precipitation are identified and checked for

overlaps with the respective consecutive time steps. IRT capitalizes on the fact that, even under large scale

advection, larger objects mostly overlap from one time step to the next, thereby allowing to identify tracks

formed by the objects with overlap. By iterating, also smaller rain cells are captured, which often do not

overlap when they are advected.

An approach similar to IRT has more recently been applied to the analysis of radar data over the

Netherlands—finding that the temperature scaling of cell intensities depends on the cell size (Lochbihler

et al., 2017). IRT has further been applied to precipitating convective updrafts generated by idealized LES

(Moseley et al., 2014). The main finding there was that tracks resulting from the merging of previous tracks

react muchmore strongly to forcing conditions when compared to tracks that did not interact, so-called soli-

tary tracks. The reason for this insensitivity of the solitary tracks to surface forcing could not yet clearly be

identified. It could be speculated that solitary tracks aremainly driven by the feedback between the boundary

layer and the free atmosphere, which is largely independent of the boundary layer height.

To address the relation between CAPE, CIN, and precipitation, IRT is here extended to record also an arbi-

trary number of auxiliary fields by conditioning on surface precipitation intensity (section 2). We hence

yield the time evolution both for the main tracking field and all auxiliary fields. In section 3 we describe our

results, including overall track statistics and a characterization of the track life cycle. We then discuss the

relation between CAPE, CIN, and near-surface temperature changes. Based on this relation, we propose a

simple statistical model which captures the relation between cell duration, cell maximum intensity, and cell

area. We finally discuss the implications and possible extensions and conclude (section 4).

2. TrackingMethod andModel Simulation Data
2.1. TrackingMethod
2.1.1. Objects and Tracks

The algorithm diagnoses precipitation cells, or contiguous areas defined by any other field, as disparate

entities in space, in the following called objects. Precipitating and nonprecipitating areas are separated by a

fixed threshold Imin. Throughout this paper, we choose a fixed threshold intensity of Imin = 1mm/hr since

this value corresponds to the typical limit of detectability in radarmeasurements (Moseley et al., 2014). After

object identification, the tracking algorithm links objects between two consecutive output time steps when

they overlap. Such overlapping objects are then considered part of the same track. By definition, we require

an object to consist of at least four grid boxes, and a trackmust be at least two time steps long (i.e., tracks that
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are only one time step long are neglected).We define the track lifetime as the number of time stepsmultiplied

by the output interval of the input fields, for example, to a track that is six time steps long, we would assign

a lifetime of 30 min, since our LES data have an output interval of 5 min. Note that the term “object” is used

here for a precipitation cell at a given instant in time, while a “track” is an entity with a given lifetime, that

is, it links all objects at different time steps together that belong to the same precipitation event.
2.1.2. Iteration

Under rapid advection, smaller objects often do not overlap from one time step to the next, although they

might belong to the same updraft process. To remedy this shortcoming, an iterative procedure is applied:

Object identification is performed once for all time steps, and a mean advection velocity field of the moving

objects is diagnosed from the tracking result. Subsequently, the tracking is repeated by taking into account

the diagnosed velocity field, such that each object is displaced by Δr ≡ Δt · v, where Δr is the displacement,

Δt the data output time step, and v is the diagnosed effective advection velocity. This procedure results

in an improved match of any given object with the corresponding object of the consecutive time step (for

details, see Moseley et al., 2014). Generally, the iterative procedure has to be repeated several times until the

diagnosed velocity converges.
2.1.3. Merging and Fragmentation

The main challenge for the tracking algorithm is the handling of merging and fragmentation incidents.

When very small objects combine withmuch larger ones, onemight not consider the resulting track distinct

from the larger of the two.We therefore introduce a parameter �, termed the termination sensitivity, that can

be used to distinguish if a merging/fragmentation incident entails the termination of all involved tracks or

if the largest track is continued. Specifically, we define as follows:

•Merging incident: two ormore objects at time step t overlapwith one object at time step t + 1. The algorithm

determines the areasAi of the largest objectOi andAj of the second largest objectOj at time t. IfAj∕Ai < �,

then Oi is continued as the merged object at time t + 1, while Oj and (if present) all other smaller objects

are terminated. Otherwise, ifAj∕Ai ≥ �, all objects at time t are terminated, and themerged object at time

t + 1 is initiated as a new track and labeled as a track initiated from merging.

• Fragmentation incident: The definition is analogous but for the case where parts of one track separate from

an existing track. Now the areas of the fragments are compared, again using the comparison of the largest

and second to largest area, as for mergers from one time step to the next. In principle, a fragmentation

incident is the time reverse of a merging incident.

