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Abstract Concerning the above applications of the underwater
robot 3-D vision system [13], in this paper, the uncer-
A statistical m0d9|, describing noise-disturbed invariants tamty of invariants extracted from a set of noisy 3-D data
extracted from a surface patch of a range image, has beemoints of a quadric surface patch is studied in a statistical
developed and applied to region based pose estimatioframework. A statistical model to describe the uncertainty
and classification of 3D quadrics. The Mahalanobis dis- of the estimated invariants is formulated. Based on this
tance, which yields the same results as a Baysian classimodel, an optimal Bayesian-ruled classification system
fier, is used for the classification of the surface patCheS.has been developed to classify quadric surface patches. In
The results, compared with the Euclidean distance, appeathis work, it is assumed that objects have been described

to be much more reliable reliable. with quadric primitives. The input consists of 3-D noisy
1 INTRODUCTION ) (ransl_aljon , R)
3-D Fiata in sur_l'ace > ?Sl"“fll‘k‘"

Invariants have been explored in varieties and applied 2% fitting atraction | ()
for object recognition [5][6][7][10]. In practice, there ex- +
ists uncertainty in the extracted invariants because of noise computing - . )
disturbances in the data acquisition. At all events the mod- covariance || ClaYseation e e
els described by invariants can be easily distinguished o
from each other, the Euclidean distance is usually used as AL
a measure in comparison for recognition [5]. However, if
some o_f the registered models are c_Iose together in terms Fig.1 A block diagram of the implementation
of invariants, the results of classification by the measure of of the region-based recognition system

the Euclidean distance might become unreliable. Although

topics on uncertainty in parameter estimation have at-surface points from one of those surface patches, i.e., it is

tracted attention from researchers [1][2][4][8], realization a region-based data set.

of an optimal recognition system still depends on the ob- Quadric and polynomial representation have been

jective of its applications. studied and applied for surface description and object
One of the applications of machine vision is the task recognition [3][6][9]. In case of a surface, expressed as an

of classifying man-made mechanical elements, in whichimplicit quadric form x' Ax+Vv'x+k=0, where

case such man-made elements can be described with quad- _ T . . .

ric and planar primitives. Usually the scene is segmented® = (x.y.2)" is a surface point, the geometric invariants

into a set of surface patches and the input of the recognican be unified as the three eigenvaluesfofwhich geo-

tion system is a region-based data set [1][3]. Since all ob-metric interpretation is explicit. In this paper, a feature

jects share the same geometric description from a planaglescriptor of a quadric surface will be represented by the

patch, even small differences among the geometric invari-vector of these three eigenvalues.

ants of quadric patches might become dominant for the At the first step (see Fig. 1) , a normalization process

recognition. Moreover, retrieval of pose information is is addressed for surface fitting, by which the estimates of

usually simultaneously required in the machine vision the surface parameters in world coordinates can be trans-

tasks. formed into the estimate of a standard form which is de-

fined in model coordinates, combined with the retrieval of



the Euclidean transformation parameters. The approach of

invariants extraction by normalization for surface fitting is
discussed in Section 2.
The statistical characteristics of invariants, extracted

from a quadric surface patch, are studied in Section 3.
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In the normalization process, the translatibnand the

()

Based on a statistical model, describing the perturbancesgotation R are also estimated.

in the estimates of the invariants by a normally distributed

pdf, an optimal region-based recognition system using a2-2 Applying gradient weighted least-square fit-

Bayesian-decision rule is implemented. The functional
description of such a recognition system is illustrated in
Fig.1. Experimental results with synthetic data are shown
in Section 4. Finally, some remarkable elements and con
clusions are summarized in Section 5.

2 INVARIANTS EXTRACTION BY NOR-
MALIZATION IN SURFACE FITTING

To describe the geometric invariants of a quadric sur-

face patch, the quadric is represented in model coordi-

nates, using the standard form, by
X{AX,+1=0 1)
with A, a diagonal matrix. The invariants to be extracted

are just the diagonal elements Af.

Given a set of 3-D points measured from an arbitrary
posed surface patch in world coordinates, firstly the sur-
face fitting is carried out. By applying coordinate trans-

formations, the fitted quadric surface patch is expressed in

standard form (1). After this so-called normalization proc-

ess, the invariants are computed from the standard form as

an estimate and put in a feature veager (A,,A,,A,)" for
classification.

