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Abstract
In this article, we present a statistical significance test for necessary conditions. This is an elaboration of
necessary condition analysis (NCA), which is a data analysis approach that estimates the necessity effect
size of a condition X for an outcome Y. NCA puts a ceiling on the data, representing the level of X that
is necessary (but not sufficient) for a given level of Y. The empty space above the ceiling relative to the
total empirical space characterizes the necessity effect size. We propose a statistical significance test
that evaluates the evidence against the null hypothesis of an effect being due to chance. Such a ran-
domness test helps protect researchers from making Type 1 errors and drawing false positive con-
clusions. The test is an “approximate permutation test.” The test is available in NCA software for R.
We provide suggestions for further statistical development of NCA.
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Necessary condition analysis (NCA; Dul, 2016) is a tool for researchers to develop and test neces-

sary but not sufficient conditions. A necessary condition enables the outcome when present and

constrains the outcome when absent. NCA assumes that outcome Y is bound by condition X by

drawing a ceiling line on top of the data in an XY scatter plot. The line defines the empty space in the

upper left corner of the scatter plot.1 This empty space suggests that high values of Y are not possible

with low values of X and indicates that X constrains Y. The size of the empty space relative to the

total space with observations reflects the extent of the constraint that X poses on Y: The larger

the empty space, the more X constrains Y. The necessity effect size (d) is the size of the empty space

above the ceiling as a fraction of the total space where cases are observed or could be observed given

by the minimum and maximum empirical or theoretical values of X and Y (scope2). NCA’s effect

size d has values between 0 and 1.
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The NCA effect size has been used in various organizational studies for testing the necessary

condition hypothesis that “X is necessary for Y.” For example, Van der Valk, Sumo, Dul, and

Schroeder (2016) test whether trust and contracts are necessary for successful collaboration between

buyers and suppliers for innovation. Arenius, Engel, and Klyver (2017) test whether particular

gestation activities for establishing a new firm are necessary for profit two years after the firm’s

start, and Karwowski et al. (2016); Karwowski, Kaufman, Lebuda, Szumski, and Firkowska-

Mankiewicz (2017); and Shi, Wang, Yang, Zhang, and Xu (2017) test the hypothesis that intelli-

gence is necessary for creativity. Currently, such necessity hypotheses are assessed based on NCA

effect size. A 0.1 threshold level for effect size is often applied, hence a hypothesis is considered to

be supported if the empty space above the data is at least 10% of the scope. However, testing a

necessary condition hypothesis only based on effect size may produce unjustified conclusions as the

result may not be statistically significant. The observed necessity empty space may be caused by

random chance. For example, when low X values and high Y values are relatively rare, an empty

space is likely but may not be the result of necessity. This can happen when X and Y are unrelated

random variables with normal or skewed distributions, which is not uncommon in the organizational

sciences. Therefore, there is a need to protect the researcher who applies NCA against a Type 1 error:

concluding that the empty space represents necessity when it is actually a random occurrence.

In this article, we presume that the reader is familiar with NCA (Dul, 2016). We advance the

NCA’s hypothesis testing approach by proposing a statistical significance test for testing the ran-

domness of the effect size. Specifically, we provide a permutation test for NCA users to calculate the

p value. The test is intended to answer the question: “Can the observed effect size be the result of

random chance?” by responding: “Yes, but with probability smaller than p.” We demonstrate the

application of the test with an example data set and use Monte Carlo simulation to show that the

permutation approach is a generic and valid randomness test. We provide suggestions for further

statistical development of NCA.

Permutation Test

Since Fisher (1935), statisticians have used the permutation test for statistical significance testing.

Until recently, the test was not popular due to high computational demands (Hayes, 1996; Ludbrook

& Dudley, 1998). Since the availability of fast computers, permutation tests have been developed for

correlation and regression (Anderson & Robinson, 2001; DiCiccio & Romano, 2017), ANOVA

(Anderson, 2001), the general linear model (Winkler, Ridgway, Webster, Smith, & Nichols, 2014),

and qualitative comparative analysis (Braumoeller, 2015). The permutation test produces a p value.

The test is particularly useful when analytical approaches to estimate the p value are not available or

assumptions for these approaches do not hold.

The p value is the theoretical probability that the value of a test statistic that summarizes the

observed sample data, for example, the observed effect size, is equal to or larger than the value of

this test statistic when the null hypothesis is true. Significance tests including the permutation test

usually employ a reductio ad absurdum argumentation. This means that the null hypothesis is

formulated, which states that the data of the observed sample are the result of a random data

generation process in the population where X and Y are unrelated: the null hypothesis. Next, the

probability (p) that the effect size of the observed sample is equal to or larger than the effect size of

random samples is calculated. If this probability is small (e.g., p < .05), it is concluded that the

observed sample is unlikely the result of a random process of unrelated variables (the null hypothesis

is rejected), suggesting support for an alternative hypothesis.