The parameter � takes values 0 ≤ � ≤ 1. If � = 0, every merging and fragmentation incident leads to the

termination of all involved tracks and to a new initiation of all resulting tracks. The main objective for the

introduction if � is the reduction of noise: If a very small object splits off or merges into a much larger one, it

can be avoided that the large track is immediately terminated by such an event by choosing a nonzero value

for �. For � = 1, upon merging or fragmentation, at least the track with the largest object area at the time

of the merging continues.
2.1.4. Book Keeping

Tracks are labeled by the type of their initiation and termination.Weuse the notationX-Y , whereX∈{s,m,f,a}

denotes the type of initiation, that is, as a new solitary event (s), as a result of a merging event (m), or as

a fragment of a splitting-up of another track (f), and Y∈{s,m,f,a} denotes the type of termination, that is,

dissolution as a solitary event (s), by merging with another track (m), or by fragmentation or breaking-up

into other tracks (f). For instance, s-s refers to all tracks that begin and end as solitary. Tracks of type s-s

thus do not interact with other tracks, whilem-s denotes tracks that begin as a merging result but terminate

by dissolution. The symbol a is used as a place holder for all of the three types s,m,f for either initiation

or termination, for example, s-a refers to tracks that begin as solitary but terminate in any of the three

possibilities. In the following, we will refer to tracks of type s-s simply as solitary, as they will constitute

the main subject of the discussion. Note that the terms initiation and termination are used here only in

associationwith the tracks asmathematical objects identified by the IRT algorithm and notwith the physical

rain events as such, which of course do not terminate whenmerging and fragmentation incidents take place.

The number of tracks detected for each track type depends on the choice of the parameter �, as will be

discussed in section 3.1.
2.1.5. Auxiliary Variables

Area mean and maximum and minimum of any additional fields are recorded for the areas defined by

the main tracking variable (here surface precipitation). Here we record the following additional variables:

Anomalies, that is, subtracting the current domain mean, of temperature in the lowest model level, CAPE,

MOSELEY ET AL. 362



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001383

and CIN. CAPE and CIN are defined at a gridbox level using an adiabatically lifted test parcel from the

surface to the level of neutral buoyancy (see section 2.3).
2.1.6. Boundary Conditions

IRT can be applied on data either with periodic (as is the case here) or open boundary conditions (such as

for remote sensing data or limited area simulations). Further, IRT can also handle missing values which

may occur in observational data.
2.1.7. Fortran 90 Source Code

Wemake the IRT program code publicly available. The source code, including a user'smanual and a tutorial,

can be downloaded via the URL:
https://github.com/christophermoseley/iterative_raincell_tracking.

2.2. Model Simulation Data

Wesimulate an idealized convective diurnal cycle using theUniversity of California, LosAngeles LESmodel,

including a delta four-stream radiation scheme and a two-moment cloud microphysics scheme (Stevens

et al., 2005). Subgrid-scale turbulence is parametrized after Smagorinsky. The domain size is 1,024 × 1,024

grid boxes with a horizontal grid spacing of 200m, with 75 vertical levels which stretch from a spacing of 100

mnear the surface to 400m at themodel top, located at 16.5 km. The simulation is initialized by horizontally

homogeneous temperature and moisture profiles. The temperature profile starts with 21 ◦C at the lowest

model level with a lapse rate of 6.6 K/km below 11 km and 3 K/km above. The profile of relative humidity

starts with 65% in the first model level, linearly increases by 12% km−1 below 2 km, decreases by 12.5% km−1

between 2 and 4 km, by 2% km−1 between 4 and 10 km, and by 12% km−1 higher up.

The diurnal cycle is imposed by a varying surface temperature (Tsurf) profile following Tsurf(t) = T0 +

ΔT sin((t − 6)π∕12), where t denotes the time in units of hours after midnight, and the solar insolation at a

latitude of 52◦ N. Surface sensible and latent heat fluxes are then computed interactively by the model using

Monin-Obukhov similarity theory. T0 is the daily average surface temperature and was varied between T0 =

23, 25, and 27 ◦C, denoted in the following as the CTR, P2K, and P4K simulations, respectively. The tem-

perature amplitude is ΔT = 10K. We approximate the effect of a moist land surface by assuming a specific

humidity of the surface layer to 70% of its saturation value (i.e., as it would be given over an ocean sur-

face). An additional run, which includes large-scale advective forcing as well as a simulated vertical lifting,

is denoted as OMEGA. For all simulations, we chose an output interval of 5 min for the full 3-D prognostic

fields.

