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A Statistical Model to Explain the
Mendel–Fisher Controversy
Ana M. Pires and João A. Branco

Abstract. In 1866 Gregor Mendel published a seminal paper containing the
foundations of modern genetics. In 1936 Ronald Fisher published a statisti-
cal analysis of Mendel’s data concluding that “the data of most, if not all,
of the experiments have been falsified so as to agree closely with Mendel’s
expectations.” The accusation gave rise to a controversy which has reached
the present time. There are reasonable grounds to assume that a certain un-
conscious bias was systematically introduced in Mendel’s experimentation.
Based on this assumption, a probability model that fits Mendel’s data and
does not offend Fisher’s analysis is given. This reconciliation model may
well be the end of the Mendel–Fisher controversy.

Key words and phrases: Genetics, ethics, chi-square tests, distribution of
p-values, minimum distance estimates.

1. INTRODUCTION

Gregor Mendel is recognized as a brilliant scientist
and the founder of modern genetics. However, long
ago, another eminent scientist, the statistician and ge-
neticist, Sir Ronald Fisher, questioned Mendel’s in-
tegrity claiming that Mendel’s data agree better with
his theory than expected under natural fluctuations.
Fisher’s conclusion is based on strong statistical ar-
guments and has been interpreted as an evidence of
misconduct. A large number of papers about this con-
troversy have been produced, culminating with the
publication in 2008 of a book (Franklin et al., 2008)
aimed at ending the polemic and definitely rehabili-
tating Mendel’s image. However, the authors recog-
nize, “the issue of the ‘too good to be true’ aspect of
Mendel’s data found by Fisher still stands.”

After submitting Mendel’s data and Fisher’s statis-
tical analysis to extensive computations and Monte
Carlo simulations, attempting to discover a hidden ex-
planation that could either confirm or refute Fisher’s
allegation, we have concluded that a statistical model
with a simple probability mechanism can clarify the
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controversy, that is, explain Fisher’s conclusions with-
out accusing Mendel (or any assistant) of deliberate
fraud.

The paper is organized as follows. In Section 2 we
summarize the history of the controversy. Then, in
Section 3, we present a brief description of Mendel’s
experiments and of the data under consideration. In
Section 4 we examine previous statistical analyses of
Mendel’s data, including Fisher’s chi-square analy-
sis and a meta-analysis of p-values. In Section 5 we
present the proposed statistical model and show how it
can explain the pending issues. The conclusions of this
work are summed up in Section 6.

2. A BRIEF HISTORY OF THE MENDEL–FISHER
CONTROVERSY

To situate the reader within the context of the subject
matter, we first highlight the most significant charac-
teristics of the two leading figures and review the key
aspects and chronology of the controversy.

Gregor Mendel [1822–1884, Figure 1(a)] was an Au-
gustinian Austrian monk who, during at least seven
years, performed controlled crossing experiments with
the garden pea (Pisum sativum L.). He may have per-
sonally controlled the fertilization of around 29,000
plants. Based on the results of these experiments, he
formulated the two laws, or principles, of heredity
(Mendel’s first law: principle of segregation; Mendel’s
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(a) (b)

FIG. 1. (a) Mendel’s portrait which appeared as frontispiece
in the book Mendel’s Principles of Heredity, a Defense, Bateson
(1902). (b) A picture of Sir R. A. Fisher.

second law: principle of independent assortment).
Mendel’s findings were published in 1866 in the Pro-
ceedings of the Society of Natural History of Brünn,
Mendel (1866). To draw his conclusions, Mendel ana-
lyzed the data informally, that is, without using formal
statistical methods, simply because the tools he needed
did not exist. Yet he shows a remarkable intuition for
statistical concepts, being quite aware of chance, vari-
ability and random errors. This shows how Mendel was
a man far ahead of his time.

Sir Ronald Fisher [1890–1962, Figure 1(b)] made
fundamental contributions to statistics and is also re-
garded as the founder of quantitative genetics. He is de-
scribed by Hald (1998) as “a genius who almost single-
handedly created the foundations for modern statisti-
cal science” and by Dawkins (1995) as “the greatest
of Darwin’s successors.” It is thus quite understand-
able that Fisher became interested in Mendel’s work
and data very early in his career.

Let us now review the chronology of this contro-
versy:

1856–1863 Mendel performed his experiments during
this period. He produced around 29,000 garden pea
plants from controlled crosses and registered several
of their observable characteristics (phenotype), such
as shape and color of the seeds, height, flower color,
etc.

1865 Mendel presented the results of his experiments
in a communication entitled Experiments on Plant
Hybridization, read at two meetings of the Society
of Natural History of Brünn.

1866 The paper with the same title was published in
the proceedings of that society. The paper had little
impact and would be cited only three times in the
next 35 years.

1900 His work was rediscovered independently by
Hugo de Vries, Carl Correns and Erich von Tscher-
mak.

1902 The first statistical analysis of Mendel’s data is
published in the first volume of Biometrika (Weldon,
1902), using the then recently invented chi-square
test (Pearson, 1900).

1911 Fisher produced a first comment about Mendel’s
results, in a communication to the Cambridge Uni-
versity Eugenics Society, while he was still an un-
dergraduate: “It is interesting that Mendel’s original
results all fall within the limits of probable error”
and suggested that Mendel may have “unconsciously
placed doubtful plants on the side which favoured his
hypothesis” (Franklin et al., 2008, page 16).

1936 Fisher published the paper Has Mendel’s work
been rediscovered? (Fisher, 1936), where he ex-
presses the same concern but this time presenting
a detailed analysis, both of Mendel’s experiments
and data. He also attributes the alleged forgery, not
to Mendel himself, but to an unknown assistant:
“Although no explanation can be expected to be
satisfactory, it remains a possibility among others
that Mendel was deceived by some assistant who
knew too well what was expected” (Fisher, 1936,
page 132). Fisher also questioned some other aspects
of Mendel’s experiments, but those do not involve
statistical aspects and will not be discussed here.

1964 The publication De Beer (1964), intended to cel-
ebrate the centennial of Mendel’s article, highlights
the fact that Fisher “was able to reconstruct the se-
quence thread and development of Mendel’s series of
experiments” and draws attention to Fisher’s work on
the statistical analysis of Mendel’s results. Ironically,
Fisher’s paper appears to have remained mostly over-
looked until approximately this anniversary, as far as
we can tell based on the scarcity of previous cita-
tions.

1964–2007 During this period at least 50 papers have
been published about the controversy created by
Fisher. Some elucidative titles: The too-good-to-be-
true paradox and Gregor Mendel (Pilgrim, 1984);
Are Mendel’s results really too close? (Edwards,
1986a); Mud Sticks: On the Alleged Falsification of
Mendel’s Data (Hartl and Fairbanks, 2007).

2008 A group of scientists from different fields,
Franklin (Physics and History of Science), Edwards
(Biometry and Statistics, and curiously, Fisher’s last
student), Fairbanks (Plant and Wildlife Sciences),
Hartl (Biology and Genetics) and Seidenfeld (Phi-
losophy and Statistics), who have previously pub-
lished work on the controversy, merged their most
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relevant papers and published the book Ending the
Mendel–Fisher Controversy. But is it really the end
of the controversy? The authors dismiss all of the
issues raised by Fisher except the “too good to be
true” (pages 68 and 310).
In a very interesting book review, entitled CSI:
Mendel, Stigler (2008) adds: “. . . an actual end to
that discussion is unlikely to be a consequence of this
book.” and “. . . thanks to these lucid, insightful and
balanced articles, another generation will be able to
join the quest with even better understanding.”

3. EXPERIMENTS AND DATA

Before introducing the data and discussing the cor-
responding statistical analysis, it is important to un-
derstand the experiments and the scientific hypotheses
under evaluation. Using a classification similar to that
used by Fisher, the experiments can be classified as fol-
lows: single trait, bifactorial, trifactorial and gametic
ratios experiments.

