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A statistical semantics for causation 
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We propose a model-theoretic definition of causation, and show that, contrary to common 

folklore, genuine causal influences can be distinguished from spurious covariations follow- 

ing standard norms of inductive reasoning. We also establish a sound characterization of 

the conditions under which such a distinction is possible. Finally, we provide a proof-theo- 

retical procedure for inductive causation and show that, for a large class of data and 

structures, effective algorithms exist that uncover the direction of causal influences as 

defined above. 
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1. T h e  mode l  

We view the task of  causal modeling as an identification 

game which scientists play against nature. Nature  pos- 

sesses stable causal mechanisms which, on a microscopic 

level, are deterministic functional relationships between 

variables, some of  which are unobservable.  These mecha- 

nisms are organized in the form of  an acyclic schema 

which the scientist at tempts to identify. 

Definition 1. A causal model over a set o f  variables U is a 

directed acyclic graph ( D A G )  D, the nodes of  which 

denote variables, and the links denote direct binary causal 

influences. 

The causal model  serves as a blueprint for forming a 

'causal t h e o r y ' - - a  precise specification o f  how each vari- 

able is influenced by its parents in the D A G .  Here we 

assume that  nature is at liberty to impose arbitrary func- 

tional relationships between each effect and its causes and 

~This formulation employs several idealizations of the actual task of 
scientific discovery. It assumes, for example, that the scientist obtains the 
distribution directIy, rather than events sampled from the distribution. 
This assumption is justified when a large sample is available, sufficient to 
reveal all the dependencies embedded in the distribution. Additionally, 
we assume that the observed variables actually appear in the original 
causal theory and are not some aggregate thereof. Aggregation might 
result in feedback loops, which we do not discuss in this paper. Our 
theory also takes variables as the primitive entities in the language, not 
events which pernfits us to include 'enabling' and 'preventing' relation- 
ships as part of the mechanism. 
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then to weaken these relationships by introducing arbi- 

trary (yet mutual ly  independent) disturbances. These dis- 

turbances reflect 'h idden '  or  unmeasurable condit ions and 

exceptions which nature chooses to govern by some undis- 

closed probabil i ty function. 

Definition 2. A causal theory is a pair T = (D,  |  ) con- 

taining a causal model  D and a set o f  parameters  | 

compatible with D. |  assigns a funct ion xi =f[pa(xi) ,  

ei] and a probabil i ty measure g~, to each xi e U, where 

pa(x~) are the parents o f  xi in D and each e~ is a r a n d o m  

disturbance distributed according to gi, independently o f  

the other E s and of  {x j} j - l .  

The requirement of  independence renders the disturbances 

' local '  to each family; disturbances that  influence several 

families simultaneously will be treated explicitly as ' latent '  

variables (see Definition 3 below). 

Once a causal theory T is formed, it defines a joint  

probabil i ty distribution P(T) over the variables in the 

system, and this distribution reflects some features o f  the 

causal model  (e.g., each variable must  be independent  o f  

its grandparents ,  given the values o f  its parents). Na ture  

then permits the scientist to inspect a select subset O o f  

'observed '  variables, and to ask questions about  the prob- 

ability distribution over the observables, but  hides the 

underlying causal theory as well as the structure o f  the 

causal model.  We investigate the feasibility o f  recovering 

the topology of  the D A G  f rom features o f  the probabil i ty 

distribution. 1 
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2. Model preferences (Occam's razor) 

In principle, with no restriction on the type of models 

considered, the scientist is unable to make any meaningful 

assertions about  the structure of  the underlying model. 

For  example, he/she can never rule out the possibility that 

the underlying model is a complete (acyclic) graph; a 

structure that, with the right choice of  parameters can 

mimic (see Definition 4 below) the behavior of  any other 

model, regardless of  the variable ordering. However, fol- 

lowing the standard method of scientific induction, it is 

reasonable to rule out any model for which we find a 

simpler, less expressive model, equally consistent with the 

data (see Definition 6 below). Models that survive this 

selection are called minimal models and, with this notion, 

we construct our definition of inductive causation: 'A 

variable X is said to have a direct causal influence on a 

variable Y if a unidirected edge exists in all minimal 

models consistent with the data' .  

Definition 3. A latent structure is a pair L = (D, O )  con- 

taining a causal model D over U and a set Oc__U of 

observable variables. 

