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Summary. Since orbital periods of long-period comets are much longer than
those of perturbing planets (Jupiter and Saturn), energy perturbations of a
comet can be regarded as a random variable which obeys a Gaussian or
double exponential distribution. Starting with a given initial energy, energy
states of a large number of comets are followed by a Monte Carlo method
until they are lost to the solar system by dynamical expulsion or by physical
disintegration. First, the lifetime distribution of comets is so computed and
it is shown that with reasonable values of k2 (rate of physical disintegration),
more than 90 per cent of comets are expelled from the solar system within
3Myr. Secondly, the number of perihelion passages before escape or
disintegration is calculated analytically by Samuelson’s method and compared
with the Monte Carlo result. It is shown that the probability of comets
remaining in the solar system is aymptotically proportional to N ™V? a result
first obtained numerically by Everhart. It is further shown that if k2= 0.02,
more than 90 per cent of comets are lost in 40 revolutions or so. Thirdly, and
most important, the energy distribution among the cometary population is
computed and it is shown that within 3 or 6 Myr, the energy distribution of
comets still left in the system takes a form which is almost independent of
the initial distribution, and comes to have a strong concentration in the
interval 0 < 1/a < 5x107° aAu”!. Comparison with the observed distribution
shows that if the comets were formed or captured at an earlier epoch, that
must have taken place at 3.6 ~9 Myr BP.

1 Introduction

Among nearly 600 comets contained in Marsden’s (1972) cometary catalogue, some 500 are
classified as parabolic or nearly parabolic comets. Their semimajor axes («) range from 102
to 10° AU (positive a corresponds to elliptic orbit) so that their binding energy with respect
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to the solar system barycentre is comparable to planetary perturbations. Thus some long-
period comets whose original incoming orbits are definitely elliptic are transformed into
hyperbolic orbits by planetary perturbations (mainly due to Jupiter and Saturn). Marsden,
Sekanina & Everhart (1978) recently computed original and future values of 1/a for 200
comets and it has been shown that some 50 of them will eventually escape from the solar
system with negative values of binding energy. It is thus important to investigate
theoretically the effect which planetary perturbation will have upon the population of long-
period comets. Since four to five comets are discovered every year and their average period
is some 10*yr or greater, the number of comets associated with the solar system at the
present epoch must be at least a few million, so that the problem can be tackled from a
statistical point of view, instead of following orbits of individual comets.

The first theoretical approach to the problem was made by van Woerkom (1948) who
derived a differential equation for the cometary population on the assumption that the
energy perturbation is small compared with the energy. However, since the two are com-
parable, a more satisfactory approach would be that of a random walk in an energy space, as
formulated and solved by Hammersley (1961) and by Lyttleton & Hammersley (1964).
Assuming that a comet is formed with a given energy value, it is subjected to random energy
changes until the binding energy acquires a negative value and the comet is lost to the solar
system. They computed, by a Monte-Carlo method, the lifetime distribution of long-period
comets.

On the other hand, it is also important to know how the planetary perturbations will
modify the distribution of energy in the cometary population. As first noted by Oort
(1950), when the distribution of 1/a values is plotted, it shows a marked concentration in
the range 0 < 1/a < 10™ Au™!. Oort regards these comets as new comets whose orbits were
deflected into the planetary region by stellar perturbations. In this respect, the planetary
perturbation alone may be capable of explaining the observed tendency of the 1/a
distribution.

The problem is important in the interpretation of the 1/a distribution. If it is assumed
that comets as members of the solar system are a permanent feature, the Oort interpreta-
tion is inescapable. However, there is a possibility that comets are a transient phenomenon.
For instance, the Lyttleton (1953) theory assumes that comets are formed from time to
time as the Sun passes through dense interstellar dust clouds. Again, comets may form in
dense clouds (McCrea 1975) and are then captured by the solar system into nearly parabolic
orbits (Yabushita & Hasegawa 1978). If the latter possibility is assumed, it is important to
know whether the presently observed 1/a distribution is explicable in terms of planetary
perturbations alone, since there is no longer a continuous supply of comets from the Oort
cloud of comets. On the other hand, Weissman (1978) simulated the population dynamics of
comets assuming that there is a continuous supply from the Oort’s clouds of comets, and
obtained fairly reasonable agreement with observation.