2.1 Extraction of Invariants by normalization

A quadric surface observed in world coordinates is ex-
pressed in general form by

X Ax+v'x+k=0 2
with k = constthe constraint. The normalization is im-
plemented with two steps as below.
By applying the coordinate translation=X'+t, the
expression (1) becomes

XTAX +(2tTA+V X +tTAt+v t+k =0 3)
The surface is described in the coordinatex'afs
XTAX'+k =0 (4)
t=-1A"v (5)
k'=t" At+v't+k (6)

A rotation X' = RX, is used to diagonalize the matr

of (4), which result can be used to compute eigenvalues.
Substituting the expression fof in (4), dividing (4) by

k' and substituting of (5) into the resulting expression,
the diagonal matrixA, in the standard form of (1) is de-
rived from

ting as MLE solution

Thegradientweighted least-squarditing [12] is applied
to obtain the estimates of the parametersfofand V in

world coordinates. This method will be reformulated
terms ofmaximum likelihood estimatiofMLE). The ad-
vantage in using MLE solution is two-fold:

(1) The solution of a MLE in one parameter space can be
obtained with the MLE in another parameter space
by parameter transformation, assuming the transfor-
mation is a one-to-one map [14]. Therefore, among

n

different coordinates, the estimatés and V of A

and V, obtained from surface fitting, can be trans-
formed by their dependency on the pose transforma-
tion. Therefore the estimate of invariants by (7) is an
MLE solution and independent of the measuring co-
ordinates, also the estimate of translation and rotation
are MLE.

The asymptotic distribution of the invariants, ob-
tained with MLE, is normal. This suggests that a sta-
tistical model with a normgbdf to describe the esti-
mate of the invariants is reasonable.

Given a surface functiom(x,8) =0, with h(JJ the left

part of (2) andf the vector with the surface parameters
described % = (a;, 85,835,815, 813, 83, V4. Vo, Vo) » e COSE
function for the gradient weighted least-square fitting is:

n n h_2
c@=SYwh?= ! (8)
0720 =2 fonf

where h =h(x,,6) and w, is the so-called “gradient

(2)

weight”. The Taylor expansion df with respect tox; at
the true surface pointx,, and the true parameted,
yields the first order approximation described by
h =h(x.6,)=(0h,) Ax =[Oh,|n A , where nis the
unit vector of the gradient ax,and Ax. is the noise.
Defining a random variablel = n[Ax, which in fact is
the projected distancAX of x with respect to its origi-
nal X,, the cost function of (8) can be expressed as the
sum ofdi2 over the input points. Supposidix is Gaus-
sian distributed withE[Ax]=0 and CoAx]=0?I,
then d is also Gaussian distributed WitE[d]=0 and
Var[d] =0, Therefore, under first order approximation,
the estimate oB can be interpreted as an MLE with the



joint likelihood function of the probability density func- ) _ _
tion of { d, }. 3.2Formulating the covariance matrix
The method of “bias-corrected” estimation [8][12],

combined with estimation ofr*, was improved and sub-
sequently applied, by which reliable “bias-corrected” re
sults were obtained.

Supposing the parameterd and V are obtained in
model coordinates, the elements wfwill be small de-

" viations about zero, because their true values are zero.
Since the constrairk =c (Cis a constant) is imposed in

3 INVARIANTS ESTIMATION WITH A surface fitting, neglecting the second order ternvoin
STATISTICAL MODEL the right side of (9), we have
In this section the uncertainty in the invariants is dis- A = < (11)

cussed within a statistical perturbation framework. The
following analysis gives rise to a statistical description of
the estimated invariants by reormally distributedprob- T . )
ability density function resulting in a formulation for the trAansformatlon is linear among different coordinates, so
computation of the covariance matrix. Al in (11) can be treated as an unbiased estimate and

Because the parameters in surface fitting are estimated
with a reliable “bias-corrected” method and the parameter

3.1 Perturbation of theinvariants in measurement  according to (10)4 is also unbiased, i.e., we have

. E[Q] =(, whereqis the true vector describing the
Given the estimates of the surface parameferand V in model invariants.
measuring coordinates, according to the normalization To compute the covariance matrix @, first we
process, the estimate of the invariants is extracted by com:
puting the eigenvalues of the matrix
& A surface parameter vector @ , defined as

9 - . -
©) 6 = (8y1,8,5, 803,815, 80, 805 ¥, ¥, 0, )" - With surface fitting,

have to formulate the covariance matrix of the estimated

k—%\?T A >
the estimatef is obtained by minimizing the cost func-

The above expression is obtained from (7) by rotating the _ 9 o y _ g _ o
diagonal matrixA, to get A'=RTAR™. Denoting A’ as  tion of (8), i.e.,25(5 d’) =0. Applying the linearization,
the noise-free matrix andA = A' - A’ as the so-called i ) ) ae .