Single trait experiments. These concern the trans-
mission of only one binary characteristic (or trait) at a
time. Mendel examined seven traits, two observable in
the seeds (seed shape: round or wrinkled; seed color:
yellow or green) and five in the plants (flower color:
purple or white; pod shape: inflated or constricted; pod
color: yellow or green; flower position: axial or ter-
minal; stem length: long or short). First Mendel ob-
tained what are now called “pure lines,” with each of
the two forms of the seven characters, that is, plants
which yielded perfectly constant and similar offspring.
When crossing the two pure lines, F0, for each charac-
ter Mendel observed that all the progeny, F1, presented
only one of the forms of the trait. He called this one the
dominant form and represented it by A. The other form
was called recessive and denoted by a. In the seven
traits listed above the first form is the dominant and the
second is the recessive. He then crossed the F1 individ-
uals (which he called the hybrids) and observed that in
the resulting generation, F2, there were individuals of
the two original types, approximately in the ratio 3 : 1
of the dominant type to the recessive type. In modern
notation and terminology, we are studying a phenotype
with possible values “A” and “a” governed by a sin-
gle gene with two alleles (A and a, where the first is
dominant). The F0 plants are homozygous AA (geno-
type AA, phenotype “A”) or aa (genotype aa, pheno-
type “a”), the F1 are all heterozygous Aa (genotype
Aa, phenotype “A”), the F2 plants can have genotype
AA (phenotype “A”), genotype Aa (phenotype “A”)

FIG. 2. A schematic representation of Mendel’s single trait ex-
periments (in modern notation and terminology).

and genotype aa (phenotype “a”). When Mendel self-
fertilized the F2 plants with phenotype “A,” he found
that about one-third of these always produced pheno-
type “A” progeny, while about two-thirds produced
phenotype “A” and phenotype “a” progeny in the ra-
tio 3 : 1. This process is schematically represented in
Figure 2, where (F3) refers to the progeny of the self-
fertilized F2 individuals.

Table 1 presents the data given in Mendel (1866) for
the single trait experiments just described. As an illus-
tration of the variability of the results between plants,
Mendel also presented the individual figures obtained
for the ten first plants of each of the experiments rela-
tive to the seed characteristics (these are referred to by
Fisher as “illustrations of plant variation,” cf. Table 5).

Bifactorial experiment. This is an experiment sim-
ilar to the single trait experiments but observing two
characteristics simultaneously (seed shape, A, and seed
color, B, starting from pure lines on both). The aim was
to observe how the two traits are combined. Mendel
postulated and confirmed from the results of the ex-
periment that the traits considered are assorted inde-
pendently.1 That is, given a trait A with an F2 genera-
tion AA, Aa and aa in the ratio 1 : 2 : 1, and a trait B
with BB , Bb and bb in the same ratio, combining the
two independently leads to the genotypes and theoreti-
cal ratios represented in Figure 3. The data, organized
by Fisher from Mendel’s description, are shown in Ta-
ble 2.

Trifactorial experiment. This experiment is also sim-
ilar to the previous experiment but considering the
crossing of three traits (seed shape, seed color and
flower color). The data, organized by Fisher from
Mendel’s description, are shown in Table 3, whereas

1This independence hypothesis is also a matter of controversy
(did Mendel detect linkage?) and has been discussed thoroughly in
the literature (see Franklin et al., 2008, pages 288–292).
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TABLE 1
Data given in Mendel (1866) for the single trait experiments. “A” (“a”) denotes the dominant (recessive) phenotype; A (a) denotes the
dominant (recessive) allele; n is the total number of observations per experiment (that is, seeds for the seed trait experiments and plants

otherwise); n“A”, n“a”, nAa and nAA denote observed frequencies

Obs. freq. Theor. ratio

Trait “A” “a” n n“A” n“a” “A” : “a”

Seed shape round wrinkled 7324 5474 1850 3 : 1
Seed color yellow green 8023 6022 2001 3 : 1
Flower color purple white 929 705 224 3 : 1

F2 Pod shape inflated constricted 1181 882 299 3 : 1
Pod color yellow green 580 428 152 3 : 1
Flower position axial terminal 858 651 207 3 : 1
Stem length long short 1064 787 277 3 : 1

Trait A a n nAa nAA Aa : AA

Seed shape round wrinkled 565 372 193 2 : 1
Seed color yellow green 519 353 166 2 : 1
Flower color purple white 100 64 36 2 : 1

(F3) Pod shape inflated constricted 100 71 29 2 : 1
Pod color yellow green 100 60 40 2 : 1
Flower position axial terminal 100 67 33 2 : 1
Stem length long short 100 72 28 2 : 1
Pod color (rep.) yellow green 100 65 35 2 : 1

FIG. 3. Genotypes and theoretical ratios for the bifactorial ex-
periment.

TABLE 2
Data from the bifactorial experiment [as organized by Fisher

(1936)]

AA Aa aa Total

BB 38 60 28 126
Bb 65 138 68 271
bb 35 67 30 132

Total 138 265 126 529

the corresponding theoretical ratios are given in Fig-
ure 4.

Gametic ratios experiments. In this last series of ex-
periments Mendel designed more elaborated crosses in
order to obtain “conclusions as regards the composi-
tion of the egg and pollen cells of hybrids.” The crosses
are represented in Figure 5 and the data are shown in
Table 4.

We will also use an organization of the data into 84
binomial experiments, similar to the one proposed by
Edwards (1986a, see also Franklin et al., 2008, Chap-
ter 4). The data set used is described in detail in Ap-
pendix A.

All the computations and Monte Carlo simulations
described were carried out using the R software (R De-

TABLE 3
Data from the trifactorial experiment [as organized by Fisher (1936)]

CC Cc cc Total

AA Aa aa Total AA Aa aa Total AA Aa aa Total AA Aa aa Total

BB 8 14 8 30 22 38 25 85 14 18 10 42 44 70 43 157
Bb 15 49 19 83 45 78 36 159 18 48 24 90 78 175 79 332
bb 9 20 10 39 17 40 20 77 11 16 7 34 37 76 37 150

Total 32 83 37 152 84 156 81 321 43 82 41 166 159 321 159 639
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FIG. 4. Theoretical ratios for the trifactorial experiment.

velopment Core Team, 2008). The full code is available
upon request.

4. STATISTICAL ANALYSIS: INCRIMINATING
EVIDENCE

4.1 Fisher’s Analysis

As mentioned in Section 2, Fisher (1936) presents
a very detailed analysis of both Mendel’s experiments
and data. Here we will concentrate on a particular part
of the analysis, the chi-square analysis summarized in
Table V, page 131, of Fisher (1936), which is repro-
duced in Table 5. This table has been the subject of a
lot of debate, and it constitutes the main evidence for
the “too good to be true” aspect of Mendel’s data as
claimed by Fisher. We later present a new explanation
for this evidence.

The analysis is very simple to describe: for each
separate experiment, Fisher performed a chi-square
goodness-of-fit test, where H0 specifies the probabil-
ities implied by the theoretical ratios. Note that, for the
two category cases, this is equivalent to the usual as-
ymptotic test for a single proportion. Then he aggre-
gated all the tests by summing the chi-square statistics
as well as the associated number of degrees of free-
dom and computed an aggregated p-value of 0.99993.

TABLE 4
Data from the gametic ratios experiments (Mendel, 1866)

Exp. n
Observed

frequencies
Theoretical

ratio
Traits

A B

1 90 20 23 25 22 1 : 1 : 1 : 1 seed shape seed color
2 110 31 26 27 26 1 : 1 : 1 : 1 seed shape seed color
3 87 25 19 22 21 1 : 1 : 1 : 1 seed shape seed color
4 98 24 25 22 27 1 : 1 : 1 : 1 seed shape seed color
5 166 47 40 38 41 1 : 1 : 1 : 1 flower color stem length

This would mean that if Mendel’s experiments were
repeated, under ideal conditions such that all the null-
hypotheses are true, and all the Bernoulli trials—within
and between experiments—are independent, the prob-
ability of getting an overall better result would be
7/100,000.

Fisher’s chi-square results were recomputed just to
confirm that we are working with exactly the same
data and assumptions. The results, given in the first 4
columns of Table 6, show that the statistics (χ2

obs) are
identical to Fisher’s values, but there are some differ-
ences in the p-values which certainly reflect different
methods of computing the chi-square distribution func-
tion [p-value (χ2

df) denotes the p-value computed from
a χ2 distribution with df degrees of freedom, that is,
P(χ2

df > χ2
obs)].

The table also gives the Monte Carlo (MC) estimates
of the p-values (and corresponding standard errors,
se) based on 1,000,000 random repetitions of the ex-
periments using binomial or multinomial sampling,
whichever is appropriate, as considered by Fisher.

(a)

(b)

FIG. 5. Schematic representation of the gametic ratios experiments: (a) experiments 1–4 in Table 4; (b) experiment 5 in Table 4.
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TABLE 5
Fisher’s chi-square analysis (“Deviations expected and observed

in all experiments”)

Experiments Expectation χ2

Probability
of exceeding
deviations
observed

3 : 1 ratios 7 2.1389 0.95
2 : 1 ratios 8 5.1733 0.74
Bifactorial 8 2.8110 0.94
Gametic ratios 15 3.6730 0.9987
Trifactorial 26 15.3224 0.95

Total 64 29.1186 0.99987
Illustrations of

plant variation 20 12.4870 0.90

Total 84 41.6056 0.99993

A more detailed description of the Monte Carlo sim-
ulation is given in Appendix B.1.