The object of the present paper is to investigate the effect of planetary perturbations
upon the population of long-period comets. We will consider three features of the problem.
First, the distribution of lifetimes of comets in the presence of physical disintegration will be
investigated using Hammersley’s method. Secondly, the distribution of the number of
perihelion passages before escape will be calculated theoretically and compared with the
Monte Carlo result. Thirdly, and most important, we will investigate how the distribution of
binding energies of comets varies with time.

As to the second problem, Everhart (1976) has shown by following orbits of hypothetical
comets that the fraction of comets remaining is proportional to N2 where N is the
number of perihelion passages. That this must be so will be shown analytically in the present
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paper. As to the third problem, Everhart followed evolution of orbits which initially have a
value of 4 ~5 AU and obtained the 1/a distribution as a function of N. He was not able to
obtain a strong concentration at very small values of 1/a. However, in the present paper it
will be shown that if the 1/a distribution is calculated as a function of time and not as a
function of IV, the 1/a distribution of observable comets will take a form which is close to
that observed, whatever the initial orbit, provided the initial « is greater than some 1000 Au.

2 Magnitude of planetary perturbations

In a discussion of planetary perturbations of long-period comets it is first required to know
the energy perturbation which a comet undergoes at each passage through the planetary
region. Since comets are assumed to be subjected to random energy change (energy per unit
mass is 1/2a, but 1/a may be simply called energy), the distribution of the change of 1/a
(or 8(1/a)) should be known beforehand.

Strictly speaking, the energy perturbation [8(1/a)] is a function of Q (longitude of
ascending node), w (argument of perihelion), i (inclination) and g (perihelion distance),
even if it is assumed that the times of perihelion passage are assumed uniformly distributed.
For uniformly distributed £ and w, and fixed g, the magnitude of the perturbation depends
upon i (Yabushita 1972b). For fixed ¢ and i the distribution is nearly Gaussian, but there is
a dip near §(1/a) = 0 (Everhart 1968). Again, the distribution has a long tail which is propor-
tional to [8(1/a)]">. When these complications are fully taken into account, simulation of a
random walk process in cometary energy space becomes complicated. There is, furthermore,
a consideration that the escape of comets from the solar system occurs as a result of several
perturbations which can be regarded as almost independent. According to the central limit
theorem of probability, the sum of a large number (V) of random variables sampled from a
population whose mean is zero is asymptotically a Gaussian distribution which depends
only upon N and the standard deviation (o). Thus it may be expected that the adoption of a
simple form of the §(1/a) distribution will give a reasonable result on cometary survival,
provided that a reasonable value of the standard deviation is adopted. It may be noted that
the distribution is not strictly symmetrical with respect to §(1/a) = 0 (Everhart 1969); the
asymmetry arises from very close encounters of comets with Jupiter (or Saturn). Since we
are not concerned with such close encounters, but with accumulation of ordinary perturba-
tions, the distribution will be assumed symmetrical throughout the present paper. For these
reasons, we will adopt the following simplified forms: (1) Gaussian distribution and (2)
double exponential distribution;

1
P(x)= —— exp (— x?/0?), Gaussian,
() Jamo p ( ) (2.1)
1 _
P(x)=—=—exp (—V21x|/0), double exponential, (2.2)
V2o

where P §x is the probability that the change of 1/a lies in (x, x + 6x), and o is the standard
deviation. In each case the mean of the distribution is zero. '
Even if it is assumed that comets approach from every direction in the celestial sphere
with equal probability, the standard deviation, g, of §(1/a) is, strictly speaking, a function of
q, the perihelion distance. However, we are here concerned with comets which are or
eventually become observable so that ¢ is less than 3 or 4 Au. The standard deviations calcu-
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lated by various authors are given below:

0=78x%x10"5au? g=1au van Woerkom (1948)
=128x107° =4.5

0=72x1075 au™ g=1au Kerr (1961)
=42x107° =45

0=74x105au"! q=1.166 AU Yabushita (1972a)
=52x107° =294
=46x107° =52

0 =76 x 1073 AU™! from an analysis of the orbit of Halley’s comet, Kendall (1961)
0 =45.5x107° Au™! mean of nearly 400 comets, Everhart & Raghavan (1970).

It is seen that apart from van Woerkom’s value, o decreases with q. If o is taken as 66.6 x
1075Au™!, the corresponding value of a is 1500 AU, and this appears to be a convenient
choice. In the following, we will adopt ¢ = 66.6 x 107 AU throughout. Then, if a distribution
law of the form (2.1) or (2.2) with unit variance is adopted, the unit of semimajor axis is
1500 Au and the unit of time is 58 094 yr. This may be compared with Hammersley who
adopted 0 = 75 x 105 Au™?, and the corresponding unit of time =50 000 yr.

