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Abstract

A statistical model, describing noise-disturbed invariants
extracted from a surface patch of a range image, has been
developed and applied to region based pose estimation
and classification of 3D quadrics. The Mahalanobis dis-
tance, which yields the same results as a Baysian classi-
fier, is used for the classification of the surface patches.
The results, compared with the Euclidean distance, appear
to be much more reliable reliable.

1 INTRODUCTION

Invariants have been explored in varieties and applied
for object recognition [5][6][7][10]. In practice, there ex-
ists uncertainty in the extracted invariants because of noise
disturbances in the data acquisition. At all events the mod-
els described by invariants can be easily distinguished
from each other, the Euclidean distance is usually used as
a measure in comparison for recognition [5]. However, if
some of the registered models are close together in terms
of invariants, the results of classification by the measure of
the Euclidean distance might become unreliable. Although
topics on uncertainty in parameter estimation have at-
tracted attention from researchers [1][2][4][8], realization
of an optimal recognition system still depends on the ob-
jective of its applications.

One of the applications of machine vision is the task
of classifying man-made mechanical elements, in which
case such man-made elements can be described with quad-
ric and planar primitives. Usually the scene is segmented
into a set of surface patches and the input of the recogni-
tion system is a region-based data set [1][3]. Since all ob-
jects share the same geometric description from a planar
patch, even small differences among the geometric invari-
ants of quadric patches might become dominant for the
recognition. Moreover, retrieval of pose information is
usually simultaneously required in the machine vision
tasks.

Concerning the above applications of the underwater
robot 3-D vision system [13], in this paper, the uncer-
tainty of invariants extracted from a set of noisy 3-D data
points of a quadric surface patch is studied in a statistical
framework. A statistical model to describe the uncertainty
of the estimated invariants is formulated. Based on this
model, an optimal Bayesian-ruled classification system
has been developed to classify quadric surface patches. In
this work, it is assumed that objects have been described
with quadric primitives. The input consists of 3-D noisy

surface points from one of those surface patches, i.e., it is
a region-based data set.

Quadric and polynomial representation have been
studied and applied for surface description and object
recognition [3][6][9]. In case of a surface, expressed as an

implicit quadric form 0=++ kxvAxx TT , where

( )Tzyxx ,,=  is a surface point, the geometric invariants

can be unified as the three eigenvalues of A , which geo-
metric interpretation is explicit. In this paper, a feature
descriptor of a quadric surface will be represented by the
vector of these three eigenvalues.

At the first step (see Fig. 1) , a normalization process
is addressed for surface fitting, by which the estimates of
the surface parameters in world coordinates can be trans-
formed into the estimate of a standard form which is de-
fined in model coordinates, combined with the retrieval of

Fig. 1 A block diagram of the implementation
of the region-based recognition system
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the Euclidean transformation parameters. The approach of
invariants extraction by normalization for surface fitting is
discussed in Section 2.

The statistical characteristics of invariants, extracted
from a quadric surface patch, are studied in Section 3.
Based on a statistical model, describing the perturbances
in the estimates of the invariants by a normally distributed
pdf, an optimal region-based recognition system using a
Bayesian-decision rule is implemented. The functional
description of such a recognition system is illustrated in
Fig.1. Experimental results with synthetic data are shown
in Section 4. Finally, some remarkable elements and con-
clusions are summarized in Section 5.

2 INVARIANTS EXTRACTION BY NOR-
MALIZATION IN SURFACE FITTING

To describe the geometric invariants of a quadric sur-
face patch, the quadric is represented in model coordi-
nates, using the standard form, by

01=+ss
T xAxs (1)

with sA  a diagonal matrix. The invariants to be extracted

are just the diagonal elements of sA .

Given a set of 3-D points measured from an arbitrary
posed surface patch in world coordinates, firstly the sur-
face fitting is carried out. By applying coordinate trans-
formations, the fitted quadric surface patch is expressed in
standard form (1). After this so-called normalization proc-
ess, the invariants are computed from the standard form as
an estimate and put in a feature vector ( )Tq 321 ,, λλλ=  for

classification.

2.1 Extraction of Invariants by normalization

A quadric surface observed in world coordinates is ex-
pressed in general form by

0=++ kxvAxx TT (2)
with constk = the constraint. The normalization is im-
plemented with two steps as below.
By applying the coordinate translation txx +′= , the
expression (1) becomes

02 =+++++ ktvAtt)x'vAt(Ax'x' TTTTT (3)

The surface is described in the coordinates of x′ as
0=+ k'Ax'x'T (4)

vAt 1
2
1 −−= (5)

ktvAttk TT ++=' (6)

A rotation sRxx =′  is used to diagonalize the matrix A
of (4), which result can be used to compute eigenvalues.
Substituting the expression for 'x  in (4), dividing (4) by

'k  and substituting t  of (5) into the resulting expression,

the diagonal matrix sA in the standard form of (1) is de-

rived from

vAvk

ARR
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T

T

s
1

4
1 −−

= (7)

In the normalization process, the translation t  and the
rotation R  are also estimated.