Definition 4. L = (D,  O )  is preferred to L '  = ( D ' ,  O) ,  

written L ~ < L  ', if and only if D '  can mimic D over O, i.e. 

for every OD there exists a Oh, such that 

PtoI( (D' ,  O'D.)) = Pto~((D, OD)) .  Two latent structures 

are equivalent, written L '  = L, if and only if L ~ L '  and 

L ~ _ L ' .  

Definition 5. A latent structure L is minimal with respect 

to a class 5e of  latent structures if and only if for every 

L '  ~ • ,  L = L '  whenever L ' - < L .  

Definition 6. L = (D,  O )  is cons&tent with a sampled 

distribution/3 over O if D can accommodate  some theory 

that generates /3, i.e. there exists a | such that 

Ptol( (D,  O| 5) =/3. 

Definition 7 (Induced Causation). Given /3, a variable C 

has a direct causal influence on E if and only if a path from 

C to E exists in every minimal latent structure consistent 

with/3. 

We view this definition as normative, because it is based 

on one of the least disputed norms of scientific investiga- 

tion: Occam's razor in its semantical casting. However, as 

with any scientific inquiry, we make no claims that this 

definition is guaranteed always to identify stable physical 

2It is possible to show that, if the parameters are chosen at random from 
any reasonable distribution, then any unstable distribution has measure 
zero (Spirtes, Glymour and Scheines, 1989). Stability precludes determin- 
istic constraints as well as aggregated variables. 
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Fig. 1. Causal models illustrating the soundness of  e ~ d. The node 
(*) represents a hidden variable 

mechanisms in nature; it identifies the only mechanisms we 

can plausibly induce from non-experimental data. 

As an example of  a causal relation that is identified by 

the definition above, imagine that observations taken over 

four variables {a, b, c, d} reveal only two vanishing depen- 

dencies: 'a  is independent o f b '  and 'dis independent of  {a, b } 

given c'  (plus those that logically follow from the two). This 

dependence pattern would be typical, for example, of  the 

following variables: a = having cold, b = having hay-fever, 

c = having to sneeze, d = having to wipe one's nose. It  is not 

hard to show that any model which explains the dependence 

between c and d by an arrow from d to c, or by a hidden 

common cause between the two, cannot be minimal, because 

any such model would be able to outmimic the one shown 

in Fig. l(a). We conclude, therefore, that the observed 

dependencies imply a direct causal influence from c to d. 

Some minimal models (b) and non-minimal models (c and 

d) consistent with the observations are shown. However, 

model (e) is inconsistent because it cannot account for the 

observed marginal dependence between b and d. 

3. Proof theory 

It turns Out that while the minimality principle is sufficient 

for forming a normative and operational theory of cau- 

sation, it does not guarantee that the search through the vast 

space of minimal models would be computationally practi- 

cal. I f  nature truly conspires to conceal the structure of  the 

underlying model she could annotate the model with a 

distribution that matches many minimal models, having 

totally disparate structures. To facilitate an effective proof  

theory, we rule out such eventualities, and impose a 

restriction on the distribution called stability. It  conveys the 

assumption that all vanishing dependencies are structural, 

not formed by incidental equalities of  numerical parame- 

ters. 2 

Definition 8. Let I(P) denote the set of  all conditional 

independence relationships embodied in P. A probabili ty 

distribution/3 is stable if there exists a dag D such that P 
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precisely embodies the independencies dictated by D, i.e. 

there exists a set of parameters | such that for any other 

set 0 5  we have: I(P((D, OD })) ~ 1(/3) ~_ I(P((D, OD })). 

With the added assumption of stability, every distribu- 

tion has a unique causal model (up to equivalence), as 

long as there are no hidden variables (Verma and Pearl, 

1990). The search for the minimal model then boils down 

to recovering the structure of the underlying DA G  from 

probabilistic dependencies that perfectly reflect this struc- 

ture (see Pearl and Verma, 1987 and Pearl, 1988, for a 

characterization of  these dependencies). This search is 

exponential in general, but simplifies significantly when the 

underlying structure is sparse (for such algorithms, see 

Verma and Pearl, 1990; Spirtes and G~'ymour, 1991). 

4. Recovering latent structures 

When nature decides to 'hide' some variables, the ob- 

served distribution /3 need no longer be stable relative to 

the observable set O, i .e./3 may result from many equiva- 

lent minimal latent structures, each containing any num- 

ber of hidden variables. Fortunately, rather than having to 

search through this unbounded space of latent structures, 

it turns out that for every latent structure L, there is an 

equivalent latent structure called the projection of  L on O 

in which every unobserved node is a root node with 

exactly two observed children. 

