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The quest to find models usefully characterizing data 
is a process central to the scientific method and has 
been carried out on many fronts. Researchers from 
an expanding number of fields have designed algo- 
rithms to discover rules or equations that capture key 
relationships between variables in a database. Some 
modern heuristic modeling approaches seem to have 
gained in popularity partly as a way to “avoid statis- 
tics” while still addressing challenging induction tasks. 
Yet, there are useful distinctives in what may be called 
a “statistical viewpoint”, and we review here some ma- 
jor advances in statistics from recent decades that are 
applicable to Knowledge Discovery in Databases.’ 

Recent Statistical Contributions 

It would be unfortunate if the KDD community dis- 
missed statistical methods on the basis of courses that 
they took on statistics several to many years ago. The 
following provides a rough chronology of “recent” sig- 
nificant contributions in statistics that are relevant to 
the KDD community. The noteworthy fact is that this 
time period coincides with the significant increases in 
computing horsepower and memory, powerful and ex- 
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bility to computing that has propelled us into the Infor- 
mation Age. In effect, this started a slow but deliberate 
shift in the statistical community, whereby important 
influences and enablers were to come from computing 
rather than mathematics. 

The 1960s 

This was the era of robust and resastanl statistical 
methods. Following ideas of G. E. P. Box and J. W. 
Tukey, Huber (1964) and Hampel (1974) formalized 
the notion that the usual estimators of location and 
regression coefficients were very sensitive to “outliers”, 

‘This paper is an excerpt from a chapter to appear 
in Advances zn Knowledge Dascovery and Data Mznzng 
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longer paper include a survey of classical and modern mod- 
elling and classification algorithms, and discussion of recent 
advances in statistical computing and graphics. 

‘II ^--^-- -^ --I __^^ I> -LL^.--:^- -.-_^^,.^-- L,- ,-..I, 
ltwera~e “s,llIt3 ) and “LIlW WISC ulIIaaa” llauly sil‘lall 

amounts of contamination. Key concepts are the 

influence function of Hampel (essentially the deriva- 
tive of an estimator with respect to the data), 

M-estimators of Huber, so-called because they gener- 
alize maximum likelihood estimators (which require 
a probabiiity distribution) to a closeiy reiated ciass 
of estimating equations, and 

diagnostics, where implicit downweighting of obser- 
vations afforded by robust estimators is replaced 
by empirical derivatives that quantify the effects 
of small changes in the data on important aspects 
of regression-like models (see for example, Belsley, 
Kuh, and Welsch, 1980). 
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portant as it unifies many seemingly unrelated con- 
cepts (e.g. trimmed means and medians) and more SO 

because it reflects the realism that data does not usu- 
ally obey assumptions as required by (mathematical) 
theorems. Thus the robustness era freed statisticians 
of the shackles of narrow models depending on unreal- 
istic assumptions (e.g. normality). 

The only downside of the era was that too much 
effort was piaced on deriving new estimators that de- 
viated only slightly from each other both qualitatively 
and quantitatively.2 What was needed instead, was 
the leadership and direction in using these methods 
in practice and dealing with the plethora of alterna- 
tives available. Partly because of this misguided effort, 
many of the techniques of the era never made it into 
commercial software and therefore never made it into 
the mainstream of methods used by nonstatisticians. 

The Early 1970s 

The term Exploratory Data Analysis (EDA) charac- 
terizes the notion that statistical insights and model- 
ing are driven by data. John Tukey (1977; Mosteller 
and Tukey, 1977) reinforced these notions in the early 

‘Basically reflecting R. A. Fisher’s insight (Statzstacal 

Methods for Researchers, 1924) that there is nothing easier 
than inventing a new statistical estimator. 
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70’s using a battery of ultra-simple methods, e.g., what 

could be done with pencil and paper. But the deeper 

message was to dispel the traditional dogma stating 

that one was not allowed to “look at the data prior to 

modeling” . On the one side the argument was that hy- 

potheses and the like must not be biased by choosing 

them on the basis of what the data seem to be indicat- 

ing. On the other side was the belief that pictures and 

numerical summaries of data are necessary in order to 

understand how rich a model the data can support. 

A key notion in this era characterized statistical 

modeling as decomposing the data into structure and 

noise, 

data = fit f residual (1) 

and then examining residuals to identify and move 

additional structure into the fit. The fitting process 

would then be repeated and followed by subsequent 

residual analyses. 

