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A Statistical–Physical Model of Interference in

Diffusion-Based Molecular Nanonetworks
Massimiliano Pierobon, Member, IEEE, and Ian F. Akyildiz, Fellow, IEEE

Abstract—Molecular nanonetworks stand at the intersection
of nanotechnology, biotechnology, and network engineering. The
research on molecular nanonetworks proposes the interconnection
of nanomachines through molecule exchange. Amongst different
solutions for the transport of molecules between nanomachines,
the most general is based on free diffusion. The objective of this
paper is to provide a statistical–physical modeling of the inter-
ference when multiple transmitting nanomachines emit molecules
simultaneously. This modeling stems from the same assumptions
used in interference study for radio communications, namely, a
spatial Poisson distribution of transmitters having independent
and identically distributed emissions, while the specific molecule
emissions model is in agreement with a chemical description of
the transmitters. As a result of the property of the received
molecular signal of being a stationary Gaussian Process (GP),
the statistical–physical modeling is operated on its Power Spectral
Density (PSD), for which it is possible to obtain an analytical ex-
pression of the log-characteristic function. This expression leads to
the estimation of the received PSD probability distribution, which
provides a complete model of the interference in diffusion-based
molecular nanonetworks. Numerical results in terms of received
PSD probability distribution and probability of interference are
presented to compare the proposed statistical–physical model with
the outcomes of simulations.

Index Terms—Co-channel interference, diffusion equation,
molecular communication (MC), nanonetworks, statistical–
physical interference model.

I. INTRODUCTION

MOLECULAR nanonetworks are one of the new frontiers

in communication engineering and networking. Pro-

posed for the interconnection of intelligent autonomous nano-

devices, or nanomachines, they are based on a bio-inspired

paradigm called Molecular Communication (MC) [1]. MC

realizes information transmission between devices through the

exchange of molecules, which are emitted by a transmitting

device, propagated through different techniques and received

by the destination device. This new paradigm, inspired by the
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natural communications in biology, is expected to be especially

attractive due to its inherent biocompatibility. Envisioned appli-

cations [2] of molecular nanonetworks range from the biomed-

ical field, in intra-body diagnosis and intelligent drug delivery,

to the industrial fields, as a support to the monitoring and

control of goods production and waste disposal, and security/

safety applications, such as for biological and chemical attack

detection.

Several MC techniques have been proposed so far, which

differentiate themselves for the way in which molecules are

propagated from the transmitter to the destination device. These

techniques involve either passive molecule transport (diffusion-

based architectures [3]) or active molecule transport (molecular

motors [4], bacteria chemotaxis [5]). We consider the diffusion-

based architectures as the most general alternative, since they

do not rely on an ad-hoc infrastructure for molecule propaga-

tion, but they are based on the spontaneous Brownian motion.

We believe that by studying the diffusion-based MC we can

provide solutions that can then be easily tailored and expanded

to be applied to other more specific MC techniques.

Molecular nanonetworks architectures based on diffusion-

based MC have been a subject of study in the latest years and

contributions from the literature propose diverse solutions on

the way to encode information in the diffusing molecules. In [6]

the information is encoded in the time of arrival of molecules

at the receiver, in contrast to [7] where each molecule carries

a piece of information according to its molecular composition.

Other contributions [8]–[14] agree on the higher potential of

encoding the information in the variations of the concentration

of molecules in the space, which is also confirmed by our

studies [15] on the information capacity of this architecture.

In this paper, we focus on the study of the interference

in diffusion-based molecular nanonetworks by taking into ac-

count the information encoding on the molecule concentration.

Previous literature has addressed the problem of diffusion-

based MC interference in the same architecture. In [16] the

effects of intersymbol and co-channel interference are analyzed

in reference to two specific modulation techniques proposed

by the same authors. In [17] the intersymbol interference is

characterized in a unicast MC system with binary amplitude

modulation. In [18], interference is studied for another specific

modulation technique, based on the transmission order of dif-

ferent types of molecules. Our contribution in [19] characterizes

the intersymbol and co-channel interference by modeling the

attenuation and dispersion of Gaussian pulses. The interference

analysis provided in this paper completes our work on the

end-to-end physical and noise modeling of diffusion-based MC

published in [12]–[14], respectively, by providing closed-form
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mathematical expressions to evaluate the impact of interference

in an MC system.

The objective of this paper is to provide a statistical–physical

modeling of the interference in the diffusion-based molecular

nanonetworks when multiple transmitting nanomachines emit

molecules simultaneously. Since our goal is to consider a worst

case scenario for the analysis of interference, we do not con-

sider coordination among transmitting nanomachines, whose

emissions at any time instant are random and modeled through

a stochastic process. In diffusion-based molecular nanonet-

works, interference can be considered either as a disturbance

in the reception of one or more molecular signals, or as an

effect that can be exploited to enhance the communication

of information from many/all transmitting nanomachines. As

an example, nanomachines could send the same molecular

signal upon sensing an over-threshold value in the environment.

The interference of these signals at the receiver could then

convey information regarding not only the presence of an over-

threshold value, but also the number of transmitters that are

detecting this value. The results presented in this paper will

support the end-to-end design of these systems by providing a

mathematical framework to quantify the impact of interference

in diffusion-based MC as function of physical parameters. Our

method to characterize interference differentiates from the pre-

vious literature on molecular nanonetworks, since we develop

a general model independent from specific modulation and

coding techniques. In particular, this modeling stems from the

same general assumptions used in interference study for radio

communication networks, namely, a spatial Poisson distribution

of interfering transmitters having independent and identically

distributed (i.i.d.) emissions. Moreover, the specific probability

distribution used for the molecule emissions is in agreement

with a chemical description of the transmitters in terms of

Langevin equation [20], which models the randomness in the

chemical reactions involved in the production of the molecules.