Comparing the list of χ2
df p-values with the list of

MC p-values, the conclusion is that the approxima-
tion of the sampling distribution of the test statistic by
the chi-square distribution is very accurate, and that
Fisher’s analysis is very solid [our results are also in
accordance with the results of similar but less exten-
sive simulations described in Novitski (1995)]. More-
over, we can also conclude that the evidence “against”
Mendel is greater than that given by Fisher, since an
estimate of the probability of getting an overall bet-
ter result is now 2/100,000. We have also repeated the
chi-square analysis considering the 84 binomial exper-
iments (results given in the next 3 columns of Table 6)
and concluded that the two sampling models are al-
most equivalent, the second one (only binomial) being
slightly more favorable to Fisher and less favorable to
Mendel. Acting in Mendel’s defense, the results will be
more convincing if we prove our case under the least
favorable scenario. Thus, for the remaining investiga-
tion, we use only the binomial model and data set.

Franklin et al. (2008, pages 29–67) provide a com-
prehensive systematic review of all the papers pub-
lished since the 1960s in reaction to Fisher’s accusa-
tions. The vast majority of those authors try to put
forward arguments in Mendel’s defense. We only high-
light here some of the more relevant contributions re-
garding specifically the “too good to be true” conclu-
sion obtained from the chi-square analysis. The ma-
jority of the reactions/arguments can be generically
classified into three categories.

In the first category we consider those who do not
believe in Fisher’s analysis. This is the case of Pilgrim

(1984, 1986) who in the first paper affirms to have de-
tected “four paradoxical elements in Fisher’s reason-
ing” and who, in the second, claims to have been able
to show where Fisher went wrong. Pilgrim’s arguments
are related to the application of the chi-square global
statistic and were refuted by Edwards (1986b).

As a second category, those who, in spite of be-
lieving that Fisher’s analysis is correct, think it is too
demanding and propose alternative ways to analyze
Mendel’s data. Edwards (1986a) analyzes the distribu-
tion of a set of test statistics, whereas Seidenfeld (1998)
analyzes the distribution of a set of p-values. They both
find the “too good to be true” characteristic and come
to the conclusion that Mendel’s results were adjusted
rather than censored.2 The methods of Leonard (1977)
and Robertson (1978), who analyzed only a small part
of the data, could also be classified here, but, according
to Piegorsch (1983), their contribution to advance the
debate was marginal.

Finally, as a third category, those who believe
Fisher’s analysis is correct under its assumptions (bino-
mial/multinomial sampling, independent experiments)
and then try to find a reason or explanation, other than
deliberate cheating, for the observation of a very high
global p-value. Such an explanation has to imply the
failure of at least one of those two assumptions. More-
over, that failure has to occur in a specific direction,
the one which would reduce the chi-square statistics:
for instance, the distribution of the phenotypes is not
binomial and has a smaller variance than the binomial.
The various explanations that have been put forward
can be divided into the following: biological, statistical
and methodological.

Among the biological candidate explanations, one
that received some attention was the “Tetrad Pollen
Model” (see Fairbanks and Schaalje, 2007).

Few purely statistical explanations have been pro-
posed and most of them are anecdotal. One that raised
some discussions was a proposal of Weiling (1986)
who considers, based on the tetrad pollen model just
mentioned, a distribution with smaller variance than
the binomial for some of the experiments, and hyper-
geometric for other experiments.

The majority of the suggested explanations are of
a methodological nature: the “anonymous” assistant

2These are the precise words used in the cited references (Ed-
wards, 1986b and Seidenfeld, 1998). They mean that some re-
sults have been slightly modified to fit Mendel’s expectations (“ad-
justed”), instead of just being eliminated (“censored” or “trun-
cated”).
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TABLE 6
Results of the chi-square analysis considering different models and methods for computing/estimating p-values. Each line corresponds to a different type of experiment in Mendel’s

paper: single trait, 3 : 1 ratios; single trait, 2 : 1 ratios; bifactorial (BF); gametic ratios (GR); trifactorial (TF); and illustrations of plant variation (PV). df : degrees of freedom of the
asymptotic distribution of the χ2 test statistic under H0 (Mendel’s theory); χ2

obs: observed value of the χ2 test statistic; p-value (χ2
df): p-value computed assuming that the test statistic

follows, under H0, a χ2 distribution with df degrees of freedom; p-value (MC): p-value estimated from Monte Carlo simulation; se: standard error of the p-value (MC) estimate

Fisher
(binomial + multinomial)

Model A Model B

Edwards (binomial) α = 0.094 α = 0.201 α = 0.362 β = 0.261 β = 0.455 β = 0.634

p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value
Exp. df χ2

obs (χ2
df) (MC) χ2

obs (χ2
df) (MC) (MC) (MC) (MC) (MC) (MC) (MC)

(se) (se) (se) (se) (se) (se) (se) (se)

3:1 7 2.1389 0.9518 0.9519 2.1389 0.9518 0.9517 0.9069 0.8286 0.6579 0.9023 0.8446 0.7701
(0.0002) (0.0002) (0.0003) (0.0004) (0.0005) (0.0003) (0.0004) (0.0004)

2:1 8 5.1733 0.7389 0.7401 5.1733 0.7389 0.7393 0.4955 0.2374 0.1156 0.6044 0.4826 0.3586
(0.0004) (0.0004) (0.0005) (0.0004) (0.0003) (0.0005) (0.0005) (0.0005)

BF 8 2.8110 0.9457 0.9462 2.7778 0.9475 0.9482 0.8838 0.7839 0.5926 0.8914 0.8248 0.7376
(0.0002) (0.0002) (0.0003) (0.0004) (0.0005) (0.0003) (0.0004) (0.0004)

GR 15 3.6730 0.9986 0.9987 3.6277 0.9987 0.9987 0.9950 0.9811 0.9063 0.9939 0.9827 0.9584
(0.00004) (0.00004) (0.00007) (0.0001) (0.0003) (0.00008) (0.0001) (0.0002)

TF 26 15.3224 0.9511 0.9512 15.1329 0.9549 0.9555 0.6973 0.2917 0.0812 0.8493 0.6941 0.4847
(0.0002) (0.0002) (0.0004) (0.0005) (0.0003) (0.0004) (0.0005) (0.0005)

Tot. 64 29.1185 0.99995 0.99995 28.8506 0.99995 0.99995 0.9917 0.8175 0.2965 0.9980 0.9800 0.8887
(0.000007) (0.000007) (0.00008) (0.0004) (0.0005) (0.00004) (0.0001) (0.0003)

PV 20 12.4870 0.8983 0.9000 12.4870 0.8983 0.9003 0.5932 0.2196 0.0684 0.7582 0.5922 0.4028
(0.0003) (0.0003) (0.0005) (0.0004) (0.0003) (0.0004) (0.0005) (0.0005)

Tot. 84 41.6055 0.99997 0.99998 41.3376 0.99998 0.99998 0.9860 0.6577 0.1176 0.9980 0.9733 0.8348
(0.000005) (0.000005) (0.0001) (0.0005) (0.0003) (0.00004) (0.0002) (0.0004)
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(Fisher); sequential procedures, like stopping the count
when the results look good (several authors); discard
plants or complete experiments due to suspicions of
some experimental error, like pollen contamination
(Dobzhansky, 1967); luck(?); inherent difficulties in
the classification of the phenotypes (Root-Bernstein,
1983); data selection for presentation (Di Trocchio,
1991; Fairbanks and Rytting, 2001).

It is important to keep in mind that for an explana-
tion to be acceptable as the solution to the controversy
it must fulfill a number of conditions: (i) it must be bi-
ologically plausible and/or experimentally verifiable;
(ii) it must be statistically correct and pass the chi-
square and eventually other statistical analyses aim-
ing at disentangling the enigma; and (iii) assuming that
Mendel’s theory is correct and that he is not guilty of
any deliberate fraud, it has to find support in and it can
not contradict Mendel’s writings. The fact is that all the
explanations which were proposed up to now failed in
one or other of these requirements.

In summary, Fisher’s analysis has resisted all at-
tempts to be either refuted or explained. Our simu-
lation also confirms that, under the standard assump-
tions, Fisher’s tests and conclusions are correct.

4.2 Analysis of p-Values

As mentioned in Section 3, Edwards (1986a) pro-
posed an organization of the data into 84 binomial ex-
periments. He then used the data to compute what he
called (signed) χ values, that is, the square root of the
chi-square statistic with the sign of the deviation (“+”
if observed > expected and “−” if observed < ex-
pected). Since all the tests have one degree of freedom
and, assuming that Mendel’s theory is correct, the χ

values should follow approximately a standard normal
distribution. However, a normal qqplot of those val-
ues shows apparently a large deviation from normality
(Franklin et al., 2008, Figures 1.1 and 1.2, page 49).
From the shape of the plot Edwards (1986a) concluded
that it appears to be more likely that Mendel’s re-
sults were adjusted rather than truncated. This conclu-
sion, to which Seidenfeld (1998) also arrives, and later
Franklin et al. (2008) agree, would render some of the
most plausible methodological explanations not viable.

