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A statistical model for a kind of dilute ferromagnetism is presented. In this model, a 
sublattice is a mixture of magnetic ions and non-magnetic ions, and the other sublattice is 
occupied exclusively by magnetic ions. Assuming the Ising type exchange interaction between 
magnetic ions, some exact results for the system are obtained. The Curie temperature 
decreases as the concentration of magnetic ions decreases and reaches the absolute zero of 
temperature at a critical concentration. At concentrations higher than the critical value, the 
specific heat remains finite and has a cusp with vertical tangent at the Curie temperature. 
The critical concentrations for several types of lattices are also given. 

§ I. Introduction 

After a brilliant work of Onsager/) there has been considerable progress 
in the problem of two~dimensional. Ising model. The spontaneous magnetization 
was derived by Yang2

) for a square lattice, and the results have been extended 
to several kinds of two-dimensional lattices. For the susceptibility, however, 
an exact calculation is succesful only for Fisher's3

) model of antiferromagnetisr;n 
of decorated square lattice. 

We want to show one example which permits an exact calculation. A 
mixture of ferromagnetic substance and non-ferromagnetic substance exhibits 
ferromagnetism when the concentration of ferromagnetic substance exceeds a 
certain value, called a critical concentration. This is the problem of dilute 
ferromagnetism. As regards this problem there have appeared several kinds 
of approximate theories,4

) but we cannot solve it exactly even for a. two-dimen­
sional Ising lattice. 

The model which exhibits some features of dilute ferromagnetism and 
permits an exact calculation is as follows. 

Let us divide the whole lattice points of a crystal into two sublattices 
penetrating with each other. They are not necessarily equivalent. Every lattice 
point of one of the sublattices (called the M sublattice) is always occupied by 
a magnetic ion, and every lattice point of the other sub lattice (called the D 
sublattice) is occupied by either a magnetic ion or a non-magnetic ion. A lattice 

*) A preliminary report of this paper was published as a " Letter to the Editor " in this journal ; 
I. Syozi, Prog. Theqr. Phys. 34 (1965), 189, which will be referred to as I. 
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1()84 I. · Syozi and S. Miyazima 

point of the M sublattice is surrounded by lattice points of the D sublattice 
and vice versa. A magnetic ion is represented by an Ising spin variable which 
can attain the value + 1 or -1. , 

Thus, to every lattice point of the M sublattice, we . can attribute a spin 
variable /Li (/Li =1 or -1). To every lattice point of the D sublattice, we can 
give a variable (Jj which can attain the value 0, + 1 or -1. (Jj = 0 corresponds 
to the occupation of a lattice point by a non-magnetic ion, and (J j = 1 and (J j = 

-1 correspond to the two spin states of a magnetic ion, if it occupies the lattice 
point. 

The interaction energy between an ion on the M sublattice and an ion on 
, the D sublattice is assumed to be 

if they are neighboring. Thus, if both ions are magnetic ions, their interaction 
is of the Ising type, and non-magnetic ions are considered as if they were holes.· 
On the basis of this model, we shall consider the dilute ferromagnetism for 
several two~dimensionallattices and derive the thermodynamic properties of them, 
in the following three sections. 

In § 2, several kinds of decorated lattices are considered, where the decorated 
lattice points are the D sublattices and the corner points are the M sublattices. 

In § 3, a honeycomb lattice which has two equivalent sublattices, one as 
the D sublattice and the other as the M S\lblattice, is. considered, and also a 
decorated honeycomb lattice which has the decorated lattice points as the M 
sublattice and the corner points as the D sublattice. A diced lattice, in which 
lattice points with three neighbors are the D sublattice and the other lattice 
points are the M sublattice, is also considered. 

In § 4, · two kinds of multiply decorated lattices are considered. The m~ain 
techniques employed throughout the present paper are the so-called "extended 
iteration process" and "extended star-triangular transformation". These trans­
formations enable us to transform the grand partition function of a dilute fer­
romagnet to the partition function of a Ising ferromagnet. 