The simulation OMEGA, in contrast to CTR, P2K, and P4K, includes homogeneous large scale wind shear

and is therefore qualitatively different from the simulations without shear: Precipitation objects are elon-

gated in the flow direction and grow larger during the course of the day. The iteration process mentioned

in section 2.1 is required for the OMEGA simulation only, but not for CTR, P2K, and P4K, since there is no

background flow in the latter simulations. Although the focus of the following results section is on the three

simulations without large scale forcing, we include OMEGA for the sake of completeness and argue that

the behavior of convective events is fundamentally different in the case of wind shear and would require a

special consideration.

2.3. Calculation of Local CAPE and CIN

For the calculation of CAPE and CIN, in every model column, we lift an imaginary air parcel along a

pseudoadiabat, starting from the lowest model level, up to the model top. CAPE is then given by

CAPE = ∫
model top

LFC

g

(

Tv,parcel − Tv

Tv

)

dz, (1)

where Tv is the virtual temperature of the air in the column, Tv,parcel is the virtual temperature of the parcel,

and the integral is taken over all values of z above condensation level where Tv,parcel > Tv, that is, where the

parcel has positive buoyancy. LFC denotes the lifted condensation level. CIN is given by

CIN = ∫
LFC

0

g

(

Tv − Tv,parcel

Tv

)

dz, (2)

where the integral is taken over all values of z below the level of free convection where Tv,parcel < Tv, that

is, where the parcel has negative buoyancy.
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Figure 1. Fraction of total accumulated rainfall for track types s-s (solitary),m-a (mergers), f-a (fragments), and
remaining types (other) versus the termination sensitivity �, for the simulations P2K (a) and P4K (b).

We approximate the pseudoadiabat by a dry adiabat below the lifting condensation level (LCL); above the

LCL, we integrate the temperature lapse rate given by Emanual (1994)

−
dT

dz
=

Γd +
Lv
cp

Rd∕Rc×esatpg

(p−0.378esat)
2RdT

1 +
Lv
cp

(

Rd∕Rv
p−0.378esat

+
0.378Rd∕Rv×esat
p−0.378esat

)

desat
dT

(3)

Figure 2. Time sequences of tracked objects. Precipitation objects 1, 3, and 5 hr after the onset of precipitation for T0 = 25 ◦C (P2K) and T0 = 27 ◦C (P4K), as
labeled, with � = 0.5. Objects are colored by their track type as indicated in the legend. “single ts” labels tracks that lasted for only a single time step. � = 0.5,
lx = ly = 204 km.
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Figure 3. Relative track properties. Number of tracks (a), averages of track duration (b), effective patch radius (c), and
precipitation intensity (d) for each track type. Only cases with more than 10 data points were considered in the
statistics. Note the logarithmic vertical axis scale in top panel.

to obtain T(z). Here Rd and Rv are the specific gas constants of dry air and water vapor, respectively, Lv is the

latent heat of vaporization, cp is the specific heat capacity of dry air at constant pressure, esat is the saturation

vapor pressure with respect to liquid water, p is the air pressure, and �d = 9.8 K/km is the dry adiabatic

lapse rate.

3. Results
3.1. Categorization of Track Types

IRT discriminates three processes by which tracks can be initiated and terminated: solitary (s), merging (m),

or fragmentation (f), hence yielding nine possible combinations. The number of tracks that are detected

within each type depends on the choice of the parameter �. To give a basic assessment of the impact of �,

we compute the total precipitation throughout the diurnal cycle for several track categories (Figure 1), that

is, pure solitary (s-s), all tracks initiated through a merging incident (m-a), tracks initiated during fragmen-

tation (f-a), and remaining track types (termed: other), that is, s-m or s-f . The sum of all components shown

amounts to approximately 80% for P2K and 86% for P4K. The remaining precipitation with intensities below

1 mm/hr bypasses the object identification or belongs to tracks that are only one time step long. Lower

threshold values will naturally increase the records of low-intensity precipitation objects. As Figure 1 shows,

the fraction of the different categories varies substantially with �, with the contribution of solitary tracks

increasing with � at the expense of mergers. For very low values of �, even very small tracks can lead to such

merging and fragmentation incidents which might perturb a clear signal of the interaction. Conversely, for
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Figure 4. Peak track intensity versus time. Comparison of purely solitary (s-s) tracks (a) versus mergers (m-a) (b), for
the simulations P2K and P4K (colors) and for termination sensitivities � = 1.0, � = 0.5, and � = 0.2 (symbols as
shown in legend). Note that the case of � = 1.0 is not shown for merges in (b), since their number vanishes in this
case. The error bars indicate the standard error for each data point.