Another approach is to analyze the p-values of the
individual χ2

1 tests. This idea was explored by Seiden-
feld (1998); (see also Franklin et al., 2008, Figures 1.3
and 1.4, page 59), although not so systematically as in
the analysis provided here. The 84 χ values, along with
the 84 p-values, are also given in Appendix A.

FIG. 6. Empirical cumulative distribution function of the
p-values (stair steps line); cumulative distribution function of the
uniform (0,1) random variable (straight line); cumulative distrib-
ution function of the maximum of two (0,1) uniform random vari-
ables (curve).

As for Fisher’s and Edwards’ analysis, we know
what to expect under the ideal assumptions. That is, if:
(i) Mendel’s theory is valid for all the experiments, or,
equivalently, if the null hypotheses of the chi-square
tests are true in all cases; (ii) the experiments were
performed independently and as described in Mendel’s
paper; and (iii) the chi-square approximation is valid,
then the p-values follow a uniform (0,1) distribu-
tion. Therefore, the plot of the empirical cumulative
distribution function (e.c.d.f.)3 of the p-values should
be close to the diagonal of the (0,1) × (0,1) square.
However, the e.c.d.f., plotted in Figure 6, reveals a
marked difference from uniformity. This visual asser-
tion was confirmed by a Kolmogorov–Smirnov (K–S)
goodness-of-fit test (p-value = 0.0036, details in Ap-
pendix B.2). We can therefore conclude with a high
confidence that the distribution of the p-values devi-
ates from a uniform (0,1) distribution. It is then natural
to wonder about the kind of deviation and its mean-
ing. In Figure 6 we also plot the cumulative distribu-
tion function (c.d.f.) of the maximum of two uniform
(0,1) random variables, y = x2, since this is central to
the explanation that we give later for Mendel’s results.

The histogram of the p-values (Figure 7) is helpful
for our argumentation. One could perhaps think that
the uniform distribution is not a good fit for the sam-
ple of p-values because some of the null hypotheses

3The e.c.d.f. is defined, for a random sample of size n, as
Fn(x) = {n. of observations ≤ x}/n.
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FIG. 7. Histogram of the 84 p-values observed [the dashed line
indicates the expected frequencies under the uniform (0,1) distrib-
ution].

are not true. But if that were the case, we would ob-
serve an excess of values close to 0, and the histogram
shows precisely the opposite. Possible reasons for this
to happen are as follows: either the data shows that the
hypotheses are “more true,” that is, the data are bet-
ter than expected under the null hypotheses, or there is
something wrong with the assumptions (and possible
explanations are, as for the chi-square analysis, smaller
variance than binomial, or lack of independence).

In conclusion, the p-value analysis shows that the
probability of obtaining overall results as good or bet-
ter than those obtained by Mendel (under the assump-
tions) is about 4/1000. This “evidence” is not as ex-
treme as the 2/100,000 resulting from the chi-square
analysis but points in the same direction.

5. A PLAUSIBLE EXPLANATION

5.1 A Statistical Model for the p-Values

In the previous section we have shown that there is
strong evidence that the p-values are not uniformly dis-
tributed. What is then their distribution, and how can it
be explained?

The shape of the e.c.d.f. provides a hint: it resembles
the function x2, which is the c.d.f. of the maximum of
two uniform (0,1) random variables, as can easily be
shown. It appears that some c.d.f. intermediate between
that corresponding to a uniform (0,1) random variable
and that corresponding to the maximum of two uni-
form (0,1) random variables best fits the e.c.d.f. of the
sample p-values (see Figure 6).

One explanation for this is the following: suppose
Mendel has repeated some experiments, presumably
those which deviate most from his theory, and reports
only the best of the two. A related possibility was sug-
gested by Fairbanks and Rytting (2001, page 743): “We

believe that the most likely explanation of the bias in
Mendel’s data is also the simplest. If Mendel selected
for presentation a subset of his experiments that best
represented his theories, χ2 analysis of those experi-
ments should display a bias.” The authors support this
explanation with citations from Mendel’s work. We
have found only an attempt to verify the effect of such
a selection procedure on the chi-square analysis (foot-
note number 62, page 73, of Franklin et al., 2008), but
it seems to lead to the wrong conclusion, as we con-
clude later that the effect of the given explanation on
the chi-square analysis is very small. Moreover, the ex-
planation appears to have been abandoned because “It
does not [however] address the demonstration, by both
Edwards and Seidenfeld, that Mendel’s data had not
merely been truncated, but adjusted” (Franklin et al.,
2008, page 62).

Both procedures described in the previous paragraph
for selecting the data to be presented can be modeled
by assuming that an experiment is repeated whenever
its p-value is smaller than α, where 0 ≤ α ≤ 1 is a para-
meter fixed by the experimenter, and then only the one
with the largest p-value is reported.4 Under this selec-
tion model (from now on named “model A”), the c.d.f.
of the p-values of the experiments reported is given by

Fα(x) =
{

x2, if 0 ≤ x ≤ α,
(1 + α)x − α, if α < x ≤ 1.

(5.1)

PROOF. For a given experiment, denote by X the
p-value effectively reported. We have that X = X1, if
X1 ≥ α and X = max(X1,X2) if X1 < α, where X1
and X2 represent the p-values obtained in the first and
the second realization of the experiment (if there is
one), respectively. Assume that X1 and X2 are inde-
pendent and identically distributed continuous uniform
(0,1) random variables (i.e., the two realizations of the
experiment are independent and the associated null hy-
pothesis is true), that is, P(X1 ≤ x) = P(X2 ≤ x) = x,
0 ≤ x ≤ 1. In the derivation of Fα(x) = P(X ≤ x), the
cases 0 ≤ x < α and α ≤ x ≤ 1 are considered sepa-
rately.

If 0 ≤ x < α,

P(X ≤ x) = P
(
max(X1,X2) ≤ x

)
= P({X1 ≤ x} ∩ {X2 ≤ x})
= P(X1 ≤ x)P (X2 ≤ x) = x2.

4Note that this is just an idealized model on which to base our
explanation. We are not suggesting that Mendel actually computed
p-values!
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If α ≤ x ≤ 1,

P(X ≤ x)

= P
(
({X ≤ x} ∩ {X1 < α})
∪ ({X ≤ x} ∩ {X1 ≥ α}))

= P({X ≤ x} ∩ {X1 < α})
+ P({X ≤ x} ∩ {X1 ≥ α})

= P
({max(X1,X2) ≤ x} ∩ {X1 < α})

+ P({X1 ≤ x} ∩ {X1 ≥ α})
= P({X1 < α} ∩ {X2 ≤ x}) + P(α ≤ X1 ≤ x)

= x × α + (x − α). �
Suppose that model A holds but α is unknown and

must be estimated using the available sample of 84
binomial p-values. The minimum distance estimator
based on the Kolmogorov distance, also called the
“Minimum Kolmogorov–Smirnov test statistic estima-
tor” (Easterling, 1976), provides one method for esti-
mating α. This estimate is the value of α which mini-
mizes the K–S statistic,

D(α) = sup
x

|Fn(x) − Fα(x)|(5.2)

for testing the null hypothesis that the c.d.f. of the p-
values is Fα . Equivalently, the estimate can be deter-
mined by finding the value of α which maximizes the
p-value of the K–S test, p(α), since p(·) is a strictly
decreasing function of D(·).

Figure 8 shows the plot of the K–S p-values, p(α),
as a function of α, together with the point estimate,

FIG. 8. Plot of the p-value of the K–S test as a function of the
parameter, showing the point estimate and the 90% confidence in-
terval, for model A.

FIG. 9. Empirical cumulative distribution function of the
p-values and fitted model (solid line: α̂ = 0.201; dashed lines: 90%
confidence limits).

α̂ = 0.201 (D = 0.0623, P = 0.8804), and a 90% con-
fidence interval for α, (0.094;0.362). A detailed expla-
nation on how these figures were obtained is given in
Appendix B.3. Figure 9 confirms the good model fit.

This model can also be submitted to Fisher’s chi-
square analysis. Assuming it holds for a certain value
α0, we may still compute “chi-square statistics,” but the
p-values can no longer be obtained from the chi-square
distribution. However, they can be accurately estimated
by Monte Carlo simulation. The difference to the pre-
vious simulations is that statistics and (χ2

1 ) p-values
were always computed (for each of the 84 binomial
cases and each random repetition) and whenever that
p-value was smaller than α0 another binomial result
was generated and the statistic recorded was the mini-
mum of the two.

The simulation results obtained for three values of
α (point estimate and limits of the confidence interval)
are presented in the three columns of Table 6 under
the heading “Model A.” The p-values in these columns
(and especially those corresponding to α = 0.201) do
not show any sign of being too close to one anymore,
in fact, they are perfectly reasonable. In Appendix C
we present a more detailed (and technical) justification
of the results obtained.