In the permutation test, a distribution of random samples is produced under the null hypothesis by

reshuffling observed X and Y values of cases of the observed sample. This ensures that under the

null hypothesis, X and Y are not related and a possible effect size is due to random chance. Notice
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that resampling X and Y values by permutation aims to mimic the null hypothesis distribution. This

is different from resampling cases by bootstrapping, which aims to mimic the population distribu-

tion. Applying standard bootstrapping to NCA would result in an invalid significance test where the

null hypothesis is overly rejected.3 Specifically, permutation resamples are constructed by assigning

observed Y values to observed X values to obtain all possible combinations (permutations) of

observed X and Y values. One way of achieving this in a bivariate data set is by letting observed

X values have a fixed order and then permutating Y values. For the permutation test, no assumptions

about the distribution of the data are required. All that is needed to make the test valid is that the

distribution of the Y (that is permutated) is “exchangeable” (for a discussion on exchangeability, see

Good, 2005). In an experimental study, we can assume exchangeability when cases are randomly

allocated to groups. In an observational study, we can assume exchangeability when the sample is a

random sample from the population, which are common assumptions for statistical inference. The

permutation test is a valid test (Hoeffding, 1952; Kennedy, 1995). Lehman and Romano (1998,

p. 633) provide formal proof of this in Theorem 15.2.

Table 1 illustrates how the permutation test resamples from the observed sample. Suppose the

sample consists of only three cases, thus with three values for X and three values for Y. The first

observed Y value (y1) has three possibilities to be assigned to an X value (x1, x2, x3); for the second

observed Y value (y2), two possibilities are left; and for the third observed Y value (y3), one

possibility is left, which results in six (3 � 2 � 1 ¼ 3 factorial ¼ 3!) possible resamples (permuta-

tions). One from all possible six permutations corresponds to the observed sample. When the

observed effect size is the smallest of the six random samples, the proportion of random samples

that has an effect size that is equal to or larger than the observed effect size equals 6/6 ¼ 1 (p ¼ 1).

When the observed effect size is the largest of the six random samples, the proportion of random

samples that has an effect size that is equal to or larger than the observed effect size equals 1/6 ¼
0.17 (p ¼ .17).4

The number of permutations rapidly increases with sample size. For example, a bivariate sample of

10 cases (n ¼ 10) results in 10! ¼ 3,628,800 permutations, and a sample of 50 cases (which is

considered a small sample in many organizational fields) results in 50! permutations, which is around

30,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

permutations.

To handle this computational problem,5 a large subset of all possible permutations is randomly

selected to approximate the permutation distribution. Such a permutation test is called an approx-

imate permutation test,6 which produces an estimate of the exact p value. An observed Y value is

randomly selected from all observed Y values without replacement (because a permutation does not

allow the same value of Y to be assigned to X values more than once) and assigned to an observed

X value. This process is repeated until all observed X values have a Y value, hence the size of the

resample equals the observed sample size. This procedure is repeated to obtain a large random set of

constructed resamples. The test statistic is computed for each resample, and the distribution of

random test statistic is compared to the observed sample value of the test statistic. The proportion

Table 1. The Six Possible Permutations (Samples) for Three Cases (A, B, C) and Two Variables (X, Y).

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Case X Y Case X Y Case X Y Case X Y Case X Y Case X Y

A x1 y1 A x1 y2 A x1 y3 A x1 y1 A x1 y2 A x1 y3

B x2 y2 B x2 y3 B x2 y1 B x2 y3 B x2 y1 B x2 y2

C x3 y3 C x3 y1 C x3 y2 C x3 y2 C x3 y3 C x3 y1
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of random resamples for which the value of the test statistic is equal to or larger than the observed

value of the test statistic is the estimated p value, which informs us about the statistical (in)compat-

ibility of the data with the null hypothesis. We propose the following five steps for performing an

approximate permutation test for NCA.

1. Calculate the necessity effect size for the sample. Presume that the sample is a random

sample from the population for an observational study and that cases are randomly allocated

to groups for an experimental study. These are common assumptions for statistical inference.

2. Formulate the null hypothesis, which states that X and Y in the population are not related:

Prob(Y|X) � Prob(Y). Under the null hypothesis, the theoretical mean necessity effect size

d ¼ 0, whereas the effect size under the null hypothesis is likely d > 0 for a specific finite

sample. This effect size is a random effect arising from (finite) sampling.