The statistical–physical modeling detailed in this paper

is based on the property of the received molecular signal

of being a stationary Gaussian Process (GP), which results

from the molecule emission distribution and the diffusion-

based molecule propagation. As a consequence, the statistical–

physical modeling is operated on the received Power Spectral

Density (PSD), for which it is possible to obtain an analytical

expression of the log-characteristic function. The expression of

the received PSD log-characteristic function ultimately leads

to the estimation of the received PSD probability distribution.

The received PSD probability distribution provides a complete

description of the GP of the received molecular signal, which

corresponds to the interference in diffusion-based molecular

nanonetworks. By using the derived statistical–physical inter-

ference model, we also provide numerical results in terms

of received PSD probability distribution and probability of

interference for selected values of the physical parameters of

the molecular nanonetwork, such as the diffusion coefficient,

the transmitter density and the average power of molecule emis-

sions, and we compare them with the outcomes of a simulation

environment.

The remainder of the paper is organized as follows. In

Section II we list the main reference models, assumptions, and

Fig. 1. Reference diffusion-based molecular nanonetwork considered for the
interference modeling.

definitions used in this paper for the statistical–physical model-

ing of the interference in molecular nanonetworks. The main

goals of the statistical–physical modeling of the interference

are introduced in Section III, together with the probabilistic

description of the received signal and a description of the

steps for the statistical–physical modeling of the received PSD.

In Section IV, we analytically compute the log-characteristic

function of the received PSD and numerically derive its PDF.

Numerical results are provided in Section V for the simulation-

based evaluation and the probability of interference. Finally, in

Section VI, we conclude the paper.

II. INTERFERENCE IN MOLECULAR NANONETWORKS

In this section, we describe the main reference mod-

els, assumptions, and definitions used in this paper for the

statistical–physical modeling of the interference in molecular

nanonetworks.

A. Reference Molecular Nanonetwork

In the following, we detail the main elements of the reference

molecular nanonetwork considered in this paper. As sketched in

Fig. 1, these elements are the molecular transmitters, responsi-

ble for the emission of molecular signals, the diffusion-based

propagation, which broadcasts the molecular signals in the

space by means of free molecule diffusion, and the molecular

receiver, which senses the incoming molecular signals.

A Molecular Transmitter, identified by a number k and

located at x̄k, is responsible for the emission of molecules in

the space according to a molecular signal sk(t) as function of

the time t. In general, the molecular signal sk(t) can assume any

value as function of the time t, provided that the concentration

of molecules in the space is always kept at a positive value, as

explained in the following. We assume that all the transmitters

emit molecules of the same species n within an equal definite

volume VT , whose size is negligible with respect to the distance
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between each transmitter and the receiver.1 Upon this emission

of molecules, identified with the time derivative dXn(t)/dt in

the number Xn of molecules of species n inside the volume

VT at the transmitter k, each molecular transmitter k causes a

change in the molecule concentration c(x̄, t) at its location x̄k,

which is expressed through the following relation:

∂c(x̄, t)

∂t
=

1

VT

dXn(t)

dt
δ(x̄− x̄k) = sk(t)δ(x̄− x̄k) (1)

where ∂c(x̄, t)/∂t is the time derivative in the molecule con-

centration at the location x̄ and time t, and δ(.) is the Dirac

delta. Moreover, we assume that a transmitter is able to produce

molecules, thus resulting in a positive time first derivative

dXn(t)/dt > 0 and a positive transmitted signal sk(t) > 0,

or to subtract molecules, thus resulting in a negative time

first derivative dXn(t)/dt < 0 and in a negative transmitted

signal sk(t) < 0. These processes are identified in Section II-B

with chemical reactions, where the molecules composing the

molecular signal can appear as either products or reactants. The

former case corresponds to the production of these molecules

at the transmitter location, while the latter case corresponds to

the alteration of these molecules into a form that cannot be

recognized by the molecular receiver, and it is equivalent to

subtracting these molecules from the space at the transmitter

location.

The Diffusion Propagation broadcasts the emitted molecu-

lar signal sk(t) from each transmitter location x̄k to any other

location x̄ in the space. In this paper, we rely on the assumption

to have a 3-d space, which contains a fluidic medium and

has infinite extent in all the three dimensions. Moreover, the

molecules of species n are all identical and undistinguishable,

and they move independently from each other according to the

Brownian motion. We define the total molecule concentration

in the space as cbase + c(x̄, t), where cbase is a component of

the molecule concentration that is positive, homogeneous in

the space, and constant in time, while c(x̄, t) is the varying

component of the molecule concentration as a function of the

space x̄ and time t. We assume that the component cbase
has a value sufficient to keep the total molecule concentration

positive throughout the space even when c(x̄, t) < 0 due to

transmitters subtracting molecules from the space, sk(t) < 0.