The iterative process described above has its roots 

in the general statistical paradigm of partitioning vari- 

ability into distinct parts (e.g., explained and unex- 

plained variation; or, in classification, within-group 

and between-group variation). The EDA notion sim- 

ply uses the observed scale of the response rather than 

the somewhat unnatural squared units of “variability” . 

While this might seem like a trivial distinction, the dif- 

ference is critical since it is only on the observed scale 

that diagnosis and treatment is possible. For example, 

a component of variance can indicate that nonlinearity 

is present but cannot prescribe how to accommodate 

it. 

Graphical methods (not to be confused with graphi- 

cal models in Bayes nets) enjoyed a renaissance during 

this period as statisticians (re-)discovered that noth- 

ing outperforms human visual capabilities in pattern 

recognition. Specifically, statistical tests and models 

focus on expected values, and in many cases, it is the 

unexpected that upsets or invalidates a model (e.g., 

outliers). Tukey argued that (good) graphical meth- 

ods should allow unexpected values to present them- 

selves - once highlighted, models can be expanded or 

changed to account for them. 

Another important contribution was to make data 

description respectable once more. Statistics has 

its roots in earlier times when descriptive statistics 

reigned and mathematical statistics was only a gleam 

in the eye. Data description is concerned with simplic- 

ity and accuracy, while not being overly formal about 

quantifying these terms (though an important area of 

research tries to do just that; e.g., Mallows (1973), 

Akaike (1973), and Rissanen (1978)). A key notion 

popularized in this era was that there is seldom a sin- 

gle right answer - in nearly all situations there are 

many answers. Effective data description highlights 

those that are simple, concise, and reasonably accu- 

rate. Simple transformations of a dataset are used to 

effect such descriptions, the two most common ones 

being data reezppression, e.g., using log(age) instead of 

age, and data splitting, e.g., setting aside outliers to 

simplify the description of the bulk of the data. 

The Late 1970s 

To an outsider much of the statistical literature would 

seem fragmented and disjoint. But the fact of the 

matter is that much is closely related, but that spe- 

cific details of individual contributions hide the real 

similarities. In the late 70’s, two review papers and 

one book elegantly captured the essence of numerous 

prior publications. The first of these, Generalized Lin- 

ear Models (Nelder and Wedderburn, 1974; McCullagh 

and Nelder, 1989) extended the classical linear model 

to a much wider class that included probability models 

other than the normal distribution and structural mod- 

els that were nonlinear. The theory accomplished this 

by decomposing the variation in a response variable 

into systematic and random components, allowing the 

former to capture covariate effects through a strictly 

monotone link function, g(p) = C xjfij, and allowing 

the latter to be a member of the exponential family of 

distributions, &(,~,o). In so doing, these models pro- 

vided a unifying theory for regression-like models for 

binary and count data, as well as continuous data from 

asymmetric distributions. The second major review 

paper is well known outside of statistics as the EM 
algorithm (Dempster, Laird, and Rubin, 1977). This 

paper neatly pulled together numerous ways of solv- 

ing estimation problems with incomplete data. But 

the beauty of their general treatment was to instill the 

concept that even if data are complete, it is often use- 

ful to treat it as a missing value problem for compu- 

tational purposes. Finally, the analysis of nominal or 

discrete data, specifically counts, had several discon- 

nected streams in the literature and inconsistent ways 

to describe relationships. Bishop, Fienberg, and Hol- 

land (1975) pulled this material together into the class 

of loglinear models. The associated theory allowed re- 

searchers to draw analogies to models for continuous 

data (for example, analysis of variance ideas) and fur- 

ther provided computational strategies for estimation 

and hypothesis testing. It is also noteworthy that this 

work anticipated current work in so-called graphical 

models, a subset of the class of loglinear models for 

nominal data. 