_ _ A A=A - solving this equation, we gedf = Meelz M; 64X, with
perturbation matrix, the eigenvalues of\, and A  re- =

) ~ . n 62 2

spectively, are denoted by and A. Assuming the added ~ Mg =3 Mg ' M :@dz(eo%o)’ M; 6o :%dz(eo%o)
noise to be under the level at which the first order ap- =L

proximation is practical, according to perturbation theory .It S_hOUId be pointed out that such a Iine_ar approxi-
[11], the perturbation of A can be expressed as mation is based on the assumptions made with respect to

ALz -1~ T AN here e is the ei ) the noise level and the use of the “bias-corrected” estima-
=A-A=e e, where e is the eigenvector ofA . ~ . -

AA . g " tion of 8. Now the covariance matrix ofl can be ex-
associated with) . BecauseA is independent of the pressed by
measuring coordinates in the sense of MLE, it will be . (12)
convenient to use the model coordinates for analysis of the Qs = E[AGAG ] oMy ( MM 16 )M g
perturbation, in which case . - ) ~

(lO O) (OLO) (070,1) and consequently it Combining (10) and (11), the covariance ma@g( of q
is can be directly obtained as the upper |ef8 3ub-matrix

~ o of the %9 matrix Q,, which is formulated in model co-
=Aq.. =4 —-a.., withil{12 10 . . o :

M =48, =8 —a, {123 (10) ordinates. Since the transformation between the world
wherea,, are the elements oAl in model coordinates, coordinates and the model coordinates is simultaneously
o o A _ estimated through normalization in surface fitting, the
a,; is obtained by (9), while thé\ and Vv are estimated  input points can be transformed into model coordinates
in measuring coordinates. with the estimates oRand t to computeQ, with (12).

Next, we will discuss the first and second order mo- Therefore, Q is adapt|ve|y Computab|e The variance

ments of/\ which will be based on the statistical model
o?of noise the is, as already indicated in section 2, esti-

stating the normal distribution of. Especially, the com-  mated in surface fitting [12].
putation of thecovariance matrixof the feature vector,
defined asq = (A, A,,A,)" , is formulated.



Based on the analysis above, a recognition system A typical example of the scenario in our experiments
that uses the invariants as input for classification of quad-is an input of the classifier generated by the maag|
ric surface patches can be implemented in the sense of
Bayesian classification. The recognition system consists o

. Tablel. Two instances of classification results. Both inputs
the following steps:

were generated from modell,. The Bayesian rule was

1. Carry out surface fitting with region-based input in carried out by the measure of Mahalanobis distance. To
world coordinates. give a comparison, results of an Euclidean distance classi-

2. Extract eigenvalues by normalization, incorporating fier are also listed. Results of surface fitting are listed be-
estimates of rotation and translation. low. The noise level is=0.05. A match is indicated with

3. Compute the covariance matrig, for all surface +"and a non-match with=*,

models with the current input simultaneously.

4. Apply theBayesiarrule to classify the input surface Model formatch | m m, m
patches. Mahalanobis distance; 44 g4 0.8794 61.04
The experiments on the recognition system are illus- _t© €ach model |

trated in the next section. Classification by Ma- 1 _ n _

halanobis distance

4 EXPERIMENTAL RESULTS EchdeangStance 01 6007748 0.009319  0.02089

The input of our recognition system consists of a set CEllaSI%ﬁC%tigintb)r"
of 3-D points generated from a synthetic quadric. The uchdean distance