- -
4 

-
4 4 

- -
Fig. 1. Decorated square lattice. 

0 : M sublattice 
e : D sublattice 

§ 2. Decorated lattices 

First we consider the case of a decorated 
. square lattice. As the M sublattice, we take an 

assembly of the edge points, and as the D sublat­
tice, we take the lattice points at the middle 
of the sides. By introducing a ·parameter ~ 

which is the chemical potential for the magnetic 
ions on the D sublattice divided by kT, where k 
is the Boltzmann .constant and T is the absolute 
temperature, and by putting Jj2kT=L, the grand 
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A Statistical Model for the Dilute Ferromagnet 1085 

partition function of the system can be written as 

(2) 

If the summation over (Jj is carried out first (the extended iteration process 

shown in Fig. 2), we have 

where 

Therefore 

±1 

:Eexp{L6i(Pi+,a,,) +g6/} =A exp(K,ai ,a"), 
<rj=O 

A 2 = (1+2 e~cosh2L) (1+2e~), 

e2K = (1 + 2 e~ cosh 2L) / (1 + 2e~). · 

Fig. 2. Extended iteration process. 

(3) 

(4) 

(5) 

where N is the number of the edge points, and Zs (K) is the partition function 
for the square lattice. 

The mean number n of magnetic ions on the D sublattice IS 

n- aln 3 = 2NalnA + aln Zs(K) 8K 
&g f)g 8K 8g • 

(6) 

Introducing the notations p and c by 

n/2N=p, (7) 

which represent the concentration of magnetic ions on the D sublattice and the 
nearest neighbor spin correlation respectively, we have from (6) 

1-e-2K 
p {cosh2L(1+c) +e2x(1-s)}. 

2 (cosh2L-1) 

Solving for cosh 2L, we have 

cosh 2L 2p + (e2K -1) (1- c) 
2p- (1-e-2x) (1+c) 

(8) 

(9) 

which is reduced to the formula for the ordinary Ising lattice (iteration process) 
when p=1, 

(10) 

Corresponding, to the critical point Ke for the square lattice, we can determine· 
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1086 I Syozi and S. Miyazima 

1.5 

L 

1.0 

the critical point Lc for the dilute ferro­
magnet. Using the data on the square 
lattice1

) 

exp( -2Kc) = V2-1, cc= V2/2 (11) 

in (9), we have 

cosh 2Lc = 1 + V2/ (2p -:----1). (12) 

0.5 As p decreases from 1, Lc increases (i.e. 
Tc=J/2kLc decreases) untill Lc becomes 
infinite (i.e. Tc becomes zero) when p = 1/2. 
This value 1/2 for p is called the critical 

0.2 Q.4Kc K 06 concentraton and designated by Pc· For p 
Fig. 3. Relation between K and L. smaller than Pc, L becomes infinite for K 

(I) P=O.l, (II) P=0.25, (Ill) P=0.5, smaller than Kc and K cannot attain Kc. 
(IV) p=0.75. CV) P=0.95. . Th f h h h ere ore, t ere occurs no p ase c ange. 
The same reasoning may be applied to several kinds of decorated lattices. 

In every case, the formula for Pc is given by 

Pc= (1- exp (- 2Kc)) (1 + cc) /2, 

(I) 
(2) 

(3) (4) 

Fig. 4. Decorated lattices. 
(1) Honeycomb (2) Triangular (3) Kagome (4) Diced 

0 : M sublattice e : D sublattice 

which is obtained by equating the denominator of (9) to zero at Kc. 

(13) 

It is interesting to see that the sum of the critical concentrations for two 
decorated lattices, whose original lattices are dual to each other (e.g. the hon­
eycomb and the triangular lattices, the .Kagome and the diced lattices), is unity. 
Therefore, the critical concentration for a decorated square lattice becomes 1/2 
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A Statistical Model for the Dilute Ferromagnet 1087 

Table I.. The critical concentrations Pc for decorated lattices and the critical data for 
original lattices. 