The Early 1980s 

Resampling methods had been around since the late 

1950s under the moniker jackknife, so-named by Tukey 

because it was a “trusty general purpose tool”  for elim- 

inating low-order bias from an estimator (Schreuder, 

1986). The essence of the procedure is to replace the 

original n observations by n or more (possibly) corre- 

lated estimates of the quantity of interest (called psue- 

dovalues). These are obtained by systematically leav- 

ing out one or more observations and recomputing the 

estimator. More precisely, if 0 is the parameter of in- 
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terest, the ith psuedovalue is defined by 

pt = T-d,11 - (n - k)fLi (2) 

where the last quantity is the estimator fi based on 
leaving out the ith subset (of size k). The jackknife es- 
timate of 0 is the arithmetic mean of the psuedovalues, 

P = CpJn. 

reduction tool, it was quickly recognized that the ordi- 
nary standard deviation of the psuedovalues provides 
an honest estimate of the error in the estimate. Thus 
an empirical means of deriving a measure of uncer- 
tainty for virtually ang, statistical estimator was avail- 
able. One interpretation of the procedure is that the 
construction of psuedovaiues is baaed on repeatedly 
and systematically sampling without replacement from 
the data at hand. This led Efron (1979) to generalize 
the concept to repeated sampling with replacement, the 
so-called bootstrap (since it allowed one to “pick oneself 
up by the bootstraps” in constructing a confidence in- 
terval or standard error). This seemingly trivial insight 
opened the veritable flood gates for comprehensive an- 
alytic study and understanding of resampling meth- 
ods. The focus on estimating precision of estimators 
rather than bias removal coupled with the advance of 
computing resources, allowed standard errors of highly 
nonlinear estimators to be routinely considered. 

Unfortunately, as with robustness, the bulk of the 
research effort was directed at theoretical study of re- 
sxmnlintr iclnn.s in w& I(DD researchers wolJ!d recv,rd ‘---r----b ----- --- o--- 

as uninteresting situations. The most nonlinear proce- 
dures, such as those resulting from combining model 
identification and model estimation, received only cur- 
sory effort (e.g. Efron and Gong, 1983; Faraway, 1991). 

The Late 1980s 

One might characterize classical statistical meth- 
ods as being “globally” linear whereby the explana- 
tory jprediction jciassification variabies affect the dis- 
tribution of the response variable via linear combina- 
tions. Thus the effect of x3 on y is summarized by 
a single regression coefficient &. Nonlinear relation- 
ships could only be modeled by specifically including 
the appropriate nonlinear terms in the model, e.g. x32 

or log x3. Cleveland (1979) helped seed the notion that 
globally linear procedures could be replaced with lo- 
cally linear ones by employing scatterplot smoothers 
in interesting ways. A scatterplot smoother s(x) is a 
data-dependent curve defined pointwise over the range 
of 2. For example, the moving average smoother is de- 
fined at each unique x, as the mean g(x) = Ctc 
of the k (symmetric) nearest neighbors of c. 
ordered sequence of these pointwise estimates traces 
out a “smooth” curve through the scatter of (2.~) \ I”, 
points. Originally smoothers were used simply to en- 
hance scatterplots where clutter or changing density of 
plotted points hindered visual interpretation of trends 

and nonlinear features. But by interpreting a scatter- 
plot smoother as an estimate of the conditional mean 
E(ylz), one obtains an adaptive, nonlinear estimate of 
the effect of I on the distribution of y. Moreover, this 
nonlinearity could be tamed while simultaneously re- 
ducing bias caused by end-effects, by enforcing “local” 
linearity in the smoothing procedure (as opposed to 
local constants as provided by moving averages or me- 
diansj. Thus by moving a window across the data and 
fitting linear regressions within the window, a globally 
nonlinear fit is obtained, i.e. the sequence of predic- 
tions at each point z%, s,(z) = ai + by, where the co- 
efficients a, and b, are determined by the least squares 
regression of y on z for all points in the window cen- 
tered on 2%. 

This notion has been applied now in many con- 
texts (e.g. regression, classification, discrimination) 
and across many “error” distributions (e.g. the gener- 
alized additive model of Hastie and Tibshirani, 1985). 
While this work reduced the emphasis on strict linear- 
ity of the explanatory variables in such models, it did 
not ameliorate the need for having previously identified 
the relevant variables to begin with. 

The Early 1990s 

Within the statistics community, Friedman and Tukey 
(1974) pioneered the notion of allowing a model to 
adapt even more nonlinearly by letting the data deter- 
mine the interesting structure present with ‘Lprojection 
pursuit” methods. These are less restrictive than re- 
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posing a model of the form 

(3) 
k=l j=1 

where both the regression coefficients /3jk and the 
squashing functions gk () are unknown. 