Consequently, the value of cbase is chosen according to the

molecular signals sk(t) that we intend to transmit. The diffusion

propagation is based on the following Diffusion Equation [23],

[24] in the variable c(x̄, t):

∂c(x̄, t)

∂t
= D∇2c(x̄, t) (2)

1As an example, we consider the size of a molecular transmitter or receiver
within the same order of magnitude of the size of the components used in nature
by cells to realize information molecule exchange via chemical reactions (bio-
logical circuits) [21], whose mathematical model is presented in Section II-B.
These components can be identified with DNA strands (whose average size
ranges from a fraction to tens of nm), which contain the necessary information
to encode enzymes to produce cellular signaling molecules or chemical recep-
tors for signaling molecule concentration detection [21], RNA polymerases
(sized around 15 nm), which realize the DNA transcription process, and
ribosomes (with average size of tens of nm), which realize the DNA translation
process [22]. Overall, we can consider the minimum size of the transmitter
volume VT as being in the order of tens of nm.

where ∂(.)/∂t and ∇2(.) are the time first derivative and the

Laplacian operator (sum of the 3-d spatial second derivatives),

respectively. D is the diffusion coefficient and it quantifies

the total flux of molecules, equal to a molecule concentration

moving with a definite velocity in the three spatial coordinates,

generated by diffusion in response to a gradient of the molecule

concentration in the space, equal to the first derivative of

the molecule concentration with respect to the three spatial

coordinates. The diffusion coefficient D is considered a scalar

(the molecule flux in response to a concentration gradient is

equal in all three spatial coordinates), constant in time, and

homogeneous in the space within the scope of this paper, and

this is in agreement with the assumption of having independent

Brownian motion for every molecule in the space [23], [24]. As

a consequence of this assumption, the diffusion coefficient D
depends on the absolute temperature of the system T , assumed

constant and homogeneous, the molecule shape and size, and

the fluid viscosity η, which quantifies the resistance of the

fluid to the molecule motion. If molecules are approximated by

spherical particles with radius ρp, then the diffusion coefficient

D has the following expression:

D =
kBT

6πηρp
(3)

where kB is the Boltzmann’s constant. Typical values of the dif-

fusion coefficient D at room temperature for common elements

(e.g., oxygen) in air are around 0.2 [cm2 sec−1], while in water

are around 10−5 [cm2 sec−1] [24]. The diffusion of molecules

in a biological environment, characterized by a higher viscosity

with respect to water, has a value around 10−6 [cm2 sec−1]
(cellular cytoplasm, [25]).

The Molecular Receiver senses the total incoming molec-

ular concentration cbase + c(x̄R, t) at its location x̄R and re-

covers the received signal Y (t) from the varying component

c(x̄R, t). This is expressed by the following relation:

Y (t) = c(x̄R, t). (4)

As a consequence, when no transmitter is emitting molecular

signals (creating or subtracting molecules), the total molecule

concentration is constant and equal to cbase, and the received

signal Y (t) is equal to zero. The molecular receiver is consid-

ered in this paper as an ideal molecular concentration detector

located at x̄R. This assumption is in agreement with the goal of

this work of analyzing the interference of multiple transmitted

signals at a location in the space, and it is an approximation of

a real molecular receiver whose size is negligible with respect

to the distance to each considered molecular transmitter.

B. Assumptions on Interferers

For our interference study, we consider multiple molecular

transmitters (interferers), each one emitting a molecular signal

from a different location. We apply the following assumptions:

• The molecular transmitters are assumed to be infinite in

number and distributed in the 3-d space according to a
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spatial homogeneous Poisson process2 whose rate is equal

to the transmitter density λ, which corresponds to the

average number of transmitters per unit volume. For this,

the probability to find a number K of transmitters in a

region V of the space is expressed as follows:

P (K transmitters in V ) =
[λV ]Ke−λV

K!
. (5)

• The molecular transmitters emit independent and iden-

tically distributed (i.i.d.) molecular signals sk(t). Each

sk(t) is a white Gaussian signal [28], whose values at each

time instant t have zero mean and variance equal to σ2,

expressed as

sk(t) ∼ N (0, σ2) ∀t. (6)

The expression in (6) models the variability of the trans-

mitter emissions according to the variance parameter σ2.

As demonstrated in Appendix A, the parameter σ2 cor-

responds to the average power, or variance, of the rate

of produced molecules per unit time from the chemical

reactions occurring inside the receiver volumes when at

equilibrium. Consequently, σ2 quantifies the variability of

the signals emitted by different molecular transmitters.

C. Definition of Interference

We define as interference the received signal Y (t) expressed

as the propagation function fd(.) of the multiple transmitted

molecular signals sk, where k = 0, . . . ,∞, as follows:

Y (t) = fd

( ∞
∑

k=0

sk(t)δ(x̄− x̄k)

)

(7)

where δ(.) is the Dirac delta, fd(.) is the diffusion propaga-

tion function that transforms the sum of transmitted molecular

signals sk into the incoming molecular concentration c(x̄R, t)
at the receiver location x̄R through the diffusion (2) and,

according to (4), into the received signal Y (t).
Due to the linearity of (2) [23], [24], given multiple molec-

ular signals transmitted simultaneously from multiple transmit-

ters, the resulting varying component c(x̄, t) of the molecule

concentration is the sum of the varying components of the

molecule concentration resulting from the emission of each

molecular transmitter, computed as if each transmitter were

emitting alone (additive channel). As a consequence, we can

express the received signal Y (t) as the sum of the propagation

functions applied separately to each transmitted molecular sig-

nal, which results into

Y (t) =

∞
∑

k=0

fd (sk(t)δ(x̄− x̄k)) (8)

2The use of a spatial Poisson process to model the molecular transmitter
distribution is in agreement with the stochastic modeling in biology of the
spatial distribution of cells or cell groups, which exchange information through
molecular communication. As an example, bacteria in a plate or bacteria
colonies in a 3-d medium, such as cheese [26], are proven to have a distribution
that fits a Poisson process [27].