� = 1, mergers completely vanish, as each track that a smaller tracks merges into is always continued and

is considered as solitary (vice versa, in a fragmentation incident, the largest fragment always continues the

original track). Therefore, in the case � = 1, the number of detected solitary tracks is maximal (see also

supporting information section S1 for further details).

As an example, consider an instantaneous situation containing objects of all track types mentioned above

(Figure 2). In this case, we use an intermediate value of � = 0.5, which allows the possibility of mergers. An

example of a simulation with background large scale advection (OMEGA) is shown in Figure S1. To track

rain cells in these data, the iteration feature of the tracking algorithm is applied. We contrast the advected

with the unadvected CTR simulation at the same surface temperature. Figure 3 shows the corresponding

total number of detected tracks, along with summary statistics, for each track type for the simulations, again

for � = 0.5 to include mergers. Overall, tracks that are initiated as solitary are by far the most abundant.

The second most prominent category is tracks originating as fragments or mergers but ending as solitary.

Tracks both originating and ending as interaction incidents are relatively rare. Notably, when comparing the

two simulations P2K and P4K, which have different surface temperature forcing T0, stronger forcing leads

to an increase of the number of mergers and fragmentations at the expense of the purely solitary tracks. The

overall number of tracks remains nearly unaffected by the forcing change.

Mean track durations vary between 15 and 45min and are largest for tracks originating as mergers. Shortest

durations occur for tracks initiated and terminated as fragments—likely a statistical effect where multiple

fragmentation processes take place in quick succession. As has been shown before (Moseley et al., 2016),

under the forcing change, solitary tracks do not significantly change their duration, while tracks of all other

categories do (mostly increasing for the stronger forcing).

The typical maximal spatial extent of tracks (quantified by reff =
√

A∕π where A is the maximum area that

the track reaches) is 2–4 km and generally largest for tracks originating from merging. Merging not only

leads to expectedly larger areas, but even the area average intensity of mergers increases relative to purely

solitary tracks. Overall, the largest, and most intense, tracks result from repeated merging (m-m). Further,

m-m tracks increase in number, duration, size, and intensity when the forcing is increased.

Together, these findings suggest that tracks involving some formof interaction (eithermerging or fragmenta-

tion) react to increased forcing. They do so by increasing duration, spatial extent, and precipitation intensity.

Purely autonomous solitary tracks (i.e., of type s-s) show essentially no change in any of these properties.

Furthermore, stronger forcing increases the probability of interference between tracks, a feature reflected

by increased track numbers with merging or fragmentation, at the expense of purely solitary tracks. This
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Figure 5. Time dependence across track duration. Precipitation intensity (a) and effective object radius
(c) (reff ≡ √

A∕�) versus time within tracks, for the P2K simulation and � = 1.0. Colors of curves indicate mean track
life cycles conditioned on duration, ranging from 10 (blue) to 90 min (red). (b and d) Both axes normalized by total
track duration. Intensity I is here defined as precipitation intensity minus the minimal intensity of the corresponding
track average (typically the threshold intensity Imin).

shift, together with the aggravated properties of the interacting tracks, leads to overall more intense and

more widespread domain-mean precipitation.

3.2. Time Evolution of Convective Rain Tracks
3.2.1. Evolution During the Diurnal Cycle

We find that track intensities steadily increase (with some noise) during the diurnal cycle (Figure 4). Hence,

the longest duration and most intense tracks are expected in the late afternoon hours. The increase in dura-

tion is especially pronounced for mergers (type m-a), which indicates that longer and more intense tracks

are formed by merging incidents during the course of the day. The intensification of mergers is more pro-

nounced for stronger surface forcing (P4K). In addition, results are relatively robust against changes of the

termination sensitivity � between values of 0.2 and 1.0, especially for solitary tracks. However, mergers rep-

resent only a small fraction of the precipitation events, and thus in the following, we are mainly interested

in the life cycles of solitary tracks and therefore choose � = 1, as the number of detected solitary tracks

becomes largest in this case as stated above.
3.2.2. Track Life Cycles

We now consider how tracks evolve within their life cycles. As described previously (Moseley et al., 2016),

solitary tracks show remarkably systematic properties: The mean temporal evolution of type s-s is charac-

terized by a single-peaked structure in precipitation intensity, with the peak occurring approximately after

half the track duration (Figure 5). We here find that the time dependence of precipitation intensity is closely

mirrored by that of reff, where peaks also occur after approximately half the duration. When rescaling both
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Figure 6.Mean CAPE life cycles. Mean track area, CAPE, and CIN (defined as negative values), over all solitary tracks
with 30 min (a) and 50 min (b) life time, for the P2K simulation and � = 1.0. CAPE and CIN are given at the point of
the track center of mass at the time of the maximum extent. Tracks begin at time t = 0; negative values of t show
values before the onset of surface rain. CAPE = convective available potential energy; CIN = convective inhibition.

axes by the corresponding total track duration, all curves nearly collapse on one. This indicates that both

the peak track intensity and peak cell diameter are approximately proportional to track duration.