Important algorithmic developments and theory re- 
sulted from these models even though they failed to 
achieve widespread use within the statistics commu- 
nity. Part of the reason was that these models were 
regarded as too flexible in the sense that arbitrarily 
complex functions could be provably recovered (with 
big enough K). The community instead retreated back 
to additive models that had limited flexibility but af- 
forded much greater interpretability. Indeed, inter- 
pretability was the focus of much of the work in this era 
as alternative formulations of the locally linear model 
were derived, e.g., penalized likelihood and Bayesian 
formulations (O’Sullivan et al. 1986). 

Still, these ambitious methods helped to nudge 
the community from focusing an model estimation to 
model selection. For example, with tree-based mod- 
els (Breiman et al 1984) and multiple adaptive regres- 
sion splines (Friedman 1991), the modeling search is 
over structure space as well as parameter space. It is 
not uncommon now for many thousands of candidate 
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structures to be considered in a modeling run - which 
forces one to be even more conservative when judging 
whether improvements are significant, since any mea- 
sure of model quality optimized by a search is likely 
to be over-optimistic. When considering a plethora of 
candidates it usually becomes clear that a wide variety 
of models, with different structures and even inputs, 
score nearly as well as the single “best”. Current re- 
search in Bayesian model averaging and model blend- 
ing combines many models to obtain estimates with re- 
duced variance and (almost always) better accuracy on 
new data (e.g., Wolpert, 1992; Breiman, 1994b). Such 
techniques seem especially promising when the mod- 
els being merged are from completely different families 
(for example, trees, polynomials, kernels, and splines). 

Distinctives of Statistical Practice 

Researchers from different fields seem to emphasize dif- 
ferent qualities in the models they seek. As with work- 

ers in Machine Learning and KDD (but unlike most 
using, say, neural network and polynomial network 
techniques), Statisticians are usually interested in zn- 
terpretzng their models and may sacrifice some perfor- 
mance to be able to extract meaning from the model 
structure. If the accuracy is acceptable they reason 
that a model which can be decomposed into revealing 
parts is often more useful than a “black box” system, 
especially during early stages of the investigation and 
design cycle. 

Statisticians are also careful to propagate uncer- 
tainty (or randomness) in sampled data to estimated 
models, summarizing the induced randomness by so- 
called sampling distributions of estimators. By judi- 
cious assumptions, exact sampling distributions are 
analytically tractable; more typically asymptotic ar- 
guments are invoked. The net result is often the same, 
the estimated parameters are approximately normally 
distributed. This distribution characterizes the un- 
certainty in the estimated parameters, and owing to 
normality, the uncertainty is succinctly captured in 
the standard deviation of the sampling distribution, 
termed the standard error of the estimate. Parameters 
associated with estimates that are small in comparison 

to their standard errors, (e.g., t = p/.s.e.(& < 2) are 

not likely to be part of the “true” underlying process 

generating the data, and it is often prudent to drop 
such parameters from the model. 3 

3The Bayesian paradigm provides a different though re- 
lated perspective where one treats the parameter itself as a 
random variable and merges prior beliefs about the param- 
eter together with observed data. The resulting posterior 

distribution, p(8ldata), can often itself be approximated by 
a normal distribution, and thereby a single number sum- 
mary of parameter uncertainty is available. Of course, re- 
cent computational advances and ingenious algorithms (e.g. 
Markov chain monte carlo) obviate the need for analytically 
derived normal approximations. 