where the propagation function fd(.) is computed as the so-

lution of the diffusion equation (2) when a single transmitter

is emitting a molecular signal sk(t). For this, we consider the

following expression:

∂c(x̄, t)

∂t
= D∇2c(x̄, t) + sk(t)δ(x̄− x̄k). (9)

The solution of (9) in terms of c(x̄, t) corresponds to the

following propagation function fd(.):

fd (sk(t)δ(x̄− x̄k)) = c(x̄, t)

= gd(rk, t) ∗ sk(t)

=

∞
∫

0

gd(rk, τ)sk(τ − t)dτ (10)

where (. ∗ .) is the convolution operator [29], and gd(rk, t) is

the Green’s function of the diffusion equation [30], equal to

gd(rk, t) =
e−

rk
2

4Dt

(4πDt)3/2
(11)

where rk is the Euclidian distance between the transmitter k
location and the receiver location, rk = |x̄k − x̄R|, and D is the

diffusion coefficient. As a result, we can express the received

signal Y (t) as

Y (t) =
∞
∑

k=0

gd(rk, t) ∗ sk(t) (12)

where gd(rk, t) is expressed in (11), (. ∗ .) is the convolution

operator [29], and sk(t) is the molecular signal transmitted

from each transmitter k, whose distribution is given by (6).

III. STATISTICAL–PHYSICAL INTERFERENCE MODELING

The goal of the statistical–physical interference modeling is

to find a probabilistic description of the received signalY (t)
expressed in (12), as function of the transmitter densityλ,

the diffusion coefficientD, and the average powerσ2 of the

molecular signals emitted by the transmitters.

In standard statistical–physical modeling of the interference

for radio communication networks [31], since the propagation

function corresponds to a multiplication of each transmitted

signal (uncorrelated random process with zero mean value) by

the radio propagation amplitude loss, independent with respect

to the time variable, the received signal Y (t) is an uncorrelated

stochastic process with zero mean value. As a consequence, the

received signal Y (t) can be probabilistically described with the

Probability Density Function (PDF) PY (y) of a time sample,

for which analytical expressions are usually provided in terms

of log-characteristic functions [32].

A. Probabilistic Description of the Received Signal

In the context of diffusion-based molecular nanonetworks,

as a consequence of the expression of the propagation function

in (11) as function of the time variable t, the received signal
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Y (t) is in general a correlated stochastic process, which cannot

be described by the PDF PY (y) of a single time sample. A

probabilistic description of the received signal Y (t) can be

provided upon the following considerations:

• Consider a realization of the spatial homogeneous Poisson

process of the transmitter locations, expressed in (5),

which results into a set of values R = {rk}k=1,2,...,∞ for

the distances rk between each transmitter k = 1, 2 . . . ,∞
and the receiver.

• Given the previous consideration, each term of the sum in

(12) is a convolution of a deterministic function gd(rk, t)
of the time t with a zero-mean Gaussian white random

signal sk(t) with zero mean and variance equal to σ2.

The result of this convolution is a zero-mean stationary

Gaussian process yk|rk with autocorrelation function

Ryk|rk(t) equal to σ2 multiplied by the correlation of

gd(rk, t) with itself [28]. This is expressed as follows:

Ryk |rk(t) = σ2

∞
∫

0

gd(rk, τ)gd(rk, τ + t)dτ. (13)

• The autocorrelation of the sum of two uncorrelated ran-

dom processes is a random process whose autocorrelations

is the sum of their autocorrelations [28].

As a consequence of the aforementioned considerations, the

received signal Y |R, given a realization of the transmitter

locations R, is a zero-mean stationary Gaussian Process

(GP), probabilistically described as follows:

Y |R ∼ GP
(

0,RY |R(t)
)

(14)

whose autocorrelation function RY |R(t) is equal to the sum

for each transmitter k = 1, 2, . . . ,∞ of the autocorrelation

function Ryk |rk(t) in (13), expressed as

RY |R(t) =
∞
∑

k=0

Ryk |rk(t). (15)

Since Y |R is a continuous time stationary random process,

according to the Wiener-Khintchine theorem [28] it can be

equivalently described in terms of Power Spectral Density

(PSD), which corresponds to the Fourier transform [29] of the

autocorrelation function RY |R(t). Given the expressions in (15)

and (13), the PSD SY |R(ω) results in the following:

SY |R(ω) = σ2
∞
∑

k=0

|Gd(rk, ω)|2 (16)

where |.|2 denotes the squared absolute value operator, and

Gd(rk, ω) is the Fourier transform [29] of gd(rk, t) in (11),

whose expression is

Gd(rk, ω) =
e−(1+j)

√
ω
2D rk

πDrk
(17)

where rk is the Euclidian distance between the transmitter k
and the receiver, and D is the diffusion coefficient.

B. Statistical–Physical Modeling of the Received Power

Spectral Density

The received PSD SY (ω) is defined as the distribution of the

power of the received signal Y over each frequency ω. Given

the presence of multiple transmitters, and the probabilistic

assumptions described in Section II-B, the received PSD SY (ω)
is a measure of the power of the interference which affects

the communication system in each received frequency ω. As

a consequence, we aim at the statistical–physical modeling of

the received PSD SY (ω) through the expression of its PDF

PSY (ω)(s) as a function f(.) of the PSD value s, the frequency

ω, λ, D, and σ2. This is expressed as follows:

PSY (ω)(s) = f(s, ω, λ,D, σ2). (18)

As detailed in the following, the PDF PSY (ω)(s) of the PSD

SY (ω) is computed from the PSD SY |R(ω) in (16) by taking

into account the spatial homogeneous Poisson process of the

transmitter locations in (5).