Sq. I Hon. I Tri. I Kag. [ Dice. I Diam. I S.C. ! B.C. I F.C. 

exp ( -2Kc) 1 

vz --'1 2-vs 1/vs 0.3933 0.4354 0.477 0.641 0.727 
I 

0.815 

Ec vz/2 4vs/9 2/3 0.7440 0.6684 0.57 0.357. 0.268 

I 

0.244 

Pc 0.5 0.6478*) 0.3522 0.5290 0.4710 0.410 0.243 0.172 0.114 

*) The value in the letter I is erroneous. 

because of the self-duality of the square lattice. This theorem may be proved 
as follows. The partition function Z(K) for a lattice and the partition function 
Z* (K*) for the dual lattice are connected by the well-known Kramers-Wannier 
relation5

) 

Z(K) =2N-l-s;2 (sinh 2KY12Z*(K*), (14) 

where N is the number of vertices of the former lattice . and K and K * are 
connected by the dual relations 

sinh 2K sinh 2K * = 1, cosh 2K tanh 2K * =cosh 2K * tanh 2K = 1 

e-2
K' =tanh K, e- 2

K =tanh K *. (15) 

The bond number s is common between the two lattices. Putting 

1/s·a ln Z(K)/aK=s, 1/s· a ln Z* (K*) jaK* =s* 

and differetiating the logarithm of (14) with respect to K, we have 

s = coth 2K -s* /sinh 2K, 

where we have used the relation 

(16) 

(17) 

dK* / dK = -1/sinh 2K = -sinh 2K*, (18) 

which is obtained from (15) . 
On the other hand, the critical concentration Pc * for the decorated lattice 

of the dual lattice is 

Pc* = (1- exp (- 2K/)) (1 + s/) /2. (19) 

By (13), (15) and (19), we get 

2 (Pc + Pc * -1) = {1- exp (- 2Kc)} (cc + Cc */sinh 2Kc- coth 2Kc). (20) 

Since the right-hand side of (20) is zero from (17), we have completed the 
proof. 

The critical concentrations for decorated lattices are shown in the Table I. 
The critical data on the three-dimensional lattices shown there are those obtained 
by the approximation methods. 5

),B) 

The internal energy per bond for the dilute ferromagnet is given by - J/2 
x <(J 11), where <(J 11) means the nearest neighbor spin correlation. Partially dif-
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1088 I. Syozi and S. Miya.zima 

ferentiating the grand partition function (5) with respect to L, we have for 

the decorated square lattice 

(rJ fl.)= 1/ 4N· fJ ln EjfJL = 1/2 · {fJ ln A/fJL + c.fJKjfJL) 

= (1 - e-2K) (1 +c.) sinh 2L/2 (cosh 2L- 1) . (21) 

At the absolute zero (L~oo), we have, from (9), (rJ fl.)= p, as expected. 

The specific heat per bond C(=kL2d(rJfJ.)/dL) is given by 

C = kL2 [_!_ coth 2L { (1- e-2K) ~ + 2e-2K (1 +c) l _!!:_K - (1- e-
2
K) (1 +c) J , 

2 dK J dL cosh 2L- 1 
(22) 

where 

dL/ dK =:= coth 2L[1 + { (1-p) (cosh 2K -1) de./ dK- 2p (p -1)} 

x {2p (p -1)- (1- c2
) (cosh 2K -1) +2p (cosh 2K- c sinh 2K)} - 1

]. (23) 

From Onsager's. solution for the square lattice, we have 

c.= coth 2K (n/2 + k' K (k)) jn (24) 

dc.fdK=coth 2 2K{2K(k) -2E(k)- (1-k') (n/2+k;K(k)}/n, 

where 

k = 2 sinh 2K/ cosh 22K, k' = ± (1- k2
)

112 = 2 tanh 2 2K -1,. 