An important consideration that statisticians have 
faced concerns the case where inferences are desired 
but data is sparse. Consider an example from retail 
marketing. An SKU (stock keeping unit) is a unique la- 
bel assigned to a retail product, for example, men’s size 
12 blue socks. Predictions of SKUs are required at a 
store level in a large chain of department stores to build 
up sufficient inventory for promotions and seasonal de- 
mand or other “predictable” events. The problem is 
that detailed historical data on individual SKU sales 
at each and every store in the chain is not available; 
for example, it may be that no men’s size 12 blue socks 
sold in the Florida store since last November. The con- 
cept of borrowing strength allows one to build forecasts 
at the site-SKU level by exploiting hierarchies in the 
problem, possibly in more ways than one. By aggre- 
gating across stores, sufficient information is available 
to build a site-independent prediction for each SKU. 
This prediction can be used to add stability to predic- 
tions of SKUs in each of several regions, which can in 
turn be used to add stability at the site level. Simi- 
lar types of decompositions could allow us to borrow 
strength by looking at sales of, say, all blue socks in- 
dependent of size, then all socks, then men’s under- 
garments, then menswear overall. Such “hierarchical 
models” have their origins in empirical Bayes models, 
so-called because inferences are not truly Bayesian, as 
maximum likelihood estimates are used in place of “hy- 
perparameters” (the parameters in prior distributions) 
at the highest levels of the hierarchy where data is most 
numerous. This typically results in estimates of the 
form 6% = cwg, + (1 - cr)~ where fit is the estimate spe- 
cific to the zth level of the hierarchy and g to that of 
its parent (where data is more abundant). The mixing 
parameter, a, captures the similarity of the individual 
estimate to its parent relative to the tightness of the 
distribution of the &‘s. 

The tradeoff between model “underfit” (bias) and 
“overfit” (variance) is a standard one in statistics. If 
data are plentiful, model overfit can be avoided by 
reserving representative subsets of the data for test- 
ing as the model is constructed. When performance 
on the test set systematically worsens, model growth 
is curtailed. With limited data, all the cases can be 
employed for training but additional information is 

needed to regularize the fit. Some examples of regu- 
larization criteria include model complexity (e.g., num- 

ber of parameters), roughness (e.g., integrated squared 

slope of its response surface), and parameter shrinkage, 
(e.g., parameters are smoothly shrunken toward zero). 
The criterion to be minimized is a weighted sum of the 

training error and regularization criteria: criterion = 
model-accuracy +cux regularization-penalty. 

The scalar Q is most usually chosen using some 
form of cross-validation, e.g., bootstrap or leave-out- 

K methods. Most regularization procedures have a 
Bayesian interpretation whereby the user-defined prior 
guides the direction and degree of regularization. 

90 KDD-95 

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Finally, although some of the appeal of non- 
traditional models and methods undoubtedly stems 
from their apparent ability to bypass statistical anal- 
ysis stages many see as cumbersome, it is clear that 
matching the assumptions of a method with the char- 
acteristics of a problem is beneficial to its solution. Sta- 
tistical analysts usually take the useful step of checking 
those assumptions; chiefly, by examining: 

1. residuals (model errors) 

2. diagnostics (model sensitivity to perturbations) 

3. parameter covariances (redundancy) 

Not all violations of assumptions are equally bad. For 
example, assumptions about stochastic behavior of the 
data are typically less important than the structural 
behavior; the former might lead to inefficient esti- 
mates or inaccurate standard errors, but the later could 
result in biased estimates. Within these two broad 
classes, normality and independence assumptions are 
typically less important than homogeneity of variance 
(e.g., var(ylz) = constant for all z). A single outlier 
from the structural model can bias the fit everywhere 
else. Likewise, leverage values are those observations 
that have undue influence on the fit? for example if 
deleting the ith observation results in a large change 
in the estimate of a key parameter. An important dis- 
tinction is that leverage values need not correspond to 
large residuals - indeed by virtue of their “leverage”, 
they bias the fit toward themselves resulting in small or 
negligible residuals. Colinearzty among the predictor 
variables confuses the interpretation of the associated 
parameters, but can also be harmful to prediction; the 
new data must strictly abide by the interrelationships 
reflected in the training data or the model will be ex- 
trapolating beyond the confines of the training space, 
rather than interpolating within it. 

Reservations to Automatic Modeling 
The experienced statistician, perhaps the most capa- 
ble of guiding the development of automated tools for 
data analysis, may also be the most acutely aware of 
all the difficulties that can arise when dealing with real 
data. This hesitation has bred skepticism of what au- 
tomated procedures can offer and has contributed to 
the strong focus by the statistical community on model 
estimation to the neglect of the logical predecessor to 
this step, namely model identification. Another cul- 
prit underlying this benign neglect is the close his- 
torical connection between mathematics and statistics 
whereby statisticians tend to work on problems where 
theorems and other analytical solutions are attainable 
(e.g. sampling distributions and asymptotics). Such 
solutions are necessarily conditional on the underly- 
ing model being specified up to a small number of 
identifiable parameters that summarize the relation- 
ship of the predictor variables to the response variable 
through the first few moments of the conditional dis- 
tribution, f(ylz). For example the common regression 

model takes the form: 

j=l 

4Y Ix) = constant (5) 

The implicit parameter J is not part of the explicit 
formulation nor is the precise specification of which 
xj’s define the model for the mean parameter /.J, Tra- 
ditional statistics provides very useful information on 

the sampling distribution of the estimates bj for a fixed 
set of x3’s but no formalism for saying which x’s are 
needed. 