Definition 9. A latent structure LEo I = (D~ol, 0 ) is a pro- 
jection of another latent structure L if and only if 

(1) every unobservable variable of Dio I is a parentless 

common cause of exactly two non-adjacent observable 

variables; 

(2) for every stable distribution P generated by L, there 

exists a stable distribution P '  generated by LEo ~ such that 

I(P[ol) = I(P[ol). 

Theorem 1. Any latent structure has at least one projec- 

tion (identifiable in linear time). 

(Proofs can be found in Verma, 1992.) 

It is convenient to represent projections by bidirectional 

graphs with only the observed variables as vertices (i.e. 

leaving the ~idden variables implicit). Each bidirected link 

in such a graph represents a common hidden cause of the 

variables corresponding to the link's end-points. 

Theorem 1 renders our definition of  induced causation 

(Definition 7) operational; we will show (Theorem 2 be- 

low) that if a certain link 4 exists in a distinguished projec- 

tion of any minimal model of /3, it must indicate the 

m 

3ab denotes adjacency, a~ denotes either a ~b or a ~ b. 
qn a hybrid graph links may be undirected, unidirected or bidirected. 

existence of a causal path in every minimal model of /3 .  

Thus the search reduces to finding a projection of any 

minimal model o f /3  and identifying the appropriate links. 

Remarkably, these links can be identified by a simple 

procedure, the IC algorithm which is no more complex 

than that which recovers the unique minimal model in the 

case of fully observable structures. 

IC Algorithm (Inductive Causation). 

Input: /3, a sampled distribution. 

Output: core(~3), a marked hybrid acyclic graph. 

( 1 )  For  each pair of variables a and b, search for a set 

Sab such that (a, Sab, b) is in I(fi), namely a and b are 

independent in/3, conditioned on Sab. If  there is no such 

Sab, place an undirected link between the variables. 

(2) For  each pair of non-adjacent variables a and b 

with a common neighbor c, check if c e Sab. 

If it is, then continue. 

If it is not, then add arrowheads pointing at c, (i.e. 

a-->c ~b) .  

(3) Form core(P-') by recursively adding arrowheads ac- 

cording to the following two rules: 3 

If  ab and there is a strictly directed path from a to b then 

add an arrowhead at b. 

If  a and b are not adjacent but ac and c - - b ,  then direct 

the link c ~ b. 

(4) If ab then mark every unidirected link b ~ c  in 

which c is not adjacent to a. 

The result of the IC algorithm is a substructure called 

core(P') in which every marked unidirected arrow X--* Y 

stands for the statement: 'X is a direct cause of Y (in all 

minimal latent structures consistent with the data)'.  We 

call these relationships genuine causes (e.g., c ~ d in Fig. 

l(a)). 

Theorem 2. If  every link of the directed path C --,* E is 

marked in core(~3) then C has a causal influence on E 

according to/3.  

Theorem 3. If  core(P~ contains a bidirectional link 

E~ +--> E2, then there is a common cause X influencing both 

E~ and E2, and no direct causal influence between the two, 

in every minimal latent structure consistent with/3. 

5. Summary and intuition 

For the sake of completeness we now present explicit 

definitions of potential and genuine causation, as they 

emerge from Theorem 2 and the IC algorithm. Additional 

conditions, sufficient for the determination of  spurious and 

genuine causes, with and without temporal information, 

can be found in Pearl and Verma (1991). 
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Definition 11 (Potential Cause). A variable Jf has a poten- 

tial causal influence on another variable Y (inferable from 

P'), if 

(1) X and Y are dependent in every context. 

(2) There exists a variable Z and a context S such that 

(i) X and Z are independent given S 

(ii) Z and Y are dependent given S 

Definition 12 (Genuine Cause). A variable X has a genuine 

causal influence on another variable Y if there exists a 

variable Z such that either: 

1. X is a potential cause of Y and there exists a context 

S satisfying: 

(i) Z is a potential cause of X. 

(ii) Z and Y are dependent given S. 

(iii) Z and Y are independent given S • X. 

2. X and Y are in the transitive closure of the relation 

defined by Part 1, that is, there exist k-> 1 variables, 

W1,  9  Wk such that X has a genuine causal influence on 

W1 and Wi has a genuine causal influence on Wi+ 1 for all 

k > i -> 1 and Wk has a genuine causal influence on Y, all 

defined by Part 1. 