+ - -

data-points were sampled within a2zn? window at the (a) Input S=[-0.2701,-0.4392,-0.6358]
sampling distance of 0.1cm. The sampled surface patch is
shown in fig. 2 as a grey- Model for match | m, m, m,
level image. Gaussian Vahalanobis dist ;
noise was added to the  {oeach model 0} 4536 05659  50.33
thrge coordinates of each Classification by Ma- |
point. The number of halanobis distance | - + -
points in the input data is Euclidean distance to !
400. The experiment each model | 0.01365  0.003400  0.003148
Fig.2 The region-based input comprises the steps  Classification by b _
from a quadric patch mentioned in 3.B. We Euclidean distance i
constructed a database (b) Input S=[-0.2447,-0.3939,-0.4922]

with 3 selected elliptical surface primitives, which are
close together in feature space. A model in the database is

represented by its feature vectqr, denoted agm, with

True parameters in world coordinate=[ 7.989, 7.273, 10.21, -
1.564, 2.896, 4.510, -28.96, -45.09, -204.2T,>410'3

Estimate in surface fitting : (a) 6 =[ 8.365, 7.132, 10.35, -
k0{1,2,3. These models arem = [— 0.2,—0.4,—0.6]T , 0.584, 2.054, 2.273, -39.12, -44.96, -205.4 x110™®
m, =[-0.25-04,-055" , m,=[-03-0.4,-05] (13) (b)  6=[9.149,7.882,10.03,-
0.677, 1.307, 2.357, -25.82, -47.13, -202.7x110™®

4.1 Bayesian classification and a noise level set tg =0.05cm. The covariance ma-

The input is generated using one of the modeled surtrix Q,withi[1{1,2,3 was simultaneously computed by
faces with added noise. The estimate of the feature vectojycorporating the input with théth model respectively.
is denoted bys. Becausesis normally-distributed, as-  Tne experiment consists of 60 trials.

suming thea priori probability of the models and the risks Table 1 shows the classification results for two in-
be equal, then the BayeSian'deCiSion criteria can be Stategtances_ For a Comparison' Mahalanobis distance and
as: Euclidean distance are both listed. The total results are
Classifysas m , when it satisfies the condition listed in Table 2. The experimental results clearly demon-
T4 T4 strates, what was already intuitively expected, that the
(s-m)'Q*(s-m)s (S_mj) Q (S_mj ) (14) Euclidean-distance based classification is unreliable and
Oj #i, with i,j0{1,2,3 might be entirely corrupted in the cases that models are

. . ) i close together, such as is the case in the scenario involved
For the conditions which hold in our experiments, the j, the experiment. However, according to the statistical
Bayesianclassifier yields the same results as WM@ha-  yodel we proposed, the classification based on the Ma-

lonobis distanceclassifier. In the following paragraphs, nhalonobis distance yields highly reliable results.
their difference was ignored.



4.2 Hypothesis testing

Assuming only one model af, in the database, given an
input in feature vector, it is required to judge whether it
belongs tom, or not. This is the case concerned in our
experiments to apply the hypothesis testing. For those
samples generated from, , the quantitative normal pdf.

can be evaluated by comparing the theoretical “signifi-
cance level” and the experimental result.
Given an input s, the hypotheses are stated as

H,:s=m, and H, :s# m,. All 120 samples were gen-
erated from the primitive described Ing,. For each input,
eitherH, or H, was accepted by comparing the Mahala-

Table2. Total results of classification. All inputs were
generated fromi1, under the noise level=0.05.

Model for ' Classification by Mahalanobis distance

match 0=0.05 0=0.02
mo 3.3% 1.7%
M 97% 99%
mo 0 0
Total error : 3.3% 1.7%

Table3. Results of hypothesis testing. Samples were gener-
ated from 11y, . For a givena, the account oécceptance fo
hypothesigi, were expressed by a ratio. The results under
noise levelo=0.05 andb=0.02 were both listed.

Prediction ! 0=0.01 a=0.05 a=0.1 a=0.2
T 0=0.05 |

Result | | 0032 013 018 033

| 0=002 | 0020 0080 021 036

nobis distance with a threshold associated with the signifi-
cance level. For different significance levalsthe results
are listed in Table 3 for noise leveis0.05 ands=0.02.

From the results obtained with samplesngf, we can

see that the actual resultscofare larger than the theoreti-
cal prediction, which means that the actual uncertainty of

the estimation of the invariants of quadric surfaces is
given, which is combined with a normally distributed
disturbance model. The way to compute the covariance
matrix simultaneously with the inputs was presented.
Based on this model, the Bayesian classification has been
applied to the region-based recognition of a synthetic
quadric surface patch. The issued problem and our statis-
tical solution are especially significant for a region-based
recognition system, which is believed to be important for
the application of machine vision at a data-driven level.
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