The relatively small effort by the statistical commu- 
nity in model identification has focused on marrying 
computing horsepower with human judgment (as op- 
posed to fully automated procedures). The general 
problem is deciding how large or complex a model the 
available data will support. By directly and explic- 
itly focusing on mean squared prediction error, statis- 
ticians have long understood the basic tradeoff between 
bias (too small a model) and variance (too large a 
model) in model selection. Algorithms (Furnival and 
w-7.. a^-^\ 
Wilson, lY’lt() and methods (Maiiows, iE3j have been 
used extensively in identifying candidate models sum- 
marized by model accuracy and model size. The pri- 
mary reason that human judgment is crucial in this 
process is that algorithmic optimality does not and 
cannot include qualitative distinctions between com- 
peting models of similar size - for example, if the ac- 
curacy/availability/cost of the variables differ. So it is 
largely human expertise that is used to select (or val- 
idate) a model, or a few models, from the potentially 
large pools of candidate models. 

The statistician’s tendency to avoid complete au- 
tomation out of respect for the challenges of the data, 
and the historical emphasis on models with inter- 
pretable structure, has led that community to focus on 
problems with a more manageable number of variables 
(a dozen, say) and cases (several hundred typically) 
than may be encountered in KDD problems, which can 
be orders of magnitude larger at the outset4 With in- 
creasingly huge and amorphous databases, it is clear 
that methods for automatically hunting down possible 
patterns worthy of fuller, interactive attention, are re- 
quired. The existence of such tools can free one up 
to, for instance, posit a wider range of candidate data 
features and basis functions (building blocks) than one 
would wish to deal with, if one were specifying a model 
structure “by hand”. 

This obvious need is gaining sympathy but precious 
little has resulted. The subsections below highlight 
some of the areas that further underlie the hesitation 
of automating model identification by statisticians. 

4Final models are often of similar complexity; it’s the 
magnitude of the initial candidate set of variables and cases 
that is usually larger in KDD. 
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Statistical versus practical significance 

A common approach to addressing the complexity and 
size of model space is to limit model growth in the 
model fitting/learning stage. This is almost always ac- 
complished using a statistical test of significance at 
each step in the incremental model building stage. 
Thus for example, one could use a standard x2 test 
of independence between two nominal variables as a 
means to limit growth of a model that searches for 
“significant” association. The main problem with this 
approach is that significance levels depend critically 
on n, the sample size, such that as n increases, even 
trivial differences attain statistical significance. Statis- 
ticians ameliorate this problem by introducing context 
to better qualify findings as “significant.” 

Simpson’s paradox 

A related problem with automated search procedures 
is that they can often be completely fooled by anoma- 
lous association patterns, even for small datasets. An 
accessible and easily understood example (Freedman, 
Pisani, and Purves, i978) concerns admission to grad- 
uate school at UC Berkeley in 1973. Across major 
departments, 30% of 1835 female applicants were ad- 
mitted while 44% of 2691 male applicants were admit- 
ted. Do these disparate fractions indicate sex bias? On 
the face yes, but if the applicants and admissions are 
broken down by department, then the fractions of the 
two sexes admitted shows a very different story, where 
one might even argue that “reverse” sex bias is present! 
The “paradox” here is that the choice of major is con- 
fozlnded with sex - namely that females tend to apply 
to mainrs that are harder to get into while males apply 1_ ----.d--L d--... .~~ 

to “easy” majors. 
The implication of this paradox is that KDD tools 

which attack large databases looking for ‘(interest- 
ing” associations between pairs of variables must also 
contain methods to search for potential confounders. 
Computationally, this changes the problem from an n2 
to an n3 operation (or higher if one considers more 
confounders). The computational burden can only be 
avoided by providing knowledge about potential con- 
founders to the discovery algorithm. While this is in 
principle possible, it is unlikely to be sufficient since 
common sense knowiedge often suggests what con- 
founders might be operating. Statisticians have long 
brought these common sense insights to the problem 
rather than delegate them to automata. 