In the following, the normal distribution will be assumed throughout, except in Section 4
where the distribution of N, the number of perihelion passages, is calculated. This is because
the NV distribution can be obtained analytically when the double exponential distribution is
adopted.

3 Distribution of the lifetime of comets

In this section, we calculate the probability that a comet which formed with 1/a = xq is
bound to the solar system for a period greater than T. In doing so, we adopt the method
used by Hammersley. A cometary orbit is subjected to random changes of 1/a according to
the distribution law (2.1). After n such changes, the values of 1/a takes the value

x;=xo(given) + £,

3.1)

Xp=Xp té, n=12,...

where &, ..., &, are normal random numbers with unit variance. The interval of time that a
comet is bound to the system is

z=x732+x332+ . x? (3.2)

such that x,,x,,...,x, >0, x,,,; <0. It is required to find the probability that z > T asa
function of T. Note that z is the time since the first perihelion passage, in contrast to
Hammersley’s formulation where time is measured since cometary formation at aphelia.
Hammersley adopted a Monte Carlo method to find the distribution of z, and it is followed
here. He calculated the z distribution only for the case where there is no disintegration of
comets owing to meteor stream formation and evaporation due to solar radiation. We have
included the effect by adopting a probability k> with which a comet ceases to exist at each
approach to perihelion. (k? is greater for the first than for subsequent perihelion passages.
This remark is due to E. Everhart. For simplicity, x* will be assumed to remain constant.)
Again, if the I/a value becomes large, the comet is no longer long periodic, but short
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periodic. For short-period comets, perturbation by the planets cannot be regarded as
random. For instance, the orbital period of Halley’s comet does not change randomly; it
changes in such a way that the average period of 77 yr is maintained (Kiang 1972; Yeomans
1977). We have therefore included the effect of diffusion into short-period orbits by
terminating the random walk when x exceeds 50. This value of x corresponds to a = 30 Au.
This choice is admittedly rather arbitrary. Later, it will be shown that this does not affect
the form of the distribution of lifetimes when a small but finite value of k2 is included.

In Figs 1, 2 and 3, the probability that z exceeds T is plotted. These curves closely
resemble the ones calculated by Hammersley and reproduced in Lyttleton & Hammersley
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Figure 1. The probability that a comet with initial energy x,= 0.1 is left in the solar system after T units
of time. One unit of T corresponds to 5.8 X 10* yr.
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Figure 2. Probability distribution of lifetimes of long-period comets.
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Figure 3. Probability distribution of lifetimes of long-period comets. The initial orbit is weakly
hyperbolic.

(1964). The effect of a small but non-zero value of k? (rate of physical disintegration) is
rather large for small values of 7 (smaller than 50, say).

The case xo=— 0.1 was also computed in order to see what would happen if new comets
encountered the solar system with slightly hyperbolic velocity at great distances from it.
The value xo= —1 corresponds to the velocity of 0.769km/s at great distances, while
xo=—0.1 corresponds to 0.243 km/s, when the value 1500 AU is adopted as the unit of
distance. Even for xo=—0.1, 46 per cent of comets are captured at first passage
through planetary region, and transformed into elliptic orbits. As Fig. 3 shows, the
behaviour of the curves are not much different from the cases where initial orbits are elliptic.

It may be readily noted that after 50 units of time, nearly 90 per cent of comets will be
lost to the solar system. In physical units, this time is roughly 3 x 10°yr, which is much less
than the age of the solar system. This point had earlier been emphasized by Lyttleton &
Hammersley.

Finally, some remarks should be made with respect to the diffusion into short-period
orbits. The percentages of comets which diffuse into short-period orbits (z < 30 AU) are as
follows:

3.2 per cent k2=0 xo=1.0
1.7 per cent K2 = x0=0.1
1.7 per cent k*=0  xo=—0.1

When a small but non-zero value of k* is adopted (0.02 or greater), no case of diffusion
into short-period comets has been found among 1000 samplings carried out for each value of
Xxo. Thus, it appears that observable short-period comets are unlikely to result from the
accumulation of small perturbations at each passage through the planetary region. This con-
firms one of Everhart’s (1976) findings.