1.5.--------.----------, 

C!k 

n 
1.0 

0.5 

Fig. 5. Specific heat per bond for deco­
rated square lattice. 
(I) p = 0.95, (II) p = 0. 75, (Ill) p = 0.5, 
(IV) p=0.25, (V) p·=O.l. 

(25) 

As is well known, at the critical point 

K=Kc=- (1/2)ln(V'2-1), c is finite but 
ds/ dK becomes logarithmically infinite. Ac­
cordingly, by (22), the Cjk-1/L curve for 
the dilute ferromagnet has a cusp with 
vertical tangent at the critical point Lc when 

1/2<p<I. The value of C/k at the cri­
tical point Lc is given by 

(C/k)c=Lc2 (p-I/2) {y2(3p-2) 

+I} I (I - p) , (26) 

which becomes infinity as p a:pi?roaches 1. 
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A Statistical Model for the Dilute Ferromagnet 1089 

Table II. The specific heat per bond at the critical temperature for each value of p. · 

p I o.51 o.55 I o.6 I 2/3 I 0.7 
I 

0.75 0.8 0.85 0.9 0.95 I 0.99 I 1 

1/L, I 0 I 0.5861 0.720 I 0.8541 0.912 
I· 

0.991 '1.063 1.130 1.192 1.252 11.297 11.308 
C/k 0 0.163 0.345 0.684 0.914 

I 
1.378 2.077 3.248 5.595 12.64 . 69.o4 1 oo 

§ 3. Honeycomb lattice and diced lattice 

Let us divide a honeycomb lattice into two equivalent sublattices : the M 
sublattice and the D sublattice. In this case, by using the extended star-triangular 
transformation (Fig. 6), we get 

±1 

L::exp {L6 CfJ-1 + fJ-2 + fJ.g) + ~62} = Aexp {K (fJ.1fJ.2 + fJ.2/J.3 + /J.gfJ-1)}, (27) 
<r=O 

where 

A 4 = (1 + 2e~ cosh 3L) (1 + 2e~ cosh L)3
, 

e4
K = (1 + 2e~ cosh 3L) / (1 + 2e~ cosh L). 

Fig. 6. Extended star-triangular transformation. Fig. 7. Semi-dilute honeycomb lattice. 
0 : M sublattice e : D sublattice 

(28) 

Thus, the relation between the grand partition function Eh(~, L) for a semi­
dilute honeycomb lattice (shown in Fig. 7) and the partition function Zt (K) 
for a triangular lattice is 

(29) 

where N is the total number of lattice points for the honeycomb lattice. The 
mean number n of magnetic ions on the D sublattice is 

n 8 ln Eh = N · 8 ln A + 8 ln Zt 8 K . 
8~ . 2 8~ 8K 8~ 

(30) 

The concentration p of the magnetic ions on the D sublattice and the nearest 
neighbor spin correlation <fJ.fJ.')=s are given by 

p=n/(N/2), s 8ln Zt 13N . 
8K 2 

(31) 

Then. Eq. (30) becomes 
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1090 I. Syozi and S. Miyazima 

P = 81n A + 3e aK 
a~ a~ · (32) 

· By (28) , this becomes 

1 -4K 

p- ~e {(2cosh2L-1) (1+3e) +3e4K(1-e)}, (33) 
8 (cos 2L-1) 

that is 

2 cosh2L-1= 4p+3(e4K_1) (1-c) 
4p- (1- e-4K) (1 + 3c) 

The critical concentration Pe is given by 

Pe = (1- exp (- 4Ke)) (1+ 3ce) /4, 

(34) 