Definition 11 was formulated in Pearl (1990) as a rela- 

tion between events (rather than variables) with the added 

condition P(Y] X) > P(Y) in the spirit of  Suppes (1970). 

Condition (1) in Definition 12 may be established either 

by statistical methods (per Definition 11) or by other 

sources of information, e.g., experimental studies or tem- 

poral succession (i.e. that Z precedes X in time). When 

temporal information is available, as it is assumed in the 

formulations of Suppes (1970), Granger (1988) and Spohn 

(1983), then every link constructed in step 1 of the IC 

algorithm corresponds to a potential cause (genuine or 

spurious cause in Suppes terminology). In such cases, 

Definition 12 can be used to distinguish genuine from 

spurious causes without the usual requirement that all 

causally relevant background factors be measurable. 

The intuition behind our definitions (and the IC recov- 

ery procedure) is rooted in Reichenbach's (1956) 'common 

cause' principle stating that if two events are correlated, 

but one does not cause the other, then there must be 

causal explanation to both of them, an explanation that 

renders them conditionally independent. As it turns out, 

the pattern that provides us with information about causal 

directionality is not the 'common cause' but rather the 

'common effect'. The argument goes as follows: If  we 

create conditions (fixing Sab) where two variables, a and b, 

are each correlated with a third variable c but are indepen- 

dent of each other, then the third variable cannot act as a 

cause of a or b; it must be either their common effect, 

5Apparently this lack of transitivity has not been utilized by path 

analysts. 

a ~ c  ~-b, or be associated with a and b via common 

causes, forming a pattern such as a ~ c ~-~ b. This is 

indeed the eventuality that permits our algorithm to begin 

orienting edges in the graph (step 2), and assign arrow- 

heads pointing at c. Another explanation of this principle 

appeals to the perception of 'voluntary control '  (Pearl, 

1988, p. 396). The reason why people insist that the rain 

causes the grass to become wet, and not the other way 

around, is that they can find other means of getting the 

grass wet, totally independent of the rain. Transferred to 

our chain a - c - b ,  we can preclude c from being a cause of 

a if we find another means of potentially controlling c 

without affecting a, namely b. 

The notion of genuine causation also rests on the 'com- 

mon effect' principle: Two causal events do not become 

dependent simply by virtue of predicting a common effect. 

Thus, a series of spurious associations, each resulting from 

a separate common cause, is not transitive; it predicts 

independence between the first and last variables in the 

chain. For exampje, if I hear my sprinklers turn on, it 

suggests that my grass is wet, but not that the parking lot 

at the local supermarket is wet even though the latter two 

events are highly correlated by virtue of a common cause 

in the form of rain. 5 Therefore, if correlation is measured 

between my sprinkler and the wetness of  the parking lot 

then there ought to be a non-spurious causal connection 

between the wetness of my grass and that of  the parking 

lot (such as the water saturating my lawn, running off into 

the gutter and into the parking lot). 

6. Conclusions 

The results presented in this paper dispel the claim that 

statistical analysis can never distinguish genuine causation 

from spurious covariation (Otte, 1981; Cliff, 1983; Hol- 

land, 1986; Gardenfors, 1988; Cartwright, 1989). We show 

that certain patterns of dependencies dictate a causal 

relationship between variables, one that cannot be at- 

tributed to hidden causes test we violate ~one of the basic 

maxims of scientific methodology: the semantical version 

of Occam's razor. 

On the practical side, we have shown that the assump- 

tions of model minimality and 'stability' (no accidental 

independencies) lead to an effective algorithm for recover- 

ing causal structures, transparent as well as latent. Simula- 

tion studies conducted at our laboratory show that 

networks containing 20 variables require less than 5000 

samples to have their structure recovered by the algorithm. 

Another result of practical importance is the following: 

Given a proposed causal theory of some phenomenon, our 

algorithm can identify those causal relationships (or the 

lack thereof) that could potentially be substantiated by 

observational studies, and those whose directionality 

might require determination by controlled, manipulative 

experiments. 
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From the methodological viewpoint, our results should 

settle some of the ongoing disputes between the descriptive 
and structural approaches to theory formation (Freed- 

man, 1987). It shows that the methodology governing 

path-analytic techniques is legitimate, faithfully adhering 

to the traditional norms of scientific investigation. At the 

same time, our results also explicate the assumptions upon 

which these techniques are based, and the conditions that 

must be fulfilled before claims made by these techniques 

can be accepted. 
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