Also, mergers show single-peaked life cycles (Figure S2). Precipitation intensity peaks are however gener-

ally higher and reff already has appreciable values at the beginning of these tracks—a feature that is not

surprising, if it is considered that mergers are constituted by the concatenation of multiple solitary tracks

at different, evolved, stages of their respective life cycles. As has already been discussed in Moseley et al.

(2016), it is evident that both the initial precipitation intensity of mergers and the initial value of reff are

elevated for the higher temperatures.

CAPE and CIN show very systematic behavior for purely solitary tracks (Figure 6): Independent of the track

lengths, CAPE usually originates at very similar values (near 800 J/kg, a value within the range of typical

values for observed convection; Jorgensen & Lemone, 1989) before precipitation onset and is only partially

depleted within the track lifetime. The reason for CAPE starting at similar values independent of the size

that the tracks reach is probably the similar atmospheric stratification for all events due to the absence of

large scale forcing and advection. Therefore, the total amount of CAPEbefore the onset of a single convective

event cannot be used as a predictor for the strength, size, and duration that it will reach.

In our results, CAPE rarely declines to zero after precipitation terminates. However, in some events, this

is indeed the case (Figure S3). The consumption of CAPE might be hampered by precipitation itself which

builds up CIN by cooling the lower boundary layer and thus prevents air to rise further. This finding speaks

to a partial relaxation, where some CAPE remains. Only after precipitation ceases, CAPE slowly begins

to recover. However, there is a clear relationship between the difference in CAPE at the beginning and

the end of the tracks (termed ΔCAPE) and track duration—discussed further below. CIN, in turn, always

originates near zero at precipitation onset and gradually builds up as the track continues (not shown). This

does suggest CIN = 0 as a requirement for the onset of precipitation. Shorter tracks—those with smaller

areas and intensities—end up with lower CIN than the longer ones, possibly due to enhanced evaporative

cooling within the boundary layer as a consequence of stronger rain evaporation.

We note that CAPE and CIN strongly depend on the level that the air parcel is lifted from. In our case,

this is the lowest model level which is strongly cooled by the cold pool that emerges as a result of rain

evaporation. Therefore, a dominant reason for the rise in CIN and the depletion of CAPE immediately after

the onset of surface rain is the marked drop in temperature, and potential reductions in humidity, in the

lowest level caused by cold pools. A colder and drier air parcel experiences more negative buoyancy. In

contrast, processes within the cloud layer, such as latent heating and mixing with the environment, have

only a minor impact on local CAPE and CIN (see the vertical profiles of virtual potential temperature �v for

a selected solitary track in Figure S3). To confirm the assumption that changes in CAPE and CIN are mainly

driven by boundary layer processes, we calculated the quantities differently by substituting the horizontal

mean profile of Tv into equations (1) and (2), instead of the local profiles at each column, and find only
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small differences in the pattern (see Figure S4 for a horizontal snapshot). As most of the thermodynamic

modification takes place in the lowest 500 m of the boundary layer where the test parcel is lifted from, but

the background profile does not vary strongly further above, it does not matter much if CAPE or CIN are

computed using a local profile or a horizontal mean profile. What does matter is that the test parcel is local.

A comparison of the time dependence for all four simulations CTR, P2K, P4K, and OMEGA (Figure S5)

shows solitary track life cycles of intensity, temperature anomaly, and relative humidity. Again, the general

picture is confirmed that for the three simulations CTR, P2K, and P4K, that is, in the absence of wind shear,

solitary track life cycles are affected little (or not at all) by changes in surface forcing. The life cycles for

OMEGA are clearly different from the other simulations, with weaker peaks in precipitation intensity, and

nearly vanishing anomalies in near-surface temperature and relative humidity. This indicates that in the case

of OMEGA, an analysis of CAPE or CIN is bound to bemisleading. As we have shown, these buoyancymea-

sures are mainly affected by the cooling and drying near the surface, which would then be displaced from

the location of precipitation by the overall advection applied to this simulation. However, in the absence of

wind shear, the emergent cold pool is clearly visible in the near surface temperature anomaly ΔT, which is

systematically depressed after the onset of rain events (Figure S5). For longer-duration tracks, ΔT already

recovers, while precipitation is still ongoing—an effect possibly due to (dryer and therefore warmer) down-

drafts caused by decaying convection.We note that, upon termination of the track, the temperature anomaly

is nearly identical for all track durations, ΔT ≈ − .4K. Relative humidity first increases (partially due to the

decreases in temperature) but eventually becomes negative. The latter indicates a reduction also in specific

humidity and could be explained by downdrafts, which bring relatively dry air down to the surface.