4 Distribution of the number of orbits

A comet may be said to have made /V orbits if it has passed through perihelion NV times
before leaving the solar system. Hammersley obtained the distribution of N as a byproduct
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of the Monte Carlo calculation of the distribution of cometary lifetimes. However, as will be
shown shortly, it is possible to obtain analytically the distribution of MV if it is assumed that
the distribution of §(1/a) is a double-exponential function (2.2) and that the initial value of
1/a is zero. It is also possible to obtain the N distribution by a Monte Carlo method. A com-
parison of the two results may be used to assess the accuracy of the Monte Carlo estimate,
apart from an intrinsic interest in the /V distribution.

The method to be adopted here was originally proposed by Samuelson (1948). Let F,(x)
be the distribution of 1/a values after n perihelion passages; it is related to the distribution
F,,_,(x) at the previous step by the equation

Fp(x) =F P(x —y) Fpay(»)dy, n=1,2,3,... 4.1)
0

where P(x —y)6x 8y is the probability that a comet with a 1/a value in the range
(»,y +8y) is perturbed to (x,x + &x). Multiplying each equation by A" and adding, one
obtains the equation

S NIE(x) = f " P(x —») Fo(y) dy +1 f TPGc—y) ¥ N (3) dy @2)

n=1 0 0 n=2

or

F(\, x)=G(x) + Afm P(x —y) FO\,y) dy (4.3)

0

where

Gx) = f PG Fo)dy, FOLp)= Y N (). 4.4)
0 n=1

This is an integral equation derived by Samuelson in relation to stochastic processes. When P
is a double exponential function (2.2) with unit variance,

P(x) = ‘\l/—éexp (—V2Ix),

equation (4.4) takes the form
1 A
FO\, x)= —exp (—2Ix]) + —f FO\ y)exp (—v21x —yDdy, (4.5)
V2 V2Jo

if Fo())=8(y —€),0<e< 1.

When a solution to the above equation has been found, F,(x) can be calculated from
(4.4) to give

1 d"™'F(x, N
(n—1) dx!

Furthermore, the probability that a comet is still bound to the solar system after /V orbits is
simply given by

(4.6)

Fy(x)= .
A=0

J: Fp(x)dx.
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In the Appendix, it is shown that equation (4.5) can be solved analytically to give
P —JMF()d QN DU 103 4.7)
= x)dx = ——, =1,2,3,... .
A P QN)!!

when there is no physical disintegration (k*> = 0). When physical disintegration is allowed for,
the above expression should be replaced by
(ZN—I)!!(1 v ] (N + %)
P — J— K f— S —

em! Vv TV +1)

By making use of Stirling’s formula for the asymptotic behaviour of the gamma function
I'(x), it is readily found that

Py = (1— V. (4.8)

1
Py~ A/— exp (—k*N), N> 1. 4.9)
N

Equation (4.8) gives the required N distribution.

It is not difficult to calculate the expected value of the number of orbits which a comet
will describe before leaving the solar system. Since Py is the probability of more than N
orbits, the probability that a comet will leave the system after /V orbits is

N -D!!
Py — Py = ———— [1 + k32N + D] — 2V,
v =P = Oy [ RN+ D10 =)
Therefore, the expected value, E(V) of NV is given by
EN)= 3 (py—pNn+1) N
N=1

However, owing to the well-known expansions that

n(2 B )" n_ -1/
z it e (R
$ LTI e e,

E(N) can easily be calculated to give

1 — &2

K K
E(N)= ——— +- (2K~2+

2w(l+k) 2

5 ) ~ 1 O<k<l1.
K K
As k = 0, E(N) - o as might be expected. Thus, there is an essential difference between the
case with k>=0 and the case of a non-zero rate of disintegration. In the former case, the
expected value of number of orbits is infinite, while in the latter, £(/V) is finite. That the
expectation value E(N) is infinite is consistent with the general first passage theory of
stochastic processes (see, e.g. Bartlett 1966).

To compare the analytical expression (4.7) with a Monte Carlo result, we carried through
a numerical experiment which consists of 1000 samplings, and the result is shown in Fig. 4.
In the numerical work, we took into consideration that the effect of diffusion into short-
period orbits should be excluded. Thus, instead of terminating the random walk when x
exceeds 50, we terminated the walk when x > 200.
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Figure 4. The curves give a theoretical value (Py = (1/\/m) TV + %) X (1 — k*)V/N!) of the probability
that a comet makes N or more than NV perihelion passages. Crosses and dots are Monte Carlo results.