The conclusion is that our model explains Fisher’s
chi-square results: Mendel’s data are “too good to be
true” according to the assumption that all the data pre-
sented in Mendel’s paper correspond to all the exper-
iments Mendel performed, or to a random selection
from all the experiments. When this assumption is re-
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placed by model A the results can no longer be consid-
ered too good. So we conclude that model A is a rea-
sonable statistical explanation for the controversy. We
do not pretend that it is necessarily the “true” model;
however, it is very simple and does provide extra in-
sight into the complexity of this historical debate and
in this sense it is useful. As G.E.P. Box said, “All mod-
els are wrong, some models are useful.”

We have just seen how the suggested selection mech-
anism can make Mendel’s results (which we know are
in fact correct) look too correct. This raises a related
question of general interest to all experimental sci-
ences: is it possible to make an incorrect theory look
correct by applying this or a similar selection mecha-
nism? Although a detailed answer to this question is
beyond the scope of this paper, in Appendix D we give
an idea on how a generalization of model A can be used
to explore the question.

5.2 Alternative Models

No doubt there are many models, perhaps more com-
plicated than ours, that explain Mendel’s data as well
as, or perhaps better than, ours. A relevant question to
ask, then, is whether any model similar to ours, more
specifically, a one parameter model with c.d.f. varying
between x and x2, would produce similar results and
also a reasonable interpretation.

To show that the answer to this question is negative,
we have considered an alternative model, model B,
with distribution function computed as a linear com-
bination of the “extreme” models, that is, with c.d.f.
given by Fβ(x) = (1 − β) × x + β × x2, with 0 ≤
β ≤ 1. This is mathematically simpler than model A
and its interpretation in terms of the design of the ex-
periments could be: Mendel would also decide to re-
peat some experiments and report only the best result
of both (the original and the repetition), but the deci-
sion to repeat would be taken randomly with probabil-
ity β , for instance, by throwing a fair coin (β = 0.5)
or something similar. Applying the methods described
in Appendix B.3 to this model, we obtain (see Fig-
ure 10) β̂ = 0.45 (K–S test: D = 0.0875, P = 0.5131)
and CI90%(β) = (0.261;0.634). Figure 11 shows the
e.c.d.f. of the p-values and the c.d.f. of model B with
β = 0.45 (solid line) and β = 0.261,0.634 (dashed
lines). Compared to Figure 9, the fit of model B looks
worse than the fit of model A, but it could still be con-
sidered acceptable. However, in what concerns the chi-
square analysis, model B is unable to produce good
results (cf. the last three columns in Table 6). The
aggregated p-value (84 df ) still points to “too good

FIG. 10. Plot of the p-value of the K–S test as a function of the
parameter, showing the point estimate and the 90% confidence in-
terval, for model B.

to be true” except maybe for the last column, which
corresponds to the odd situation of randomly repeat-
ing about 60% of the experiments! We have presented
model B as just an exercise to show a specific point, it
does not correspond to a plausible procedure as does
model A.

5.3 Further Support for the Proposed Model

As a harder challenge, we observed the behavior of
each of the models in the context of Edwards’ chi val-
ues analysis, mentioned at the beginning of Section 4.2.
The results of a simple simulation exercise are repre-
sented in the four plots in Figure 12. All the plots are

FIG. 11. E.c.d.f. of the p-values and alternative model (solid line:
β̂ = 0.45; dashed lines: 90% confidence limits).
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FIG. 12. Each part of the figure contains a normal quantile–quantile plot of the original 84 Edwards’ χ values (solid thick line), and of
100 samples of simulated 84 χ values from each model (gray thin lines) as well as an intermediate line, located in the “middle” of the gray
lines, corresponding to a “synthetic” sample obtained by averaging the ordered observations of the 100 simulated samples.

normal quantile–quantile plots, and contain the repre-
sentation of the actual sample of 84 χ values (thick
line). Each plot also represents 100 samples of sim-
ulated 84 χ values, generated by the corresponding
model (gray thin lines), plus a “synthetic” sample ob-
tained by averaging the ordered observations of those
100 simulated samples (intermediate line). Plot (a): the
samples were generated from a standard normal ran-
dom variable (i.e., from the asymptotic distribution of
the χ values under the ideal assumptions, binomial
sampling and independent experiments). Plot (b): in
this case the χ values were obtained (by transforma-
tion of the χ2 values) from the first 100 samples used
to obtain the results given in the columns with head-
ing “Edwards” in Table 6. Plot (c): similar to the pre-
vious but with the samples generated under model A.
Plot (d): idem with model B.

From the top plots we conclude that the Normal and
the Binomial models are very similar and do not ex-
plain the observed values, whereas from the bottom
plots we can see that model A provides a much bet-
ter explanation of the χ values observed than model B.

These conclusions are no longer surprising, in the face
of the previous evidence; however, we shall remark that
the several analyses are not exactly equivalent, so the
previous conclusions would not necessarily imply this
last one.

Besides the statistical evidence, which by itself may
look speculative, the proposed model is supported by
Mendel’s own words. The following quotations from
Mendel’s paper (Mendel, 1866, page numbers from
Franklin et al., 2008) are all relevant to our interpre-
tation:

“it appears to be necessary that all mem-
bers of the series developed in each succes-
sive generation should be, without excep-
tion, subjected to observation” (page 80).

From this sentence we conclude that Mendel was
aware of the potential bias due to incomplete obser-
vation, thus, it does not seem reasonable that he would
have deliberately censored the data or used sequential
sampling as suggested by some authors:
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“As extremes in the distribution of the two
seed characters in one plant, there were ob-
served in Expt. 1 an instance of 43 round
and only 2 angular, and another of 14 round
and 15 angular seeds. In Expt. 2 there was
a case of 32 yellow and only 1 green seed,
but also one of 20 yellow and 19 green”
(page 86).

“Experiment 5, which shows the greatest de-
parture, was repeated, and then in lieu of
the ratio of 60 : 40, that of 65 : 35 resulted”
(page 89).

Here he mentions repetition of an experiment but
gives both results (note that he decided to repeat an
experiment with p-value = 0.157). However, later he
mentions several further experiments (pages 94, 95,
99, 100, 113) but presents results in only one case
(page 99) and in another suggests that the results were
not good (page 95):

“In addition, further experiments were made
with a smaller number of experimental
plants in which the remaining characters
by twos and threes were united as hybrids:
all yielded approximately the same results”
(page 94).

“An experiment with peduncles of differ-
ent lengths gave on the whole a fairly sat-
isfactory results, although the differentia-
tion and serial arrangement of the forms
could not be effected with that certainty
which is indispensable for correct experi-
ment” (page 95).

“In a further experiment the characters of
flower-color and length of stem were ex-
perimented upon. . . ” in this case results are
given, and then concludes “The theory ad-
duced is therefore satisfactorily confirmed
in this experiment also” (pages 99/100).

“For the characters of form of pod, color
of pod, and position of flowers, experiments
were also made on a small scale and results
obtained in perfect agreement” (page 100).

“Experiments which in this connection were
carried out with two species of Pisum . . .
The two experimental plants differed in 5
characters, . . . ” (page 113).

It is likely that the results omitted were worse and
that Mendel may have thought there would be no point
in showing them anymore (he gave examples of bad fit
to his theory before, page 86).

Our model may be seen as an approximation for
the omissions described by Mendel. In conclusion, an
unconscious bias may have been behind the whole
process of experimentation and if that is accepted, then
it explains the paradox and ends the controversy at last.

6. CONCLUSION

Gregor Mendel is considered by many a creative ge-
nius and incontestably the founder of genetics. How-
ever, as with many revolutionary ideas, his laws of
heredity (Mendel, 1866), a brilliant and impressive
achievement of the human mind, were not immediately
recognized, and stayed dormant for about 35 years,
until they were rediscovered in 1900. When Ronald
Fisher, famous statistician and geneticist, considered
the father of modern statistics, used a chi-square test
to examine meticulously the data that Mendel had pro-
vided in his classical paper to prove his theory, he con-
cluded that the data was too close to what Mendel was
expecting, suggesting that scientific misconduct had
been present in one way or another. This profound con-
flict raised a longstanding controversy that has been
engaging the scientific community for almost a cen-
tury. Since none of the proposed explanations of the
conflict is satisfactory, a large number of arguments,
ideas and opinions of various nature (biological, psy-
chological, philosophical, historical, statistical and oth-
ers) have been continually put forward just like a never
ending saga.