3.3. Linear Dependencies

An interesting picture emerges when studying the relation between several key quantities as they evolve

throughout the tracks (Figure 7). To have a compact measure of precipitation intensity for each track, we

define maximum event intensity as

Imax ≡ max(I(t), ti ≤ t ≤ t� ), (4)

that is, simply as themaximumprecipitation rate per unit area for all time steps during the track lifetime. As

the plot shows, Imax scales all but linearly with the corresponding maximum effective event radius (defined

analogously to equation (4)). A similarly linear relation is obtainedwhen comparing the effective radius and

track duration.

Together, these two plots further imply (not shown) that peak intensities scale roughly linearly with track

duration: Short tracks of 10–20 min reach peak intensities of less than 2 mm/hr, while tracks that last 1

hr reach peaks of more than 4 mm/hr. CAPE, as a measure of integrated buoyancy, describes the atmo-

sphere's ability of lifting an air parcel, usually involving that the parcel's water vapor condense during ascent.

We compare CAPE to maximum effective event radius, finding again an approximately linear relation-

ship (using maximum or average event intensity both give such near-linear dependencies). A similar linear

relation holds for CIN. Hence, together,

ΔCIN ∼ ΔCAPE ∼ Imax, (5)

As already discussed above, both CAPE and CIN react to rain evaporation, which, at least at sufficiently

short time scales, effectively shifts boundary layer temperatures proportional to themass of rain evaporated.

Indeed, if the tropopause temperature was constant during the track lifetime, and a change in surface tem-

perature was linearly relaxed all the way up to the tropopause, and further assuming a boundary layer height

of 1 km and tropopause height of h = 15 km, the change in CAPE would amount to

ΔCAPE ≈ g(h∕2)ΔT∕Tref ≈ 200 J/kg, (6)

where g = 9.81ms−2 andΔT ≈ 1K is assumed. However, longer tracks far exceedΔCAPE ∼ 200J/Kg, while

the temperature depression rarely exceeds 1.5K (Figure 7), suggesting that—at least in those cases—some

of the change in potential energy is not due to boundary layer cooling alone.

As mentioned above, changes in CAPE are also due to humidity changes of a test parcel lifted from the

surface (Figure 7). Relative humidity is generally enhanced for more intense events at approximately one
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Figure 7. Various averaged relations for solitary tracks (� = 1). Panels show the relation of different parameters for solitary tracks, where each circle shows a
mean value averaged over all solitary tracks of a given duration: maximum intensity versus maximum effective radius (a), maximum effective radius versus
track duration (b), reduction in CAPE versus maximum effective radius (c), increase in CIN versus reduction in CAPE (d), maximum reduction in temperature
versus maximum intensity (e), change in relative humidity versus maximum intensity (f). Gray lines are linear fits to the data corresponding to the four
parameter choices. CAPE = convective available potential energy; CIN = convective inhibition.

third of the total track life time (Figure S5). Long tracks encounter increases of up to 4% during this time.

Afterward, relative humidity decreases for all track lengths and is negative at the final track time step for

long tracks (duration beyond 30 min). Indeed, relative humidity may play a key role in determining the

thermodynamic structure of boundary layer air and its propensity for reaching positive buoyancy.

Considering the relative humidity change at the end of the track life cycles (Figure 7), reductions of 5%

are not uncommon—drying that could result in significant increases in the LCL and thereby reductions in

CAPE. Inspecting again Figure S3, one finds that near-surface virtual temperature has nearly recovered at

the time when the precipitation event ends. However, the vertical temperature profile for a test parcel origi-

nating near the surface shows a substantial increase in the LCL (both relative to the LCL before precipitation

onset and for a time of maximum event area). Hence, for events with large reductions in CAPE, boundary

layer drying, not necessarily cloud layer heating, may be the main contribution.