As far as one can see, the experimental result agrees with the theoretical value to within a
few per cent. We may therefore have some confidence in the Monte Carlo result given in
Section 3.

In order to see the effect of physical disintegration, we have plotted theoretical values of
the probability of making N or more than N orbits starting with the initial value xo,=0. In
Figs 5—7, similar values obtained by Monte Carlo work are given. One notes that the tail of
the NV distribution is almost independent of the x, value, a feature similar to the distribution
of T.

As mentioned in the introduction, Everhart has empirically found that the distribution of
N is proportional to N2 when physical disintegration is not taken into account. He
computed initially parabolic as well as weakly elliptic cometary orbits and empirically

05Kk

PROBABILITY

©

L ;
5 10 50 N 100

Figure 5. Probability distribution of N. Except for the case x,= 0, the curves give results of the Monte
Carlo computation.
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Figure 6. Probability distribution of N. Except for the case x,= 0, the curves give results of the Monte
Carlo computation.
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Figure 7. Probability distribution of N. Except for the case x,= 0, the curves give results of the Monte
Carlo computation.

obtained the N~"? dependence. Our rigorous analysis based on double exponential distribu-
tion confirms his finding. Presumably, the N 7"/? dependence will not depend critically upon
the functional form of the distribution of energy perturbation.

5 Histogram distribution of binding energy

As early as 1920, Russell (1920) noted that 1/a values of long-period comets are not distri-
buted uniformly but that many comets have very small 1/a values. Oort (1950) then used 19
incoming (original) values of 1/a and confirmed the earlier, somewhat qualitative, finding of
Russell. In doing so, accurate original values of 1/a are needed. And so far, the most up to
date values are those calculated by Marsden er al. (1978). They calculated original and
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Figure 8. Histogram distribution of incoming (original) values of 1/a of observed long-period comets.
1/a values are taken from Marsden et al. (1978).

future values of 200 comets. In Fig. 8, we give a histogram distribution of 1/a values as
calculated by them. One notes that the distribution has a strong concentration in the interval
0 < 1/a < 10™Au™!, and particularly in the range 0 < 1/a < 5x1075au™" Oort interpreted
those comets as new comets which had not previously passed through planetary region and
which were deflected into small perihelion distance orbits by stellar perturbations.

However, it is conceivable that planetary perturbation alone may affect the distribution
of 1/a values (which we will henceforth call the energy distribution). Indeed, even if comets
are assumed to have a large energy value, say 107 Au~!, initially, the energy spectrum is
expected to change quickly owing to planetary perturbations in 50 or 100 units of time. One
can anticipate that the energy distribution will come to have a strong concentration near
zero by the following semi-quantitative arguments.

If the average 1/a value remained almost constant throughout the lifetime of the
cometary population, the rate of expulsion (\) of comets per revolution would remain
almost constant. Thus, after NV revolutions, the proportion of comets still bound to the Sun
would be proportional to exp (— ANV), which is contrary to our finding that it is proportional
to N2, Again, Hammersley showed that the tail of the distribution of 7 is proportional to
T2, irrespective of the initial energy. Under the same assumption as above, the proportion
of comets remaining in the system would be proportional to exp (— ATA™"), where 4 is the
average period, which is contrary to Hammersley’s result. Hence, one would expect that as T
increases, the average period would also increase, which in turn is equivalent to the decrease
of the average value of 1/a.
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In order to verify numerically the above argument, we carried through a numerical experi-
ment, which may be described as follows. First, fix a value of 7, and specify an initial value,
Xq, of energy. Compute Z by the equation

Z=xP 2+ xP24 .+ x50

forn=1,2,.... There are two possibilities. The computed value of Z may exceed T for the
first time. In this case, record the final value of energy, x,. A comet may be lost to the
system by dynamical expulsion or physical disintegration before Z exceeds T, in which case
one proceeds to the next random sampling. In this way, one is capable of obtaining the
energy distribution in the cometary population at time 7. By varying the value of T, it is
possible to see how the distribution varies with 7. In the numerical experiment, the number
of comets which survived for more than T units of time has been fixed at 1000.