This study relies on the particular assumption that
the experimentation leading to the data analyzed by
Fisher was carried out under a specific unconscious
bias. The argument of unconscious bias has been con-
sidered a conceivable justification by various authors
who have committed themselves to study some varia-
tions of this line of reasoning (Root-Bernstein, 1983;
Bowler, 1989; Dobzhansky, 1967; Olby, 1984; Mei-
jer, 1983; Rosenthal, 1976; Thagard, 1988; Nissani
and Hoefler-Nissani, 1992). But all these attempts are
based on somehow subjective interpretations and throw
no definite light on the problem. On the contrary, in
this paper the type of unconscious bias is clearly iden-
tified and a well-defined statistical analysis based on a
proper statistical model is performed. The results show
that the model is a plausible statistical explanation for
the controversy.
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The study goes as follows: (i) Fisher results were
confirmed by repeating his analysis on the same real
set of data and on simulated data, (ii) inspired by Ed-
wards’ (1986a) approach, we next idealized a conve-
nient model of a sequence of binomial experiments and
recognized that the p-value produced by this model
shows a slight increase, although it keeps very close to
the result obtained by Fisher. This gave us confidence
to work with this advantageous structure, (iii) we fo-
cused on the analysis of the p-values of the previous
model and realized that the p-values do not have a uni-
form distribution as they should, (iv) the question arose
of what the distribution of the p-values could be, and
we arrived at the satisfactory model we propose in the
text, (v) finally, assuming that our model holds, and re-
peating the chi-square analysis adopted by Fisher, one
sees that the impressive effect detected by Fisher dis-
appears.

Returning to Fisher’s reaction to the paradoxical sit-
uation he encountered, one may think that, despite his
remarkable investigation (Fisher, 1936) of Mendel’s
work, to prove that something had gone wrong with
the selection of the experimental data, apparently nei-
ther did he question how could the data have been gen-
erated nor did he identify the defects of the sample or
give a statistical explanation for the awkward result. In
the end Fisher left an inescapable global impression of
scientific malpractice, a conclusion that he based on a
sound statistical analysis.

Probity is an essential component of the scientific
work that should always be contemplated to guaran-
tee credible final results and conclusions. That is why
all measures should be taken to make sure that nei-
ther conscious nor unconscious bias will affect the re-
sults of the research work. Unfortunately there exists
unconscious bias, an intrinsic automatic human drive
based on culture, social prejudice or motivation that is
difficult to stop. Hidden bias influences many aspects
of our decisions, our social behaviour and our work.
That is why scientific enterprises including honourable
doctors and well-intentioned patients do not dispense
the scientific techniques based on blind or double blind
procedures. In Mendel’s case we all know that there
was a profound motivation that could have triggered
the bias and in those days we guess that the atten-
tion given to unconscious bias may have been poor
or it may have not existed at all. Frequently science
ends up in detecting errors or fraud that have been in-
duced by bias. But there are no errors in Mendel’s laws,
or are there? So why are we worried? Anyway, we
wish that Mendel’s unconscious bias coincides with the

arrangement we are suggesting in this paper, because if
Mendel did what we think he did, the controversy is fi-
nally over.

APPENDIX A: THE 84 BINOMIAL EXPERIMENTS

Edwards (1986a) organized Mendel’s data as the re-
sult of 84 binomial experiments. Note that this in-
volves decomposition of the multinomial experiments.
In this study we have relied on Edwards’ decompo-
sitions. In order to remain as close as possible to
Fisher’s choices, the data from Table 1—already bi-
nomial experiments—were included exactly as shown,
unlike Edwards who subtracted the “plant illustrations”
from these data. According to this procedure, experi-
ment No. 1 (No. 2) is not independent of the “plant
illustrations” Nos 8–17 (Nos 18–27). But, attending to
the relative magnitude of the number of observations, if
we had used Edwards’ numbers, the final results would
have not been too different and the conclusions would
have been the same. We have also considered the theo-
retical ratio of 2 : 1 throughout the experiments involv-
ing (F3) generations, instead of the ratio 0.63 : 0.37
that Edwards used in some cases. The number of bino-
mial experiments per pair of true probabilities (ratio) is
as follows: 42 cases with 0.75 : 0.25 (3 : 1); 15 cases
with 0.5 : 0.5 (1 : 1); 27 cases with 2/3 : 1/3 (2 : 1).

Table 7 contains the following information about the
84 binomial experiments considered in this paper:

Trait: binary variable under consideration (the cate-
gory of interest is called a “success” and the other
category is a “failure”) using the following coding:
A (seed shape, round or wrinkled), B (seed color,
yellow or green), C (flower color, purple or white),
D (pod shape, inflated or constricted), E (pod color,
yellow or green), F (flower position, axial or ter-
minal), G (stem length, long or short). The usual
notation is used to distinguish phenotype (italic in-
side quotation marks) from genotype (italic), and the
dominant form (upper case) from the recessive (low-
ercase); see also Section 3 and Table 1.

n: number of observations (Bernoulli trials) of the ex-
periment.

Observed: observed frequencies of “successes” (n1)
and “failures” (n − n1). Under the standard assump-
tions n1 ∼ Bin(n,p), where p is the probability of a
“success” in one trial.

p0: theoretical probability of a “success” under
Mendel’s theory (H0 :p = p0).

χ : observed value of the test statistic to test H0 against
H1 :p �= p0, given by (n1 − np0)/

√
np0(1 − p0).
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TABLE 7
Data from the 84 binomial experiments

Type of
experiment

Observed

No. Trait n n1 n − n1 p0 χ p-value

Single trait 1 A 7324 5474 1850 3/4 −0.513 0.608
F2 2 B 8023 6022 2001 3/4 0.123 0.903

3 C 929 705 224 3/4 0.625 0.532
4 D 1181 882 299 3/4 −0.252 0.801
5 E 580 428 152 3/4 −0.671 0.502
6 F 858 651 207 3/4 0.591 0.554
7 G 1064 787 277 3/4 −0.779 0.436

Illustrations 8 A 57 45 12 3/4 0.688 0.491
of plant 9 A 35 27 8 3/4 0.293 0.770
variation 10 A 31 24 7 3/4 0.311 0.756
F2 11 A 29 19 10 3/4 −1.179 0.238

12 A 43 32 11 3/4 −0.088 0.930
13 A 32 26 6 3/4 0.817 0.414
14 A 112 88 24 3/4 0.873 0.383
15 A 32 22 10 3/4 −0.817 0.414
16 A 34 28 6 3/4 0.990 0.322
17 A 32 25 7 3/4 0.408 0.683
18 B 36 25 11 3/4 −0.770 0.441
19 B 39 32 7 3/4 1.017 0.309
20 B 19 14 5 3/4 −0.133 0.895
21 B 97 70 27 3/4 −0.645 0.519
22 B 37 24 13 3/4 −1.424 0.155
23 B 26 20 6 3/4 0.227 0.821
24 B 45 32 13 3/4 −0.603 0.547
25 B 53 44 9 3/4 1.348 0.178
26 B 64 50 14 3/4 0.577 0.564
27 B 62 44 18 3/4 −0.733 0.463

Bifactorial 28 A 556 423 133 3/4 0.588 0.557
experiment 29 B among “A” 423 315 108 3/4 −0.253 0.801
F2 30 B among “a” 133 101 32 3/4 0.250 0.802

Trifactorial 31 A 639 480 159 3/4 0.069 0.945
experiment 32 B among “A” 480 367 113 3/4 0.738 0.461
F2 33 B among “a” 159 122 37 3/4 0.504 0.615

34 C among AaBb 175 127 48 3/4 −0.742 0.458
35 C among AaBB 70 52 18 3/4 −0.138 0.890
36 C among AABb 78 60 18 3/4 0.392 0.695
37 C among AABB 44 30 14 3/4 −1.045 0.296
38 C among Aabb 76 60 16 3/4 0.795 0.427
39 C among AAbb 37 26 11 3/4 −0.664 0.506
40 C among aaBb 79 55 24 3/4 −1.104 0.269
41 C among aaBB 43 33 10 3/4 0.264 0.792
42 C among aabb 37 30 7 3/4 0.854 0.393

Single trait 43 A 565 372 193 2/3 −0.417 0.677
(F3) 44 B 519 353 166 2/3 0.652 0.515

45 C 100 64 36 2/3 −0.566 0.572
46 D 100 71 29 2/3 0.919 0.358
47 E 100 60 40 2/3 −1.414 0.157
48 F 100 67 33 2/3 0.071 0.944
49 G 100 72 28 2/3 1.131 0.258
50 E 100 65 35 2/3 −0.354 0.724
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TABLE 7
(Continued)

Type of
experiment

Observed

No. Trait n n1 n − n1 p0 χ p-value

Bifactorial 51 A among “AB” 301 198 103 2/3 −0.326 0.744
experiment 52 A among “Ab” 102 67 35 2/3 −0.210 0.834
(F3) 53 B among “aB” 96 68 28 2/3 0.866 0.386