The PDF PSY (ω)(s), as happens in standard

statistical–physical modeling for the PDF PY (y) of the

interference for radio communication networks [31], does

not have a closed-form mathematical expression. As a

consequence, we aim at the expression of the log-characteristic

function ψSY (ω)(Ω) of the received PSD SY (ω), which is

defined as the natural logarithm of the characteristic function

φSY (ω)(Ω), as

ψSY (ω)(Ω) = ln
[

φSY (ω)(Ω)
]

. (19)

The characteristic function φSY (ω)(Ω) of the received PSD

SY (ω) is defined as the expected value of the function ejΩs

of the PSD value s

φSY (ω)(Ω) = ESY (ω)

[

ejΩs
]

=

∫

PSY (ω)(s)e
jΩsds. (20)

The PDF PSY (ω)(s) of the PSD SY (ω) is computed through

the Fourier transform [29] of the exponential with the log-

characteristic function ψSY (ω)(Ω) as argument. This is ex-

pressed as follows:

PSY (ω)(s) =

∫

eψSY (ω)(Ω)e−jΩydΩ. (21)

As mentioned above, the formula in (21) does not in general

result in a closed-form expression, and it is computed through

numerical methods.

In the following, we derive the log-characteristic function

ψSY (ω)(Ω), which admits an analytical expression as a func-

tion Ψ(.) of λ, D, σ2, the PSD frequency variable ω, and

the characteristic function frequency variable Ω, expressed as

follows:

ψSY (ω)(Ω) = Ψ(λ,D, σ2, ω,Ω). (22)
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IV. LOG-CHARACTERISTIC FUNCTION AND PDF OF THE

RECEIVED POWER SPECTRAL DENSITY

In this section, we analytically derive the log-characteristic

function ψSY (ω)(Ω) of the received PSD SY (ω). Through the

derivation detailed in Section IV-A, we obtain the following

analytical expression:

ψSY (ω)(Ω) = j
16
√
2λσ2Ω

3π
√
D3ω

∞
∫

0

(x+ 1)e−2xe−j e−2x

x2
σ2ωΩ

2π2D3 dx

(23)

where λ is the transmitter density (number of transmitters per

unit volume), D is the diffusion coefficient, σ2 is the average

power of the molecular signals emitted by the transmitters,

ω is the PSD frequency variable, and Ω is the frequency

variable of the characteristic function. Subsequently, we derive

the PDF PSY (ω)(s) of the received PSD SY (ω) by numerically

computing the expression in (21).

A. Derivation of the Log-Characteristic Function ψSY (ω)(Ω)

In the following, we derive the log-characteristic function

ψSY (ω)(Ω) of the received PSD SY (ω) in diffusion-based

molecular nanonetworks. By applying the rule of the iterated

expectations [28], we can perform the expectation in (20) with

respect to the transmitter locations R = {rk}k=1,2,...,∞, where

rk are the random distances between each transmitter k =
1, 2, . . . ,∞ and the receiver, and substitute the PSD value s
with the PSD SY |R(ω) of the received signal given a realization

of the transmitter locations. As a consequence, we obtain the

following expression:

φSY (ω)(Ω) = ER

[

ejΩSY |R(ω)
]

(24)

where the PSD SY |R(ω) is computed through (16) and (17).

Since the transmitter locations are resulting from a spatial

homogeneous Poisson process, as described in Section II-B, the

distances rk are i.i.d. random variables, and the distribution in

the number k of molecular transmitters in a space region V is

given by (5). As a consequence, for an infinite space region,

represented by a sphere centered at the receiver with infinite

radius, namely, V = limρ→∞(4/3)πρ3, we derive the following

expression from (16) applied to (24):

φSY (ω)(Ω) = lim
ρ→∞

∞
∑

k=0

(

Erk

[

ejΩσ2|Gd(rk,ω)|2
])k

·
[

λ (4/3)πρ3
]k

e−λ(4/3)πρ3

k!
(25)

where the summation from (16) is substituted with the power

k operator (.)k, and the average operator ER[.] is written in

terms of summation in k of the average operator Erk [.] of the

k-th transmitter distance, weighted by the probability density

from (5).

By applying the following Taylor series expansion [33] sub-

stitution to (25):

∞
∑

k=0

xk

k!
= ex (26)

and by applying the definition of log-characteristic function

ψSY (ω)(Ω) from (19), we obtain the following expression:

ψSY (ω)(Ω)= lim
ρ→∞

4

3
πρ3λ

(

Erk

[

ejΩσ2|Gd(rk,ω)|2
]

−1
)

. (27)

Since the transmitters are distributed according to a Poisson

process (5), the distribution of the distance between the trans-

mitter and the receiver, given a space region V = (4/3)πρ3, has

the following expression:

Prk(r) =
3r2

ρ3
, 0 ≤ r ≤ ρ. (28)

If we express in (27) the average operator Erk [.] of the distance

rk between the transmitter and the receiver by using the distri-

bution of this distance in (28), we obtain the following:

ψSY (ω)(Ω) = lim
ρ→∞

4

3
πρ3λ

⎛

⎝

ρ
∫

0

ejΩσ2|Gd(r,ω)|2 3r
2

ρ3
dr − 1

⎞

⎠ .