(35) 

where Ke and ce are the critical values of K and e, respectively. Using the 
critical data exp 4Ke = 3, ee = 2/3 for the triangular lattice, we obtain 

cosh 2Le= 1 + 1/ (2p-1), (36) 

which determines the critical concentration Pe to b~ 1/2. 
The same reasoning can be applied to the decorated honeycomb lattice in 

which the vertical points are regarded as the D sublattice points and also to the 
diced lattice, as shown in Fig. 8, (1) ,and (2). In the former case, Eq. (35) is 

'(I) (2) 

Fig. 8. (1) Decorated honeycomb lattice (2) Diced lattice. 
0 : M sublattice e : D sublattice 

valid if we use the critical data on the Kagome lattice (exp(4Ke) =3+2v3, 
ce = (1 + 2v3) /6). For the diced lattice, however, as the bond parameter for the 
triangular lattice formed by the extended star-triangular transformation is 2K, 
we have 

where N is the number of vertices of the diced lattice. Putting 

p = (N/3) -lf) ln Ed/8~, e = (N/2) -lf) ln Zt (2K) jaK, 

we have the same formulas as (32) "--' (35) . 
. In this case, however, the critical data are given by 

(38) 
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A Statistical Model for the Dilute Ferromagnet 1091 

exp{-4(2Ke)}=1/3, ee=2/3, (39) 

which results from the double bonds of the triangular lattice. 

Table III. The critical concentrations Pe for lattices in Figs. 7 and 8 (1), (2). 

Honey. Dec. Honey. Diced 

Pe 0.500 0.683*) 0.317 

The internal energy per bond for the semi-dilute honeycomb lattice is given 
by - J/2(rJ p), where (rJ p) is the nearest neighbor spin correlation given by 

(rJfl)= (3N/2) -laIn Eh/8L= 1/3· a In A/8L+.s8K/8L 

= (1- e-4K) { (2 cosh 2L + 1) (1 + 3.s) + e4K (1- .s)} /8 sinh 2L. ( 40) 

At the absolute zero of temperature (L~oo), we have (rJp)=p as expected. 
In Fig. 9, (rJfl)/p is plotted against 1/L for several values of p. The specific 
heat per bond C is given by 

C= _ kL
2
(1-e-

4
K) {1 + 3.s+ cosh2Le

4
K (1 +.s)} + kL

2 

2 (cosh 2L-1) (2 cosh 2L + 1) 2sinh 2L 

x [C2cosh2L+1) {e-4K(1+3.s) +~(1-e-4K)_i!__} +e4K(1-.s) (41) 
4 dK · 

_ __l_(e4K_ 1)~] dK 
4 dK dL ' 

where 

dL/dK= (2cosh2L-1) (sinh2L)-1[1+ {3(cosh4K-1) (1-p)d.s/dK 

-Sp(p-1)} {Sp(p-1) -3(cosh4K-1) (1-.s) (1+3.s) +2p(e-4K+3e4K) (42) 

-12p.s sinh 4K} - 1
]. 

The nearest neighbor spin correlation .s=(/1!1') for the triangular lattice**> IS 

given by 

where 

k2= 4y3+2y e8K+3 
y 2 -3+2V3+2y ,. y= 2(e4K-1) 

(44) 

*l The value in the letter I is erroneous. 
**l The expressions presented here are brought to those given by Houtappel7l by a Landen 

transformation. 
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1092 I. Syozi and S. Miyazima 

As K approaches Kc = (1/ 4) ln 3, c remains finite, but de/ dK becomes in­
finite as ln (K- Kc). Thus at L = Lc corresponding to K = Kc, the specific heat 
C remains finite and has a cusp with vertical tangent. 

o~----__ J_ ______ ~ ________ L_ __ __ 

2 3 1/L 

Fig. 9. Plott of (ap.)/p YS. 1/L. 
(I) P=1, (II) P=0.'75, (III) P=0.5, (IV) p=0.2~;. 