Select ion bias 

Automated knowledge discovery systems are applied 
to databases with the expectation of translating data 
into information. The bad news is that often the avail- 
able data is not representative of the population of 
interest and the worse news is that the data itself con- 

--^,.^-I. tains no hint that there is a p0ieiiiid “vias p~laaau6. 

Namely, it’s more an issue of what is not in a data 

set rather than what information it contains. For ex- 
ample 5, suppose that the White House Press Sec- 
retary is using a KDD (e.g. information retrieval) 
tool to browse through email messages to PRESI- 
DENT@WHITEHOUSE.GOV for those that concern 
health care reform. Suppose that she finds a 1O:l ratio 
of pro-reform to anti-reform messages, leading her to 
assert that “Americans favor reform by a 1O:l ratio” 
followed by the worrisome rejoinder “and Government 
can fix it.” But it may well be that people dissatisfied 
with the health care system are more like& to “sound 
off” about their views than those who are satisfied. 
Thus even if the true distribution of views on health 
care reform has mean “score” of zero, self-selected sam- 
ples that are heavily biased toward s one of the tails of 
this distribution will give a very misleading estimate 
of the true situation. It is not realistic to expect auto- 
mated tools to identify such instances. It is probably 
even less realistic to expect users (e.g. lawyers) of such 
systems to critically question such interesting “facts.” 

Quantifying Visual Capabilities 

Today’s data analyst is very dependent on interactive 
analysis where numerical and graphical summaries are 
computed or displayed “on the fly”. Successful in- 
stances of data mining by statisticians are often sprin- 
kled with cries of “aha” whereby some subject mat- 
ter (context) information, or unexpected behavior in 
a plot, is discovered in the course of the interaction 
with the data. This discovery can change the intended 
course of subsequent analysis steps in quite unpre- 
dictable ways. Assuming that it is a very hard prob- 
lem to include common sense and context information 
in automated modeling systems, this leaves automated 
interpretation of plots as a promising area to explore. 
There are two problems that have served as a barrier 
to statisticians in this regard: 

1. it is hard to quantify a procedure to capture the 
unexpected in plots. 

2. even if this could be accomplished, one would need 
to describe how this maps into the next analysis step 
in the automated procedure. 

TXTL..L :- ----,-. --,A,2 :, Al.,. ,+n+:n+:m:nno _..-,,..., :- 9 “Y llab IS aulaly Ilccut;u 111 Cllt: 3bcbblrlLILla113 cLllU”lJ ID CL 
way to represent meta-knowledge about the problem at 
hand and about the procedures commonly used. This 
suggests an opportunity where the KDD and statisti- 
cal communities can complement their skills and work 
together to provide an acceptable and powerful solu- 
tion. 

5A less modern but more realistic situation occurred 
in US politics when three major polls overwhelmingly pro- 
jected Dewey over Truman in the 1948 presidential election 
-too bad for Dewey (the Republican) that there was a dis- 
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service. 
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Summary 

Numerous powerful analytic techniques, applicable to 
problems of Knowledge Discovery in Databases, have 
emerged from the field of statistics in recent decades 
- especially as the influence of computing has grown 
over that of mathematics. “Thinking in statistical 
terms” -n- LA .A.,, +- CL, I..^ I:L.. -+ --J-l- Z-J.---J clau UC YIbcl.1 b” bllt: qum,lJy “I 111uue1s 111uuceu 
from data. In particular, the tendency of the sta- 
tistical community to propagate uncertainty in their 
models through sampling distributions, their familiar- 
ity with the need to regularize models (trade off accu- 
racy and complexity), and their perseverance in check- 
ing model assumptions and stability (through resid- 
ual and graphical analyses) are strengths. KDD re- 
searchers can learn from these perspectives in order to 
improve the performance and stability of their tech- 
niques Similarly, KDD, machine learning, and neural 
network techniques have gained in popularity partly as 
a way of “avoiding statistics”. Statisticians can learn 
from this the need to do a better job of communicat- 
ing their methods, as well as clarifying and streamlin- 
ing ways of injecting meta-data information into the 
modeling process. 
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