(29)

By using the formula of the integration by parts [33] for the

integral in (29), we obtain the following expression:

ψSY (ω)(Ω)= lim
ρ→∞

4

3
πρ3λ

⎛

⎝e
jΩσ2 e

−2
√

ω
2D

ρ

(πDρ)2 +− 4jΩσ2

ρ3(πD)2

×
ρ

∫

0

(
√

ω

2D
r+1

)

· e−2
√

ω
2D re

jΩσ2 e
−2
√

ω
2D

r

(πDr)2 dr−1

⎞

⎠ . (30)

We note the following result:

lim
ρ→∞

ρ3

⎛

⎝e
jΩσ2 e

−2
√

ω
2D

ρ

(πDρ)2 − 1

⎞

⎠ = 0 (31)

which is demonstrated by considering the following inequality:

e−2
√

ω
2D ρ

(πDρ)2
<

1

ρ
, for ρ → ∞ (32)

and by repeatedly applying L’Hôpital’s rule [33] to the follow-

ing limit:

lim
ρ→∞

ρ3(e1/ρ − 1) = 0. (33)

By applying (31) to (30), we obtain the following expression:

ψSY (ω)(Ω) = j
16

3

λσ2Ω

πD2

∞
∫

0

(
√

ω

2D
r + 1

)

· e−2
√

ω
2D re

jΩσ2 e
−2
√

ω
2D

r

(πDr)2
r3

R3
dr. (34)
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Fig. 2. PDF PSY (ω)(s) of the received PSD SY (ω). Different curves refer
to different values of the frequency ω.

By operating in the integral of (34) the following variable

substitution:

x =

√

ω

2D
r (35)

we obtain the final expression of the log-characteristic function

ψSY (ω)(Ω) of the received PSD SY (ω), which is as follows:

ψSY (ω)(Ω) = j
16
√
2λσ2Ω

3π
√
D3ω

∞
∫

0

(x+ 1)e−2xe−j e−2x

x2
σ2ωΩ

2π2D3 dx.

(36)

B. Derivation of the PDF PSY (ω)(s)

In this section, we derive the PDF PSY (ω)(s) of the re-

ceived PSD SY (ω). In general, the log-characteristic function

expressed in (36) does not have an expression which can be

recognized as from a known probability distribution. For this,

we numerically compute the formula in (21) by using the

MATLAB fft function applied to the values of the expression

in (36). We also numerically compute the infinite integral in

(36) by using the MATLAB numerical integration.

The numerical results in terms of PDF PSY (ω)(s) of the

received PSD SY (ω) are shown in Figs. 2 and 3. The values

of the PDF PSY (ω)(s) are computed for a transmitter density

λ equal to 109 [transmitters m−3], an average power σ2 of

the molecular signals equal to 106 [molecules2 m−6 sec−3],
and for values of the PSD value s ranging from 0 to 5 ·
104 [molecules3 m−6 sec Hz−1]. The diffusion coefficient D ∼
10−6 [cm2 sec−1] is set to the diffusion coefficient of molecules

diffusing in a biological environment (cellular cytoplasm, [25]).

Different curves in Fig. 2 refer to different values of the

frequency ω, from 0.09 Hz to 1.89 Hz, while Fig. 3 shows

the PDF PSY (ω)(s) values for a range of frequencies ω from

0 to 2 Hz. This frequency range covers the frequencies of most

of the biochemical oscillation mechanisms described in [34],

Fig. 3. PDF PSY (ω)(s) of the received PSD SY (ω) for a range of frequen-
cies ω from 0 to 2 Hz.

including the slower oscillations in neurons that generate the

delta waves [35].

As apparent from Figs. 2 and 3, the curves of the PDF

PSY (ω)(s) as function of the PSD value s tend to horizontal

lines for low values of the frequency ω, while they tend to

concentrate the higher values around s = 0 as the frequency

ω increases. This is an expected behavior since, according to

the absolute value of the expression of the Fourier transform of

the propagation function Gd(rk, ω) in (17), which is a negative

exponential function of the square root of the frequency ω,

lower frequencies are subject to lower attenuation than higher

frequencies in the diffusion propagation. As a consequence,

for lower frequencies the received PSD tends to have a shape

similar to the PSD of the white transmitted signals sk(t) in (6),

equally distributed among all the possible PSD values s with

a probability value around 0.01. On the contrary, since higher

frequencies are more attenuated, for a high ω lower values

of the received PSD are more probable, which is more likely

distributed around s = 0, with the highest value around 0.16

for ω close to 2 Hz.

V. NUMERICAL RESULTS

In this section, we provide a simulation environment to

evaluate the statistical–physical interference model presented in

this paper (Section V-A). In addition, we study the probability

of interference, defined as the probability for a single molecular

signal sent by a transmitter to suffer interference at the receiver,

by using both the statistical–physical interference model and

the simulation environment (Section V-B).

A. Simulation-Based Evaluation

The simulation environment is based on the following addi-

tional assumptions:

• The space where the transmitters are distributed is con-

fined within a sphere with radius ρ around the receiver

location. This is motivated by the need to have in the
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simulation environment a finite number of transmitters,

which is equal to K = ⌊λ(4/3)πρ3⌋, where ⌊.⌋ denotes

the rounding to the nearest lower integer.

• The transmitted signal sk(n/fs) from each transmitter is

discrete, sampled with a frequency fs, and composed by

Ns samples.

• The simulation is repeated for a number of iterations Iter,

where each iteration is based on i) a different realization of

the spatial Poisson process with density λ of the molecular

transmitter distribution expressed in (5), ii) a different

realization of the Gaussian process in (6) with variance

equal to σ2 for each transmitter k and for each sample

sk(n/fs).