2.2 Applying gradient weighted least-square fit-
ting as MLE solution

The gradient weighted least-squares fitting [12] is applied
to obtain the estimates of the parameters of A  and v  in
world coordinates. This method will be reformulated in
terms of maximum likelihood estimation (MLE). The ad-
vantage in using MLE solution is two-fold:
(1) The solution of a MLE in one parameter space can be

obtained with the MLE in another parameter space
by parameter transformation, assuming the transfor-
mation is a one-to-one map [14]. Therefore, among

different coordinates, the estimates Â  and v̂  of A
and v , obtained from surface fitting, can be trans-
formed by their dependency on the pose transforma-
tion. Therefore the estimate of invariants by (7) is an
MLE solution and independent of the measuring co-
ordinates, also the estimate of translation and rotation
are MLE.

(2) The asymptotic distribution of the invariants, ob-
tained with MLE, is normal. This suggests that a sta-
tistical model with a normal pdf to describe the esti-
mate of the invariants is reasonable.

Given a surface function 0),( =θxh , with ( )⋅h  the left

part of (2) and θ  the vector with the surface parameters
described as ),,,,,,,,( 321231312332211 vvvaaaaaa=θ , the cost

function for the gradient weighted least-square fitting is:
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(8)

where ( )θ,ii xhh =  and iw  is the so-called “gradient

weight”. The Taylor expansion of ih  with respect to ix at

the true surface point 0ix  and the true parameter 0θ
yields the first order approximation described by

( ) ( ) iiii

T

iii xnhxhxhh ∆⋅∇=∆∇≈= 000,θ , where in is the

unit vector of the gradient at 0ix and ix∆  is the noise.

Defining a random variable xnd ∆⋅= , which in fact is

the projected distance x∆  of x  with respect to its origi-

nal 0x , the cost function of (8) can be expressed as the

sum of 2
id  over the input points. Supposing x∆  is Gaus-

sian distributed with [ ] 0=∆xE  and [ ] IxCov 2σ=∆ ,

then d is also Gaussian distributed with [ ] 0=dE  and

[ ] 2σ=dVar . Therefore, under first order approximation,

the estimate of θ  can be interpreted as an MLE with the
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joint likelihood function of the probability density func-
tion of { id }.

The method of “bias-corrected” estimation [8][12],

combined with estimation of 2σ , was improved and sub-
sequently applied, by which reliable “bias-corrected” re-
sults were obtained.

3 INVARIANTS ESTIMATION WITH A
STATISTICAL MODEL

In this section the uncertainty in the invariants is dis-
cussed within a statistical perturbation framework. The
following analysis gives rise to a statistical description of
the estimated invariants by a normally distributed prob-
ability density function resulting in a formulation for the
computation of the covariance matrix.

3.1 Perturbation of the invariants in measurement

Given the estimates of the surface parameters Â  and v̂  in
measuring coordinates, according to the normalization
process, the estimate of the invariants is extracted by com-
puting the eigenvalues of the matrix

vAvk

A
A

T
s

ˆˆˆ
4

1

ˆ
ˆ

1−−
=′ (9)

The above expression is obtained from (7) by rotating the
diagonal matrix sA  to get 1−−=′ RARA s

T
s . Denoting sA′  as

the noise-free matrix and sss AAA ′−′=∆ ˆ  as the so-called

perturbation matrix, the eigenvalues of sA′  and sÂ′  re-

spectively, are denoted by λ  and λ̂ . Assuming the added
noise to be under the level at which the first order ap-
proximation is practical, according to perturbation theory
[11], the perturbation of λ  can be expressed as

eAe s
T ′∆≈−=∆ λλλ ˆ , where e  is the eigenvector of sA′

associated with λ . Because λ̂  is independent of the
measuring coordinates in the sense of MLE, it will be
convenient to use the model coordinates for analysis of the
perturbation, in which case

( )Te 0,0,11 = , ( )Te 0,1,02 = , ( )Te 1,0,03 =  and consequently it

is

}3,2,1{      with,ˆ ,,, ∈′−′=′= iaaa iisiisiisi ∆λ∆ (10)

where iisa ,′  are the elements of sA′  in model coordinates,

ijsa ,ˆ′  is obtained by (9), while the Â  and v̂  are estimated

in measuring coordinates.
Next, we will discuss the first and second order mo-

ments of λ̂ , which will be based on the statistical model

stating the normal distribution of λ̂ . Especially, the com-
putation of the covariance matrix of the feature vector,
defined as Tq ),,( 321 λλλ= , is formulated.