54 B among Aa“B” 198 138 60 2/3 0.905 0.366
55 B among AA“B” 103 65 38 2/3 −0.766 0.443

Trifactorial 56 A among “AB” 367 245 122 2/3 0.037 0.971
experiment 57 A among “Ab” 113 76 37 2/3 0.133 0.894
(F3) 58 B among “aB” 122 79 43 2/3 −0.448 0.654

59 B among Aa“B” 245 175 70 2/3 1.581 0.114
60 B among AA“B” 122 78 44 2/3 −0.640 0.522
61 C among AaBb 127 78 49 2/3 −1.255 0.210
62 C among AaBB 52 38 14 2/3 0.981 0.327
63 C among AABb 60 45 15 2/3 1.369 0.171
64 C among AABB 30 22 8 2/3 0.775 0.439
65 C among Aabb 60 40 20 2/3 0.000 1.000
66 C among AAbb 26 17 9 2/3 −0.139 0.890
67 C among aaBb 55 36 19 2/3 −0.191 0.849
68 C among aaBB 33 25 8 2/3 1.108 0.268
69 C among aabb 30 20 10 2/3 0.000 1.000

Gametic 70 A 90 43 47 1/2 −0.422 0.673
ratios 71 B among AA 43 20 23 1/2 −0.458 0.647

72 B among Aa 47 25 22 1/2 0.438 0.662
73 A 110 57 53 1/2 0.381 0.703
74 B among Aa 57 31 26 1/2 0.662 0.508
75 B among aa 53 27 26 1/2 0.137 0.891
76 A 87 44 43 1/2 0.107 0.915
77 B among AA 44 25 19 1/2 0.905 0.366
78 B among Aa 43 22 21 1/2 0.153 0.879
79 A 98 49 49 1/2 0.000 1.000
80 B among Aa 49 24 25 1/2 −0.143 0.886
81 B among aa 49 22 27 1/2 −0.714 0.475
82 G 166 87 79 1/2 0.621 0.535
83 C among Gg 87 47 40 1/2 0.751 0.453
84 C among gg 79 38 41 1/2 −0.338 0.736

p-value: p-value of the test. Assuming n is large, p-
value = P(χ2

1 > χ2).

APPENDIX B: TECHNICAL DETAILS

B.1 Simulation of the Chi-Square Analysis

In each of the 1,000,000 repetitions a replicate of
Mendel’s complete data set was generated, using the
probabilities corresponding to the theoretical ratios,
and multinomial distributions with the appropriate
number of categories (which reduces to the binomial
distribution for the experiments with two categories
and is strictly multinomial for the remaining, bifactor-
ial, trifactorial and gametic ratios). For each replicate,

a total “chi-square” statistic was computed as Fisher
did for the actual data set. From the 1,000,000 repli-
cates of the test statistic it is possible to estimate the
p-value of the test without knowledge of the sampling
distribution of the test statistic. Recall that the MC es-
timate of a p-value (or simulated p-value) associated
to a certain observed statistic (which increases as the
data deviate from the null hypothesis) is the number of
repetitions for which the corresponding simulated sta-
tistic is larger than the observed statistic (χ2

obs), divided
by the number of repetitions. If we denote an MC es-
timate of a p-value by P , the corresponding estimated
standard error is se = √

P(1 − P)/B , where B is the
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TABLE 8
Illustration of the computations necessary to obtain the exact distribution of the p-values (n = 35,p = 0.75)

y 0 1 . . . 25 26 27 . . . 33 34 35
χ2(y) 105.00 97.15 . . . 0.24 0.0095 0.086 . . . 6.94 9.15 11.67
p-value 10−24 10−22 . . . 0.626 0.922 0.770 . . . 0.008 0.002 0.0006
P(y) 10−21 10−19 . . . 0.132 0.152 0.152 . . . 0.003 0.0005 10−5

number of random repetitions. These figures are also
reported in Table 6.

B.2 Analysis of the p-Values

The Kolmogorov–Smirnov (K–S) test is a goodness-
of-fit test based on the statistic D = supx |Fn(x) −
F0(x)|, where Fn(x) is the e.c.d.f. obtained from a
random sample (x1, . . . , xn) and F0(x) is a hypoth-
esized, completely specified, c.d.f. [D is simply the
largest vertical distance between the plots of Fn(x) and
F0(x)]. This test was selected for analyzing the c.d.f.
of the p-values because it is more powerful for de-
tecting deviations from a continuous distribution than
other alternatives such as the chi-square goodness-of-
fit test (Massey, 1951). Under the appropriate condi-
tions [F0(x) is continuous, there are no ties in the sam-
ple], the exact p-value of the K–S test can be com-
puted. In our analysis these conditions are not exactly
met (the true c.d.f. is not continuous and because of that
there are ties in the data), so it is necessary to proceed
with caution.

The first K–S test performed intended to test the uni-
formity of the 84 p-values and produced D = 0.1913
(P = 0.0036). The “exact” p-value was computed af-
ter eliminating the ties by addition of a small amount
of noise to each data point (random numbers generated
from a normal distribution with zero mean and stan-
dard deviation 10−7).

As there are several approximations involved, we
checked the whole procedure by performing a simu-
lation study similar to the one described in Section 4.1
for the chi-square analysis. In 1,000,000 random rep-
etitions of the sample of 84 p-values a simulated p-
value of 0.0038 (se = 0.00006) was obtained (the K–
S statistic was larger than 0.1903 in 3807 repetitions).

This is statistically significantly larger than 0.0036;
however, the difference is not meaningful from a prac-
tical point of view, the “exact” p-value is 3 digits ac-
curate. So we concluded that it is acceptable to use the
K–S test as described.

There is another aspect which needs to be analyzed.
Because the outcomes of the experiments are binomial,
yielding whole numbers, the actual distribution of the
p-values is discrete, not uniform continuous. There-
fore, we decided to investigate the differences between
the true distribution and the uniform continuous. The
exact distribution of the p-values obtained when the
84 chi-square tests are applied to the binomial obser-
vations was determined in the following way.

For a fixed experiment (with number of trials, n,
and probability, p) we can list the n + 1 possible
p-values along with the corresponding probabilities.
For instance, in one of the experiments the number
of seeds (trials) is n = 35 and the true probability
of a round seed is 0.75 (under Mendel’s theory, i.e.,
the null hypothesis). The possible values of round
seeds observed in a repetition of this experiment are
0, 1, 2, . . . , 33, 34, 35 (y), each producing a pos-
sible value of the chi-square statistic (χ2(y) = (y −
35 × 0.75)2/(0.75 × 0.25 × 35)) and a corresponding
p-value = P(χ2

1 > χ2(y)) with probability given by
P(y) = C35

y × 0.75y × 0.2535−y (see Table 8).
Ordering the p-values and summing up the probabil-

ities leads to the discrete c.d.f. defined by the points in
Table 9.

Proceeding similarly for all the 84 experiments and
combining the lists P(y) multiplied by 1/84 (i.e., the
contribution of each experiment to the overall distri-
bution), we obtain the global probability function of
the p-values, from which the final cumulative distribu-

TABLE 9
The exact distribution of the p-values, when n = 35 and p = 0.75

p-value 0.001 0.002 0.005 0.008 0.015 0.025 0.040 0.064 0.097
c.d.f. 0.002 0.003 0.007 0.010 0.019 0.029 0.050 0.077 0.117
p-value 0.143 0.205 0.283 0.380 0.495 0.626 0.770 0.922
c.d.f. 0.173 0.240 0.334 0.434 0.564 0.696 0.848 1.000
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FIG. 13. Equivalent to Figure 6 but showing the actual c.d.f. of
the p-values under binomial sampling (black stair steps line close
to the diagonal) and the c.d.f. of the maximum of two p-values
(lower black stair steps line).

tion is computed (overall there are 14,218 distinct pos-
sible p-values, but from those the smallest 12,110 were
not considered because their cumulative probability is
smaller than 0.001). The result is shown in Figure 13.
Although for some of the experiments, when consid-
ered individually, the c.d.f. of the p-values is quite dif-
ferent from that of the uniform (0,1) distribution (like
in the example above), when the 84 experiments are
taken together the resulting c.d.f. of the p-values is
very close to the straight line F(x) = x, which means
that we can safely approximate this distribution by a
continuous uniform distribution in (0,1) and trust the
results obtained with the K–S test (the approximation
is not so good near the upper right corner, but this area
is not relevant to this conclusion). The same remarks
apply when the exact distribution of the maximum of
two p-values is approximated by the curve y = x2 (see
also Figure 6).

B.3 Estimation of the Parameter of Model A

As explained in Section 5.1, we consider the esti-
mate of α defined as the value of α which maximizes
the p-value of the K–S test for testing the uniformity of
the experimental p-values, denoted by p(α). The solu-
tion can be found by grid search, varying α in a finite
set of equidistant points between 0 and 1. With a grid
width of 0.001, the value α̂ = 0.201 was obtained. It is
also possible (Easterling, 1976) to compute a 100×γ %
confidence interval for α by inversion of the K–S test.
This confidence interval is the set of points α ∈ (0,1)

such that p-value(α) ≥ 1 − γ (it may happen that this
confidence set is empty, which is an indication that the
model is not appropriate).