3.4. A Statistical Model for Solitary Tracks

The previous discussion shows that solitary tracks have rather consistent properties, where the radius, inten-

sity, and track lifetime are strongly linked. Consider therefore a simple geometric model for a precipitation

track (Figure 8), where cells have a circular cross section and the intensity peaks at the center of this circle

(where its value is I0), and intensity decays linearly at a rate � that is similar for all cells:

I(r) = I0 − �r. (7)

Further, cells are rotationally symmetric, that is, there is no azimuthal dependence of I. The geometric

structure formed by (x, y, I) is hence a cone. The maximum radius of a cell is then determined by I(r) = 0;
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Figure 8. Cone model schematic. Cartoon image to the top right shows (a) the simple model for track intensity versus
radius as a conal object in the space (x, y, I); (b) an example of a short track (consisting of three time steps); (c) a longer
track (five time steps).

hence, reff = I0∕�. Cell area A(I0), that is, the cross section projected onto the surface, is

A(I0) = 2πr2max = 2πI20∕�
2. (8)

The spatially averaged cell intensity becomes

Ī(I0) = 2π∕A(I0)∫
rmax

r=0

dr rI(r) = I0∕6. (9)

Hence, indeed, cells with larger cross section radius would produce proportionately larger average intensi-

ties, that is, Ī ∼ reff. Further, knowing the average intensity, one also knows the maximum intensity—and

vice versa. This is in line with the findings in other studies (Böing et al., 2012; Grabowski et al., 2006;

Schlemmer & Hohenegger, 2014).

To check the validity of this simplified model, we build composites of objects of different areas. We average

the intensity along circles around the center of mass of each object, while all grid boxes outside of each

object's mask are assigned the value zero. Then, the resulting radial intensity profiles of all objects within

the given area range are averaged. For solitary tracks, the resulting composite profiles are shown in Figure 9.

Figure 9. Radial precipitation intensity profiles. Mean precipitation intensity as a function of distance from the object
center of mass, averaged over composites of all objects with similar effective radius reff (given in km), for the P2K
simulation, and � = 1. (a) Absolute intensity versus distance from object mass center. Solid lines show averages over
the object composites, dashed lines show fitted linear curves as given by equation (7). (b) Analogous but both axes
scaled by the respective peak intensity, that is, the intensity in the object center of mass.
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Figure 10. Radial profiles of CAPE. Mean CAPE as a function of distance from the object center of mass, averaged over composites of all tracks with similar
maximum effective radius reff, for the P2K simulation, and � = 1. Mean profile at the initial time step of each track (a), at the time when each track reached its
maximum extent (b), and at the last time step of each track (c). CAPE = convective available potential energy.
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Table 1

Fitted Values for � From the Curves Shown in Figure 9 in Units of Millimeters per Hour per Kilometer

rmax (km) 0.5–0.8 0.8–1.1 1.1–1.4 1.4–1.8 1.8–2.1 >2.1

CTR (� = 0.5) 2.45 2.40 2.58 2.98 3.22 3.48

CTR (� = 1.0) 2.46 2.37 2.53 2.93 3.15 3.38

p2K (� = 0.5) 2.31 2.17 2.20 2.50 2.81 2.87

p2K (� = 1.0) 2.29 2.14 2.15 2.44 2.75 2.64

p4K (� = 0.5) 2.81 2.05 2.22 2.42 2.58 2.62

p4K (� = 1.0) 2.30 2.02 2.15 2.34 2.54 2.21

Even when the objects belonging to other track types are included, little difference in the results is seen

(not shown). The long tails in contrast to the cone model can be explained by a small number of objects

that have an elongated geometry, that is, they strongly deviate from a circular shape and thus have nonzero

intensity also at larger distances (see Figure S6 for a schematic).

The linear dependencies (equation (7) and Figure 9) are fitted such that the averaged cell intensity given by

equation (9) is equal to the one calculated from the respective profiles, when I0 is taken as the peak intensity

at r = 0. The fitted values for � are shown in Table 1 and vary between 2.14 and 2.75 for P2K and � = 1.

Even the differences between the composites of CTR, P2K, and P4K and between the choices of � = 0.5,

compared to � = 1, are rather moderate. However, there is a tendency for smaller values of � to occur in

the case of stronger surface forcing (i.e., for P4K, in comparison to CTR and P2K), especially for larger cell

sizes. This hints to more wide spread events in the case of stronger forcing. This assumption is supported by

the fact that � is also smaller for � = 1, compared to � = 0.5, as in the former case, the solitary tracks are

more contaminated by merging of smaller tracks. In conclusion, the simple linear model we propose here

works sufficiently well. Although an exponentially decaying profile was suggested from a radar analysis by

von Hardenberg et al. (2003), our simulated, idealized results here favor a linear profile. An advantage of a

linear profile is a clearly defined spatial extent of the rain cells.