§ 4. Critical concentrations for multiply-decorated lattices 

-9 ••• ·-------------·~ 
I 2 3 4 n-1 n 

(I) 

~--······-~ 
1 I' 2 2' n n' n+l 

(2) 

Fig .. 10. A.. part of multiply 
decorated lattices .. 
0 ; M sublattice 
e ; D sublattice 

we have 

Finally, we consider the critical concentrations 
for some Il).Ultiply decorated lattices. For a n-ply 
decorated lattice (shown in Fig. 10, (1)) in which 
there are n D sublattice points on every bond of 
original' lattice, the critical concentration is inde­
pendent of n. This will be proved as follows. 
By the extended iteration process for the n-ple 
decorations 

±1 ±1 

~· ··· ~ exp{L(t10"1 +0"10"2·+ ··· +O"n,,Ll') 
un=O "1 =:o 

AeK = 1 + et;G1 (L) + e2t;G2 (L) + · · · · · · + ent;Gn (L), 

. .il_e-K = 1 + et; F1 (L) + e2t; F2 (L) + · · · · · · + ent; Fn (L), (46) 

where Gm (L) a~d Fm (L) are the partition functions for m magnetic ions distri­
buted on n linear sites provided that ,Ll and tL' are fixed at the value 1 or -1. 
The highest powers of eL contained in Gm(L) or Fm(L) is emL when m<n. It 
is easily obtained that 

Gn (L) = { (eL + e-L)n+l + (eL- e-L)?Hl} /2' 

Fn (L) = { (eL + e-L)n+ 1
- ( (er;- e-L)n+1} /2. (47) 
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A Statistical Model for the Dilute Ferromagnet 1093 

As before, we can obtain the eq uq.tions 

e2
K = {1 + e~G1 (L) + · · · + en~fJn (L)} / {1 + e~ F1 (L) + · · · +en~ Fn(L)}, ( 48) 

=-1-{ e~G1 (L) + ··· +nen~Gn(L) (1 +c) + e~F1(L) + ··· +nen~Fn(L) (l-s)}, 
p 2n 1+e~Gl(L)+···+en~Gn(L) 1+e~Fi(L)+···+en~Fn(L) 
' (49) 

where p denotes the concentration of magnetic ions on the D sublattice and c 
denotes the nearest neighbor spin correlation for the original lattice. Using the 
critical data Ke and ce on the original lattice, we can get the critical concent­
ration Pe . by making L--? oo. As exp (2Ke) is finite, we must make ~--? - oo in the 
following manner: 

exp {n~ + (n + 1) L}--? M (a finite value), 

exp (m~ + m' L) --?0 (m'<m). 

Thus we have, fro:t;n ( 48) and ( 49), 

exp(2Ke) =1 +M, 

Pe ;::= {M/ (2 +2M)} (1 + cc) = {1- exp (- 2Kc)} (1 + cc) /2, (50) 

which is eq·uivalent to (13). 
Next we consider a decorated· lattice (shown in Fig. 10, (2)), in which 

there are n M sublattice points and n + 1 D sublattice points on every bond of 
the original lattice. To know the critical concentration, we can use the formula 
(13) in which Kc and cc are replaced by Lc and c/, i.e. those for. the n-ply 
decorated Ising8l lattice given by 

( coth Lc)n+l = coth Kc 

c/ = _1_ { cothn Lc + coth Lc (1 +Be) + cothn Lc- coth Le (1 - cc)} 
2 coth Ke + 1 coth Kc--'- 1 

where Kc and cc are the critical data on the original lattice. 
Table IV gives Pc for several values of n. n = 0 corresponds to the case 

discussed in § 2. 

Table IV. Critical concentrations for the lattices in Fig. 10, (2). 

0 
I 

1 2 3 00 

Sq. 0.5000 0.6957 0.7826 0.8312 
I 

1 
Tri. 0.3522 0.5731 0.6855 0.7517 

I 
1 

H,on. 0.6478 0.7998 0.8605 . 0.8930 
I 1 
I 
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