3.2 Formulating the covariance matrix

Supposing the parameters Â  and v̂  are obtained in
model coordinates, the elements of v̂  will be small de-
viations about zero, because their true values are zero.
Since the constraint ck =  ( c is a constant) is imposed in

surface fitting, neglecting the second order term of v̂  in
the right side of (9), we have

c

A
As

ˆ
ˆ =′ (11)

Because the parameters in surface fitting are estimated
with a reliable “bias-corrected” method and the parameter
transformation is linear among different coordinates, so

sÂ′  in (11) can be treated as an unbiased estimate and

according to (10), iλ̂  is also unbiased, i.e., we have

[ ] qqE =ˆ , where q is the true vector describing the

model invariants.
To compute the covariance matrix of q̂ , first we

have to formulate the covariance matrix of the estimated

surface parameter vector θ̂ , defined as

( )Tvvvaaaaaa 321231312332211 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ =θ . With surface fitting,

the estimate θ̂  is obtained by minimizing the cost func-

tion of (8), i.e., 0)(
1
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It should be pointed out that such a linear approxi-
mation is based on the assumptions made with respect to
the noise level and the use of the “bias-corrected” estima-

tion of θ̂ . Now the covariance matrix of θ̂ can be ex-
pressed by

[ ] T
n

i

T
xixi

T MMMMEQ −

=

− ∑=∆∆= θθθθθθθ σθθ )(
1

,,
12 (12)

Combining (10) and (11), the covariance matrix qQ  of q̂

can be directly obtained as the upper left 3×3 sub-matrix
of the 9×9 matrix θQ , which is formulated in model co-

ordinates. Since the transformation between the world
coordinates and the model coordinates is simultaneously
estimated through normalization in surface fitting, the
input points can be transformed into model coordinates
with the estimates of Rand t  to compute θQ  with (12).

Therefore, qQ is adaptively computable. The variance
2σ of noise the is, as already indicated in section 2, esti-

mated in surface fitting [12].
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Fig.2 The region-based input
from a quadric patch

Based on the analysis above, a recognition system
that uses the invariants as input for classification of quad-
ric surface patches can be implemented in the sense of
Bayesian classification. The recognition system consists of
the following steps:
1. Carry out surface fitting with region-based input in

world coordinates.
2. Extract eigenvalues by normalization, incorporating

estimates of rotation and translation.
3. Compute the covariance matrix qQ for all surface

models with the current input simultaneously.
4. Apply the Bayesian rule to classify the input surface

patches.
The experiments on the recognition system are illus-

trated in the next section.

4 EXPERIMENTAL RESULTS

The input of our recognition system consists of a set
of 3-D points generated from a synthetic quadric. The
data-points were sampled within a 2×2cm2 window at the
sampling distance of 0.1cm. The sampled surface patch is

shown in fig. 2 as a grey-
level image. Gaussian
noise was added to the
three coordinates of each
point. The number of
points in the input data is
400. The experiment
comprises the steps
mentioned in 3.B. We
constructed a database

with 3 selected elliptical surface primitives, which are
close together in feature space. A model in the database is
represented by its feature vector q , denoted as km  with

}3,2,1{∈k . These models are [ ]T
m 6.0,4.0,2.01 −−−= ,

[ ]Tm 55.0,4.0,25.02 −−−= ,  [ ]Tm 5.0,4.0,3.03 −−−=  (13)

4.1 Bayesian classification

The input is generated using one of the modeled sur-
faces with added noise. The estimate of the feature vector
is denoted by s . Because s is normally-distributed, as-
suming the a priori probability of the models and the risks
be equal, then the Bayesian-decision criteria can be stated
as:
Classifys as im , when it satisfies the condition

( ) ( ) ( ) ( )
}3,2,1{,   with   , 

,11

∈≠∀

−−≤−− −−

jiij

msQmsmsQms jj
T

jii
T

i (14)

For the conditions which hold in our experiments, the
Bayesian classifier yields the same results as the Maha-
lonobis distance classifier. In the following paragraphs,
their difference was ignored.

A typical example of the scenario in our experiments

is an input of the classifier generated by the model 2m

and a noise level set to 05.0=σ cm. The covariance ma-
trix }3,2,1{  with, ∈iQi

 was simultaneously computed by

incorporating the input with the thi model respectively.
The experiment consists of 60 trials.