To shed more light on the spatial distribution of CAPE during the course of the tracks, in a similar way, we

show composites of radial CAPE profiles, averaged over the beginning, the time of maximum extent, and

the end of each solitary track (Figure 10), again conditioned on tracks of similar maximum effective radius

reff. As a supplement to the time series shown in Figure 6, these radial profiles confirm that the original

CAPE is only weakly disturbed at the onset of rain events but then reaches a strong depletion at the time

of maximum track extent, especially toward the track center. When rain ceases, this strong depletion still

remains and grows in extent.
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4. Conclusion and Outlook

We have shown that a simple rain cell tracking algorithm can elucidate a number of track properties and

their relations. The tracking allows us to isolate the dynamics of tracks that begin and end autonomously,

that is, without interference such as merging or fragmentation, so called solitary tracks. To avoid the termi-

nation of larger tracks that interact with smaller ones, we introduced a parameter � that controls merging

and splitting and show that themean statistics of solitary tracks is relatively robust with respect to �. For soli-

tary tracks, we summarize our findings in a simple statistical model with spherically symmetric cells where

the intensity falls of linearly with distance from the center (equation (7)). This model relates precipitation

area, track lifetime, and precipitation intensity and gives a reasonable fit for solitary events of all sizes. Our

findings imply that much of the initiation and termination of these isolated convective cells may be driven

by processes occurring within the boundary layer—in particular, termination of convective updrafts may be

mainly caused by cooling through rain reevaporation, rather than reductions in cloud level buoyancy.

It is remarkable, that, at least for the simple LESmodeling setup without wind shear and homogeneous sur-

face characteristics, solitary tracks follow systematic and relatively simple relations between the different

quantities. This finding is encouraging, since, in this simple setup, there is hope for compressing the infor-

mation on the cloud cell population into only few parameters. In particular, we have discussed the relation

between several key parameters: the drop in CAPE and rise in CIN, the drop in near-surface temperature

and humidity due to rain evaporation, and the track intensity. This relation indicates that, at least for amean

description of convective life cycles, one of these parameters is sufficient in predicting the others.

The current model is limited to the prediction of the mean properties of solitary precipitation life cycles.

Future extensions of the model should address the full distribution of maximum intensities, or perhaps

equivalently, the lifetimes of tracks. For an explanation of higher moments of the distribution of solitary

track durations, more parameters might be required, like the total water content that has been identified as

a crucial variable affecting moist convection (Derbyshire et al., 2004). Further, when wind shear is present,

the presented simple model likely requires modifications.

We leave the question open if this picture could partially be carried over to merged tracks. When cells

merge, they grow larger and, in qualitative agreement with the model we present, produce stronger precipi-

tation intensities. Following this notion further, extreme convective precipitationmay be a result ofmultiple,

sequential merging incidents, resulting in very large precipitation areas and hence the largest intensities.

These tracks (m-m type) are statistically rare but form the most intense precipitation, stemming from the

largest cells with longest lifetimes. Incidentally, thesem-m tracks intensify and grow further, as surface forc-

ing is increased. Our findings support the previous claim that merging can invigorate precipitation intensity

in tropical convective cells (Glenn & Krueger, 2017), as the interior of a merging object may be shielded

against entrainment. Clouds can then become deeper due to the reduced entrainment and develop larger

updraft velocities. Future work should however carefully assess, if the intensification is indeed caused by the

merging process that can be explained, for example, by a “screening” effect where the interior of a merged

cell suffers less from mixing processes, or if it is merely a statistical effect resulting from the fact that larger

cells have a higher probability to merge into others.

Another crucial process in convective organization, not addressed here, is explicit triggering by cold pool

dynamics, a topic currently discussed heavily in the community. Cold pool interactions, in distinction to

merging processes, likely occur at larger spatial separation of the original precipitation cells. It has even

been suggested that these scales are far from constant but may increase systematically in the course of the

diurnal cycle—a possible consequence of the interplay of cold pool interaction (Haerter et al., 2018) and

increasing CIN. Qualitatively revisiting the spatial pattern of the precipitation cell population in our simu-

lations (Figure 2), cold pools are likely responsible for the clearing of several subareas of the model domain,

most visible at t − t0 = 5 hr for T0 =25 ◦C. Such cold pool dynamics, which may act to widen the spatial

buoyancy distribution, additionally increases the complexity of interactions and depletes the space available

for precipitation cells to grow.

Future research in this area might benefit from a focus on processes facilitating repeated merging and

the influence that cold pools might have on promoting or suppressing such merging. Fortunately, such

processes, which often involve larger (6–8 km diameter) and longer lasting (30–40min) tracks, may bemea-

surable over vast regions of the globe through satellite data, which often can reach resolutions as high as

1.5–3 km spatially and ∼15 min temporally.
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