3. Create a large random set of resamples (e.g., 10,000; see the following) using approximate

permutation.

4. Calculate the effect size of all resamples. The set of effect sizes comprises an estimated

distribution of effect size under the null hypothesis that X and Y are not related.

5. Compare the estimated distribution of effect sizes of random resamples with the effect size of

the observed sample (see Step 1). The fraction of random resamples for which the effect size

is equal to or greater than the observed effect size (p value) informs us about the statistical

(in)compatibility of the data with the null hypothesis.

Demonstration

Example

For illustration, we applied the approximate permutation test to a data set for testing the

hypothesis that trust between companies is necessary for collaborative innovation performance.

Van der Valk et al. (2016) studied buyer-supplier relations and used the NCA effect size to test

the hypothesis that trust is necessary for supplier-led innovation in collaborations between

buyer and supplier firms. They studied 48 buyer-supplier service outsourcing collaborations.

From the trust dimensions that were studied by Van der Valk et al., in the present paper, we

considered only goodwill trust. This trust dimension relates to the intention to fulfill an agreed

role in the collaboration.

The approximate permutation test is applied to this example as follows:

1. Calculate the observed necessity effect size. If NCA’s CE-FDH ceiling line7 is selected, the

necessity effect size for trust is 0.31.

2. Formulate the null hypothesis. The null hypothesis states that trust and performance are not

related and that any observed empty space in the upper left corner of the trust-performance

scatterplot is due to random chance.

3. Create a large random set of permutation resamples. A performance value (Y) is randomly

selected without replacement from the observed performance values and assigned to an

observed trust value (X). This process is repeated 48 times (corresponding to the sample

size) until all X values have a Y value and a random resample is obtained. This procedure is

repeated 10,000 times to obtain 10,000 random resamples.

4. Calculate the effect size of each resample. The CE-FDH effect size is calculated for all

resamples.

5. Compare the distribution of effect sizes of the random resample with the observed effect size

(Figure 1).
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Figure 1 shows the distribution of the CE-FDH effect sizes of the 10,000 random samples.

The observed effect size of 0.31 is larger than all but 17 random effect sizes. Hence, the

probability that the random effect size is equal to or larger than the observed effect size is less than

17/10,000 (p < .0017). The example shows that the observed effect size under the assumption that

the null hypothesis is true is very rare, which is an indication that the null hypothesis (the observed

effect size is due to random chance) does not explain the data, hence the alternative hypothesis may

be supported (trust is necessary for performance).

Monte Carlo Simulation

We performed a Monte Carlo simulation to evaluate if the NCA approximate permutation test can

correctly recognize an empty space as random chance if the data generation process were random.

Specifically, we built on the simulation study by Sorjonen, Alex, and Melin (2017), who produced empty

spaces in the upper left corner when X and Y were unrelated random variables with beta distributions.

They repeatedly drew random samples from beta distributions with different values of skewness of X

(X-skew), skewness of Y (Y-skew), and different sample sizes. The null hypothesis applied to all

samples because X and Y were not related and any effect size would be due to random chance.

Figure 2 (left) shows results of the original simulation of Sorjonen et al. (2017) with the effect

size on the vertical axes (using the CR-FDH ceiling line) and different values of X-skew on the

horizontal axes. The nine plots have different values of Y-skew and sample size. Figure 2 (left)

shows 7,350 dots, and each dot is a sample. The plots show that the effect size can be large, up to

more than 0.6. The effect size is larger for smaller sample size, more negative skewness of X (low

values of X are rarer), and more positive skewness of Y (high values of Y are rarer).

Figure 1. Statistical significance test with the null hypothesis stating that trust is not necessary for perfor-
mance. (Data from Van der Valk, Sumo, Dul, & Schroeder, 2016). Distribution of necessity effect sizes (cal-
culated with the CE-FDH ceiling line) under the null hypothesis for 10,000 random samples generated by
approximate permutation. Horizontal axis: effect size. Vertical axis: number of samples. Seventeen of the
10,000 random effect sizes are equal to or greater than the observed effect size (d¼ 0.31, p¼ .0017), suggesting
that the data do not fit the null hypothesis well.
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We added the approximate permutation significance test to this simulation to verify if the test

could detect that the effect sizes were due to random chance. Because of high computational

demands when combining the permutation approach with the original simulation, we selected a

relatively small number of permutations (500). Yet, the computation time for this simulation was

about 15 hours. We calculated the p value of the effect size for each sample. Figure 2 (right)

presents the results of the estimation of the p value using the NCA approximate permutation test.