A simulation study was performed to validate this
procedure. 1000 samples of 84 p-values were gen-
erated from the 84 binomial experiments, but con-
sidering the repetition mechanism of model A with
α = 0.2. For each of those 1000 samples the point
estimate and the 90% confidence interval for α were
computed as described in the previous paragraph. The
results of the simulation confirmed that the whole
procedure is adequate and performs as expected: the
1000 point estimates are distributed almost symetri-
cally with mean = 0.2077 (se = 0.0032), median =
0.194 and standard deviation = 0.101. The confidence
set was empty in one case only. From the remaining
999 intervals (mean length = 0.3019, se = 0.0049; me-
dian length = 0.272), 895 contained the true value of
α = 0.2, which gives an estimated confidence level of
89.5%, in close agreement with the specified 90% con-
fidence.

APPENDIX C: THE CHI-SQUARE ANALYSIS
ASSUMING MODEL A

The aim of this note is to show in detail why model
A explains the chi-square analysis, and to derive theo-
retically the approximate distribution of the global chi-
square statistic which can be used to compute approxi-
mate p-values without the need to run simulations.

Fisher’s chi-square analysis is based on the follow-
ing simple reasoning: Let Xi , i = 1, . . . ,84, be the ran-
dom variable describing the results of the ith exper-
iment, that is, the number of observations among ni

which are classified into a category of interest (which
one of the two categories is the category of interest is
not relevant). Let pi be the probability of an observa-
tion of that category in a single trial and pi0 the value of
the same probability according to Mendel’s theory. The
standard model is Xi ∼ Bin(ni,pi). If, furthermore, it
is assumed, as Fisher did, that the Xi are independent
and H0i :pi = pi0 is true for all i = 1, . . . ,84, it fol-
lows that

X1, . . . ,X84
i.n.d.∼ Bin(ni,pi0)

⇒ χi = Xi − nipi0√
nipi0(1 − pi0)

i.i.d.∼ a N(0,1)

⇒ Qi = (Xi − nipi0)
2

nipi0(1 − pi0)

i.i.d.∼ a χ2
1

⇒ QT =
84∑
i=1

Qi ∼a χ2
84.
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We also have that E(QT ) = 84 and var(QT ) = 168
[E(Qi) = 1 and var(Qi) = 2], and p-value = P(QT >

QT observed) = P(QT > 41.3376) � 0.99998.
From Mendel’s paper we already know that he per-

formed other experiments than the 84 binomial exper-
iments we have been considering. Let us assume that
he has (or could have) done 2 × 84 = 168 binomial ex-
periments, such that for each of the reported 84 experi-
ments there is a repetition (either actual or conceptual)
and denote the repetition of Xi by Xi+84 and the cor-
responding chi-square statistics by Qi and Qi+84. If
for each pair (Xi,X84+i) the selection of the reported
experiment is random, then the observed statistics, de-
noted Q�

i , i = 1, . . . ,84, are still i.i.d. χ2
1 and Fisher’s

analysis remains valid. However, if the selection is not
random, and is done according to our model A, we still
have that (assuming, as Fisher did, that Xi are indepen-
dent and H0i : pi = pi0 is true for all i = 1, . . . ,168)

X1, . . . ,X168
i.n.d.∼ Bin(ni,pi0)

⇒ χ1, . . . , χ168
i.i.d.∼ a N(0,1)

⇒ Q1, . . . ,Q168
i.i.d.∼ a χ2

1 ,

but each of the observed statistics, Q�
i , i = 1, . . . ,84,

is no longer randomly chosen between Qi and Qi+84,
in fact, they are chosen by the following rule,

Q�
i =

{
Qi, if Qi ≤ cα ,
min(Qi,Qi+84), if Qi > cα ,

where cα is the 1 − α quantile of the χ2
1 distribution.

Therefore, the Q�
i are i.i.d. but do not follow the χ2

1
distribution, and, in consequence, Q�

T = ∑84
i=1 Q�

i also
does not follow the χ2

84 distribution.
The exact distribution of Q�

T appears to be very dif-
ficult to derive; however, by the Central Limit Theorem
(CLT), we can use a normal approximation,

Q�
T ∼a N(84μ�,84σ�2),

(C.1)
with μ� = E(Q�

i ) and σ�2 = var(Q�
i ).

Assuming that Qi ∼ χ2
1 , it is possible to compute the

mean and the variance of Q�
i , either directly or deter-

mining first the pdf of Q�
i , fQ� .

Given the reported value of the statistic, Q�
i accord-

ing to model A, and the p-value computed using the
chi-square distribution, given by P = 1 − FQi

(Q�
i ),

with distribution function given by (5.1), we have that

FQ�(x) = P(Q� ≤ x) = P
(
P ≥ 1 − FQi

(x)
)

= 1 − FP

(
1 − FQi

(x)
)
.

TABLE 10
Mean and variance of Q�

i and p-values obtained using the normal
approximation to Q∗

T and from the Monte Carlo simulation

p-value p-value
α cα μ∗ σ�2 (normal approx.) (simulation)

0.094 2.805 0.6636 0.5685 0.9814 0.9860
0.201 1.635 0.5160 0.3662 0.6412 0.6577
0.362 0.831 0.4164 0.3135 0.1076 0.1176

Taking derivatives on both sides yields

fQ�(x) = fQi
(x)

dFP (u)

du

∣∣∣∣
u=1−FQi

(x)

=
{

2fQi
(x)[1 − FQi

(x)], if x > cα ,
(1 + α)fQi

(x), if x ≤ cα ,

where fQi
(x) = e−x/2/

√
2πx, x > 0, and FQi

(x) =∫ x
0 fQi

(u) du.
Using symbolic computation, we obtained μ� =

1 − (2kα + (1 − α)
√

2cαkα), σ�2 = 2 − (4k2
α + (1 −

α)
√

2cαkα(4kα +1+cα)+2(2+cα(2−2α+α2))kα),
with kα = e−cα/π . Table 10 gives the values of μ� and
σ�2, as well as the p-values obtained using the normal
approximation (C.1), for the three values of α consid-
ered previously. The p-values obtained in the simula-
tion study (see Table 6) are also provided for compari-
son. The two columns of p-values are very similar. The
results presented in this appendix are thus an indepen-
dent validation of the simulation results, in case there
was any doubt about them.

APPENDIX D: MODEL A FOR AN
INCORRECT THEORY

Suppose that Mendel’s theory was not right but that
the same selection mechanism was applied (i.e., an
experiment was repeated whenever its p-value was
smaller than α, 0 ≤ α ≤ 1, and then only the experi-
ment with the largest p-value was reported). The dif-
ference between this case and that one considered in
Section 5.1 is that the original distribution of the p-
values is not uniform (0,1) but has a c.d.f. F0(x) �= x

for some 0 < x < 1. Then, proceeding as in the proof
of (5.1), we can conclude that the p-values effectively
reported have a c.d.f. given by

F ∗
α (x) =

⎧⎪⎪⎨
⎪⎪⎩

[F0(x)]2,

if 0 ≤ x ≤ α,

[1 + F0(α)]F0(x) − F0(α),

if α < x ≤ 1.
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FIG. 14. Plots of F ∗
α when F0 is given by (D.1) for α = 0,0.2,1, p0 = 0.5 and three combinations of (n,p1).

The selection procedure would make an incorrect the-
ory look correct if F ∗

α (x) is “close” to the c.d.f. of
a uniform (0,1) random variable. The result depends
on the starting point, F0(x), which in turn depends
on the particular test under analysis and on the true
and hypothesized parameters, as the following exam-
ple shows.

Suppose that the theory states that the success proba-
bility of a binomial random variable is p0 but that data
are actually observed from a binomial random variable
with success probability p1 which may be different
from p0. Assuming that n is large, the normal approx-
imation to the binomial leads to

F0(x) = 	

(−z − δ

η

)
+ 1 − 	

(
z − δ

η

)
,(D.1)

where 	(x) is the c.d.f. of a standard normal random
variable, z = 	−1(1 − x/2),

δ = n(p1 − p0)√
np0(1 − p0)

and η2 = p1(1 − p1)

p0(1 − p0)
.

Note that, when p0 = p1, F0(x) ≡ x, as it should.
Figure 14 shows the results for p0 = 1/2 and some

values of n, p1 and α. We conclude that in the first case
(n = 100, p1 = 0.45) it is easy to make the theory look
correct, but as n increases or p1 deviates from p0 that
becomes more difficult.

There is, of course, the possibility of further gener-
alizing model A by making more than 2 repetitions per
experiment, say, k. With this extra flexibility it is easy
to make any theory look correct.
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