The PDF PSY (ω)(s) of the received PSD SY (ω), where ω =
qfs/Ns, and q = 1, . . . , Ns, is computed though the following

expression:

PSY (ω)(s)|ω=qfs/Ns
=

1

Iter

Iter
∑

l=1

1SYl
(qfs/Ns)=s (37)

where 1SYi
(qfs/Ns)=s is non-zero and equal to 1 only when

the PSD SYl
(qfs/Ns) from the l-th iteration is equal to the

value s at frequency qfs/Ns, and fs and Ns are the sampling

frequency and the number of samples for the transmitted molec-

ular signals, respectively. The PSD SYl
(qfs/Ns) results from

the following formula:

SYl
(qfs/Ns) =

(

K
∑

k=1

Sk (qfs/Ns)Gd(rk, qfs/Ns)

)2

(38)

where Sk(qfs/Ns) is the discrete Fourier transform of

sk(n/fs), computed through the MATLAB fft function, and

Gd(rk, qfs/Ns) is the Fourier transform of the propagation

function in (17) computed at the frequency value qfs/Ns.

In Fig. 4 we show the values of PSY (ω)(s) computed for

the same parameters as for the results in Fig. 3, namely,

a transmitter density λ equal to 109 [transmitters m−3],
an average power σ2 of the molecular signals equal to

106 [molecules2 m−6 sec−3] a diffusion coefficient D ∼
10−6 [cm2 sec−1], and for PSD values s ranging from 0 to

5 · 104 [molecules3 m−6 sec Hz−1]. Moreover, the simulation

is run with the following parameters: a spherical space radius

ρ = 19 µm, a sampling frequency fs = 100 Hz, a number of

samples Ns = 104, and a number of iterations Iter = 50. The

curves in Fig. 4 have been also post-processed through the use

of a moving average filter [36] along the dimension of the PSD

value s to reduce the noise given by the limited dataset.

The simulation-based results in terms of PSY (ω)(s) in Fig. 4

show a high degree of similarity with the values computed

through the statistical–physical model in Fig. 3. Also in the

simulation-based results, the curves of PSY (ω)(s) as function

of the PSD value s tend to horizontal lines for low values of

the frequency ω = qfs/Ns, while they tend to concentrate the

higher values around s = 0 as the frequency ω increases. While

for high frequencies ω around 2 Hz the simulation-based PDF

has a value around s = 0 of 0.16, very close to the results of

the statistical–physical model, for lower frequencies the values

of the model-based PDF are overall lower than the values from

Fig. 4. Simulation-based PDF PSY (ω)(s) of the received PSD SY (ω) for a
range of frequencies ω from 0 to 2 Hz.

the statistical–physical model. We believe that these differences

between the values in Fig. 3 and Fig. 4 are due to the limited

number of transmitters and the sampling of the molecular

signals sk considered for the simulation environment.

B. Probability of Interference

We define here the probability of interference PInterf (ω) as

the probability of having at the receiver a contribution from

the interference whose PSD at frequency ω exceeds the PSD

of a contribution coming from a single transmitter. This single

transmitter is placed at a distance rTx from the receiver, and it

transmits a signal sTx(t) with power equal to σ2
tx, expressed as

sTx(t) = σtx
sin [t(ωb − ωa)]

t
ejωat. (39)

The PSD of the signal sTx(t) is then constant over the fre-

quency range defined by ωa and ωb, and it is expressed as

follows:

STx(ω) = σ2
txrect

(

ω − ωa

ωb − ωa

)

(40)

where rect(.) is the rectangular function, and σ2
tx is the constant

PSD value. The contribution SRx(ω) to the PSD of the received

signal coming from the transmitted signal sTx(t) is given as

SRx(ω) = STx(ω) |Gd(rTx, ω)|2 (41)

where Gd(rTx, ω) is the Fourier transform [29] of the Green’s

function of the diffusion equation expressed in (17). The prob-

ability of interference PInterf (ω) is expressed as follows:

PInterf (ω) =

∞
∫

SRx(ω)

PSY (ω)(s) ds (42)

where SRx(ω) is the PSD of the signal sTx(t) emitted by the

single transmitter, given in (40), and PSY (ω)(s) is the PSD
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Fig. 5. Probability of interference according to the statistical–physical model.

Fig. 6. Probability of interference according to the simulation environment.

of the received PSD SY (ω) computed above with either the

statistical–physical model, given by (36), or the simulation

environment, given by the numerical results of (37).

In Figs. 5 and 6 we show the probability of interference

PInterf (ω) according to the statistical–physical model and the

simulation environment, respectively, for a range of frequencies

ω from ωa = 0 Hz to ωb = 2 Hz and for a distance rTx between

the single transmitter and the receiver ranging from 1 µm to

2 µm. The values in Fig. 5 are derived from the expres-

sion in (42) by using the PDF PSY (ω)(ω) computed in

Section IV-B, while for Fig. 6 we applied the values of the

PDF PSY (qfs/Ns)(s) computed through the simulation detailed

in Section V-A. The constant PSD of the signal sTx(t) is here

set to two orders of magnitude higher than the average power

of the molecular signals emitted by the interfering transmitters,

namely, σ2
tx = 102σ2.

In both Figs. 5 and 6 we observe an almost zero probability of

interference PInterf (ω) for low values of the frequency ω and

low values for the transmitter distance rTx from the receiver.

As the frequency ω and the distance rTx increase, also the

probability of interference PInterf (ω) increases from zero to a

maximum value. In both Figs. 5 and 6, values of the probability

of interference higher than zero occur only for a frequency ω
higher than 0.59 Hz and a distance rTx higher than 1.1 µm.