Table 1 shows the classification results for two in-
stances. For a comparison, Mahalanobis distance and
Euclidean distance are both listed. The total results are
listed in Table 2. The experimental results clearly demon-
strates, what was already intuitively expected, that the
Euclidean-distance based classification is unreliable and
might be entirely corrupted in the cases that models are
close together, such as is the case in the scenario involved
in the experiment. However, according to the statistical
model we proposed, the classification based on the Ma-
halonobis distance yields highly reliable results.

Model for match 1m 2m 3m

Mahalanobis distance
to each model 45.36 0.5659 50.33

Classification by Ma-
halanobis distance − + −
Euclidean distance to
each model 0.01365 0.003400 0.003148

Classification by
Euclidean distance − − +

(b)  Input s= [-0.2447,-0.3939,-0.4922]T

Table1. Two instances of classification results. Both inputs
were generated from model 2m . The Bayesian rule was
carried out by the measure of Mahalanobis distance. To
give a comparison, results of an Euclidean distance classi-
fier are also listed. Results of surface fitting are listed be-
low.  The noise level is σ=0.05. A match is indicated with
“+” and a non-match with “−“.

Model for match 1m 2m 3m

Mahalanobis distance
to each model 44.84 0.8794 61.04

Classification by Ma-
halanobis distance − + −

Euclidean distance to
each model 0.007748 0.009319 0.02089

Classification by
Euclidean distance + − −

(a) Input s= [-0.2701,-0.4392,-0.6358]T

True parameters in  world coordinate0θ =[ 7.989, 7.273, 10.21, -
1.564, 2.896, 4.510, -28.96, -45.09, -204.2, 1] T× 310−

Estimate in surface fitting : (a)          θ̂ =[ 8.365, 7.132, 10.35, -

0.584, 2.054, 2.273, -39.12, -44.96, -205.4, 1] T× 310−

                                    (b)          θ̂ =[ 9.149, 7.882, 10.03, -

0.677, 1.307, 2.357, -25.82, -47.13, -202.7, 1] T× 310−
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4.2 Hypothesis testing

Assuming only one model of 1m  in the database, given an

input in feature vector, it is required to judge whether it
belongs to 1m  or not. This is the case concerned in our

experiments to apply the hypothesis testing. For those
samples generated from 1m , the quantitative normal pdf.

can be evaluated by comparing the theoretical “signifi-
cance level” and the experimental result.
Given an input s , the hypotheses are stated as

10 : msH =  and 11 : msH ≠ . All 120 samples were gen-

erated from the primitive described by 1m . For each input,

either 0H  or 1H  was accepted by comparing the Mahala-

nobis distance with a threshold associated with the signifi-
cance level. For different significance levels α, the results
are listed in Table 3 for noise levels σ=0.05 and σ=0.02.

From the results obtained with samples of 1m , we can

see that the actual results of α are larger than the theoreti-
cal prediction, which means that the actual uncertainty of
the invariants is greater than that of the statistical descrip-
tion, But the errors were controlled. We believe that the
normal pdf described in this paper is a practical approxi-
mation for analytical use.

5 CONCLUSIONS

This paper contributes a study on invariant feature extrac-
tion and recognition based on a statistical model. The
geometric invariants are extracted through a normalization
process, by which the rotation and translation between the
model coordinates and the world coordinates can be esti-
mated at the same time. The covariance matrix of the fea-
ture vector is formulated, wich will also be useful in ap-
plications with pose retrieval. An analytical description for

the estimation of the invariants of quadric surfaces is
given, which is combined with a normally distributed
disturbance model. The way to compute the covariance
matrix simultaneously with the inputs was presented.
Based on this model, the Bayesian classification has been
applied to the region-based recognition of a synthetic
quadric surface patch. The issued problem and our statis-
tical solution are especially significant for a region-based
recognition system, which is believed to be important for
the application of machine vision at a data-driven level.
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Model for
match

Classification by Mahalanobis distance
             σ=0.05                          σ=0.02

1m
* 3.3% 1.7%

2m
* 97% 99%

3m
* 0 0

Total error 3.3% 1.7%

Table2. Total results of classification. All inputs were
generated from 2m under the noise level σ=0.05.

Prediction α=0.01 α=0.05 α=0.1 α=0.2

σ=0.05 0.032 0.13 0.18 0.33Result
σ=0.02 0.020 0.080 0.21 0.36

Table3. Results of hypothesis testing. Samples were gener-
ated from 1m . For a given α, the account of acceptance of
hypothesis 1H were expressed by a ratio. The results under
noise level σ=0.05 and σ=0.02 were both listed.