The plots on the right are the same as the plots on the left except for the vertical axis: On the left,

the vertical axis is the effect size, and on the right, it is the estimated p value for the effect size. The

total number of dots (samples) is 7,350. The horizontal line in the plots on the right corresponds to

a chosen threshold p value of .05, thus considering sample effect sizes as random chance if p > .05.

The results show 6,991 samples (out of 7,350) with NCA p > .05 (suggesting randomness). This is

95.1% of all samples. This illustrates that the NCA significance test can identify randomness under

different conditions and with a probability corresponding to the threshold significance level

preselected by the researcher (in this case, .05). We found similar results with additional simula-

tions with other distribution functions (uniform, truncated normal, triangle; not reported here).

In other words, our simulation findings for the NCA effect size are consistent with the general

analytical demonstrations of the validity of the permutation test in the literature (e.g., Lehman &

Romano, 1998).

Accuracy of the p Value Estimation

If all possible permutation resamples were part of the sampling distribution, the p value would be

exact. In the approximate permutation test, the p value has some uncertainty. The exact p value

equals the estimated p value plus or minus the accuracy of the estimated p value (p accuracy).

The p accuracy can be estimated because the estimated p value is a proportion that has a binomial

distribution. The p accuracy depends on the number of permutations and the estimated p value.

Inversely, one can determine the required number of permutations for a desired p accuracy, which

depends on the estimated p value (Table 2).8

Table 2 shows that with a large number of permutations, the accuracy of the approximate

permutation test is acceptable for the practical purposes of significance testing. The accuracy

increases when increasing the number of permutations (within the limits of computation time).

If the estimated p value is .05, one can be confident (confidence level 95%) that the p accuracy

is around 0.004 with 10,000 permutations, with an exact p value within the range of .046 to .054. The

p accuracy is around 0.001 with 100,000 permutations, with an exact p value within the range of .049

Table 2. Accuracy of p Value (p Accuracy) Estimated by Approximate Permutation as a Function of Number of
Permutations and Estimated p Value.

Permutations p ¼ .2 p ¼ .1 p ¼ .05 p ¼ .01 p ¼ .005 p ¼ .001 p ¼ .0005 p ¼ .0001

500 0.035 0.026 0.019 0.009 0.006 0.003 0.0020 0.0009
1,000 0.025 0.019 0.014 0.006 0.004 0.002 0.0014 0.0006
5,000 0.011 0.008 0.006 0.003 0.002 0.001 0.0006 0.0003
10,000 0.008 0.006 0.004 0.002 0.001 0.001 0.0004 0.0002
50,000 0.004 0.002 0.002 0.001 0.001 0.000 0.0002 0.0001
100,000 0.002 0.002 0.001 0.001 0.000 0.000 0.0001 0.0001
500,000 0.001 0.001 0.001 0.000 0.000 0.000 0.0000 0.0000
1,000,000 0.001 0.001 0.000 0.000 0.000 0.000 0.0000 0.0000

Note: 95% confidence that exact p value ¼ estimated p value + p accuracy. For example, if the estimated p value is .05, the
exact p value for 10,000 permutations lies with 95% confidence within the range from 0.046 to 0.054 and for 100,000
permutations lies within the range from 0.049 to 0.051.

Dul et al. 7



to .051. Hesterberg (2014) recommends (somewhat arbitrarily) “10,000 permutations for routine

use, and more when accuracy matters” (p. 81).

Discussion

The proposed statistical significance test for NCA is a relevant addition to the NCA effect size.

The observed effect size may be the result of random chance. Hence, testing a hypothesis only

based on an effect size threshold may be insufficient. Based only on effect size, the researcher may

consider the alternative hypothesis as plausible while the data fit the null hypothesis (false positive,

due to Type 1 error). With the proposed approximate permutation test, the NCA researcher has a tool

to assess the randomness of the observed effect size. Observed effect sizes with p values above .05

cast doubts about the statistical significance of the result.

Just like any other statistical method that uses the p value for statistical inference, the proposed

approximate permutation test has all the limitations of the p value (Wasserstein & Lazar, 2016). The

p value only provides indirect information about the evidence that an observed effect may be the

result of random chance and at best provides indirect support for the hypothesis of interest. Statis-

tical testing of empirical data is a complex endeavor (Forstmeier, Wagenmakers, & Parker, 2016),

and no universal method exists for statistical inference (Gigerenzer & Marewski, 2015). In the

proposed p test for NCA, we stay close to the original p value approach as suggested by Fisher

(1925). A small p value is either a rare result that happens only with probability p (or lower) or an

indication that the null hypothesis does not explain the data.