In Fig. 5 the maximum value of the probability of interference

PInterf (ω) is 0.98 and it occurs for the range frequencies ω
between 0.67 Hz and 0.89 Hz and for a distance rTx higher than

1.4 µm. The maximum value of the probability of interference

PInterf (ω) in Fig. 6 is around 0.82 and it occurs for a frequency

ω around 0.73 Hz and a distance rTx higher than 1.9 µm.

The overall lower values of the simulation-based probability

of interference PInterf (ω) in Fig. 6 compared to the values

in Fig. 5 from the statistical–physical model are likely due to

the limited number of interfering transmitters and iterations

of the transmitter distribution realizations considered in the

simulation environment, as explained in Section V-A, while

the statistical–physical model considers an infinite number of

transmitters and it is based on their distribution PDF.

Different behaviors of the probability of interference

PInterf (ω) for high frequencies ω and high distances rTx are

shown in Figs. 5 and 6. In the former, the PInterf (ω) reaches a

plateau, corresponding to the aforementioned maximum value

of 0.98, and then decreases as the frequency value increases

from 0.89 Hz to 2 Hz, where it has a PDF value of 0.83. In

the latter, after a maximum value at 0.82, and as the frequency

increases from 0.73 Hz to 2 Hz, the PInterf (ω) oscillates

between 0.74 and 0.72. Again, this oscillatory behavior is likely

due to the limited data used in the simulation environment to

compute the PDF PSY (ω)(s), where we considered a limited

number of interferers, within a spherical space of radius ρ =
19 µm, and a limited number of iterations for the realization of

their location distribution.

VI. CONCLUSION

In this paper, we have provided a statistical–physical

modeling of the interference in diffusion-based molecular

nanonetworks when multiple transmitting nanomachines emit

molecules simultaneously. Our method to characterize the in-

terference differentiates from the previous literature since we

developed a general model independent from specific modula-

tion and coding techniques. As a result of the property of the re-

ceived molecular signal of being a stationary Gaussian Process

(GP), the statistical–physical modeling has been operated on its

Power Spectral Density (PSD), for which it was possible to ob-

tain an analytical expression of the log-characteristic function.

This log-characteristic function expression ultimately led to the

estimation of the received PSD probability distribution, which

provides a complete model of the interference in diffusion-

based molecular nanonetworks.

The numerical derivation of the PDF from the log-

characteristic function expression of the received PSD was

performed for selected values of the physical parameters of

the molecular nanonetwork, such as the diffusion coefficient,

the transmitter density, and the average power of molecule

emissions. As apparent from the PDF of the received PSD,

for low frequencies the power of the received signal tends to a

uniform distribution over the range of considered values, while

for higher frequencies the power tends with more probability to

lower values.
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We evaluated the similarities of the results from the

statistical–physical model with the outcomes from simulations,

first in terms of received PSD, and then in terms of probability

of interference. For the latter comparison, we computed the

probability of having at the receiver a contribution from the

interference whose PSD exceeds the PSD of a contribution

coming from a single transmitter. In both cases, the probabil-

ity of interference has very low values for frequencies lower

than 0.59 Hz and a distance range lower than 1.1 µm, while

it assumes very high values otherwise. We believe that the

statistical–physical model of the interference presented in this

paper will be of great help to design the future diffusion-based

molecular nanonetworks.

APPENDIX A

CHEMICAL JUSTIFICATION OF THE WHITE GAUSSIAN

MODEL FOR THE MOLECULAR SIGNALS

The white Gaussian model for the molecular signals sk(t)
expressed in (6) is in agreement with a chemical description of

the molecule emission at the molecular transmitters. Without

loss of generality, we assume that the total molecule concen-

tration cbase + c(x̄k, t) at each transmitter k is a function of

M different chemical reactions involving N different chemical

species (molecule types) within the transmitter definite volume

VT . According to the chemical Langevin equation approxima-

tion [20], the time derivative dXn(t)/dt from (1) in the number

Xn of species-n molecules, and function of the time t, is given

by the following expression:

dXn(t)

dt
=

M
∑

m=1

νmnam (X(t)) +

M
∑

m=1

νmn

√

am (X(t))Γm(t)

(43)

where X(t) = [X1(t), X2(t), . . . , XN (t)]′ is a vector that con-

tains the number of molecules of each reacting species, νmn

corresponds to the change in the number of molecules of the

chemical species n produced by the chemical reaction m,

am(X(t)), which is called propensity function, is the prob-

ability that the chemical reaction m will occur within the

transmitter volume as function of the vector X(t), and Γm(t)
are i.i.d. white Gaussian signals. Under the assumption to have

the chemical reactions at equilibrium within every transmitter

volume, which is expressed as
∑M

m=1 νmnam(X(t)) = 0, and

given (43), the molecular signal sk(t) in (1) is equal to a sum

of i.i.d. white Gaussian signals as follows:

sk(t) =
1

VT

M
∑

m=1

νmn

√

am (X(t))Γm(t). (44)

As a consequence of the property of a linear combination of

i.i.d. Gaussian random variables [28], sk(t), as expressed in

(6), is a white Gaussian signal with zero mean and variance σ2

equal to

σ2 =
1

V 2
T

M
∑

m=1

ν2mnam (X(t)) (45)

where X(t) is the vector that contains the number of molecules

of each reacting species, νmn corresponds to the change in the

number of molecules of the chemical species n produced by the

chemical reaction m, and the propensity function am(X(t)) is

the probability that the chemical reaction m will occur within

the transmitter volume as function of the vector X(t).
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