Although the proposed statistical test for NCA is an important step forward, further statistical

developments are needed. In the current “descriptive statistics” phase of NCA development, the

ceiling line and effect size just describe the data and inferential statistics is limited to point estimates

of NCA parameters. With the proposed approximate permutation test, we have entered the next

phase of development: statistical significance testing, namely, testing effect sizes against a null

hypothesis to avoid Type 1 error and false positives. In this phase, other null hypothesis testing

approaches may be developed, such as testing approaches with assumptions about a relationship

between X and Y under the null hypothesis, parametric analytical approaches based on assumptions

of distributions of X and Y,9 or bootstrapping approaches beyond standard bootstrapping. Analytical

and bootstrapping approaches may be particularly useful for the next phase of development: stan-

dard error/confidence interval estimations to provide interval estimates, namely, developing a

precision measure of the point estimates (which could also be used for significance testing). Further

phases of statistical development of NCA could include more advanced approaches, such as Baye-

sian approaches for directly testing the hypothesis of interest, instrumental variable approaches for

checking assumed causal directions, and approaches that include modeling measurement error.

Researchers wishing to perform NCA are recommended to test the randomness of the observed

effect size by using the approximate permutation test. This test can be considered as a minimum

statistical test for NCA. At least three necessary but not sufficient conditions must be met before a

researcher can consider a condition being a necessary condition: (1) theoretical justification, (2)

effect size d > 0, and (3) small p value (e.g., p < .05). The approximate permutation test is

implemented in the NCA software for R (see online Appendix), version 3.0 onwards (Dul, 2018).
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Notes

1. We presume that X is on the horizontal axis and increases to the right and Y is on the vertical axis and

increases upward.

2. The scope can be empirical (using the empirical minima and maxima of X and Y) or theoretical (using

theoretical minima and maxima of X and Y). The theoretical scope has a larger empty space relative to the

scope than the empirical scope, hence results in a larger effect size. For most necessary condition analysis

(NCA) applications, we recommend using the empirical scope to avoid overestimation of the effect size.

3. Standard bootstrap samples are obtained by sampling cases with replacement until the size of the bootstrap

sample equals the size of the original sample. The standard deviation of the bootstrap sampling distribution

can be used to estimate the standard error and the confidence interval. The confidence interval can be used

for null hypothesis testing: testing whether the null is covered by the 95% confidence interval, which

corresponds to null hypothesis testing with p value .05. Producing a valid confidence interval for NCA’s

effect size implies that the estimated effect size has an upper confidence bound and a lower confidence

bound. However, in NCA, all cases are on or below the ceiling line by definition, and resampling of cases

does not result in a ceiling line above the original ceiling line. Consequently, the lower bound effect size

cannot be validly produced, and bootstrapping will disproportionally often produce a (nearly same) effect

size as the original effect size. Applying standard bootstrapping to NCA would result in invalid significance

tests where the null hypothesis is excessively rejected.

4. In this example with three cases, the p value cannot be smaller than .17.

5. To illustrate this problem, it takes about one minute to calculate a p value for 100,000 permutations on a

personal computer. For N ¼ 10, the number of permutations is 3,628,800, and the time for calculating a

p value is more than 30 minutes. The computation time for N ¼ 11 is more than 6 hours, for N ¼ 12 more

than 3 days, for N¼ 13 more than a month, for N¼ 14 more than a year, for N¼ 15 more than 20 years, and

for N ¼ 16 more than a lifetime.

6. Other names for the approximate permutation test are Monte Carlo permutation test and random permuta-

tion test.

7. Several ceiling techniques can be selected within NCA. The two default ceiling techniques are Ceiling

Envelopment–Free Disposal Hull (CE-FDH), which results is a non-decreasing step function ceiling line that

can be used when the data are discrete, and Ceiling Regression–Free Disposal Hull (CR-FDH), which is a

trend line through the corners of the CE-FDH step function and can be used for (practically) continuous data.

For more information on ceiling techniques, see Dul (2016).

8. The p value that is estimated by approximate permutation follows a binomial distribution. The formula for

the standard error of a binomial distribution is: SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
, where p is the estimated p value and n is

the number of permutations. For a 95% confidence level, the p accuracy of the estimated p value is:

Accuracy ¼ 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
. For a desired particular p accuracy, the minimum number of permuta-

tions is: n ¼ ½ð1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
Þ=Accuracy �2.

9. The analytical approach uses a formula with several assumptions, including assumptions about distributions

for calculating the standard error of the NCA effect size. Currently, no formula is available for this purpose,

and such formula cannot be easily derived. One main problem is the discontinuity of NCA effect size as a

function of the distribution (the data generation process).
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