In Figs 9-11, we give the distribution of energy values of comets which pass through
perihelion in a fixed interval of time. This is obtained by multiplying the number of comets
with a given value of 1/a by a~3/? which is precisely the orbital period. The figures give the
case where xo =1 and k?=0.02. This corresponds to an initial semimajor axis, @ = 1500 AU.
One easily notes that, owing to dynamical perturbations, the energy distribution changes
rapidly and, as T increases, a concentration at a small 1/a value appears. At T = 50, nearly

%
40

20 ]

0

Figure 9. Histogram distribution of 1/a values of observable comets as computed by the Monte Carlo
method. x,= 1.0 and x*=0.02. T = 50.
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Figure 10. Histogram distribution of 1/a values of observable comets as computed by the Monte Carlo
method. x,= 1.0 and «*= 0.02. T = 60.

25 per cent of observable comets have 1/a values in the interval (0,5 x 107> Au™"), and at
T =100, almost 55 per cent of them are found in the same interval.

In order to investigate how the above tendency is modified when a different initial value
of 1/a is adopted, we considered three different cases, and in order to save space the results
are given in the following tables, instead of appealing to graphs. One notes that as the initial
value x, is decreased the above tendency becomes even more remarkable.

Although we are not concerned with any specific theory on the origin of comets, it is
nevertheless worthwhile to point out how the present computation may have a bearing on
cometary cosmogony. In Lyttleton’s accretion hypothesis, initial comets have semimajor
axes of some 10%Au, so that the initial value of 1/z in our units is comparable to unity.
On the other hand, Oort’s new comets have initially @ ~ 10* AU or greater, so that his theory
corresponds to xo=0.1. The case xo=—0.1 corresponds to initially weakly hyperbolic
comets (Yabushita & Hasegawa 1978).

By comparing the three tables with each other, it is immediately seen that the energy
distribution at 7= 50 or 100 is almost independent of the initial energy; Indeed, even for
the most extreme case xq=— 0.1, the energy distribution at 7=50 or 100 is hardly
distinguishable from the cases xo =0.1 or 0.5.

The result thus shows that the distribution of 1/a values of comets varies rapidly with
time and could be explained in terms of planetary perturbations alone.
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Figure 11. Histogram distribution of 1/¢ values of observable comets as computed by the Monte Carlo
method. x,= 1.0 and «*= 0.02. T = 100.

6 Conclusions and discussions

From the results presented in Section 3-S5, it is possible to derive some conclusions which
may have a bearing on the cosmogony of comets. First, the dynamical expulsion of comets
from the solar system takes place so rapidly that after 3—6 x 10°yr after their formation,
only 10 per cent or less of them are left, which confirms the earlier findings of Lyttleton
& Hammersley. Secondly, the distribution of the number of perihelion passage, N, is
asymptotically proportional to N2 for initially parabolic comets, which is in accord with
the empirical result of Everhart. When physical disintegration is allowed for, it is propor-
tional to N™"?exp (— k2V). Since k2 is non-zero for actual comets, comets which make
more than 40—50 revolutions are extremely rare (less than 10 per cent, say). Thirdly, and
most important, energy distribution among observable comets varies rapidly and after 50
units of time (3 x 10%yr), no trace of initial energy can be found. Indeed, whatever the
initial energy, the 1/a distributions after 50 units are almost the same, as has been shown in
Section 5. This result is implicitly contained in the work of Lyttleton & Hammersley (1964).
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Table 1. Distribution of 1/a values of long-period comets (Monte Carlo result), = 0.02,
x o(initial) = 0.5.

Ya AU T=5 T=10 T=50 T = 100
(X10%)
0-5 108 185 829 (24.6%) 942 (55.1%)
5-10 111 199 85 (13.1%) 20 (6.1%)
10-15 120 219 27 (8.9%) 4 (2.6%)
15-20 127 73 6 (3.3%) 7(7.6%)
20-25 108 49 10 (8.0%) 5(7.9%)
25-30 43 29 7 (7.6%) 3 (6.4%)
30-35 48 23 2 (2.8%) 0 (0%)
35-40 30 14 4 (6.9%) 3(10.2%)
4045 18 13 6 (12.5%) 1(4.1%)
45-50 20 13 5(12.3%) 0 (0%)
50-55 23 13 1 0
55-60 18 10 3 0
6065 12 6 0 0
65-170 15 13 i 3
70-175 11 12 0 1
75-80 9 7 3 0
8085 S 7 2 2
85-90 14 5 0 2
90-95 4 S 1 0
95-100 10 3 0 1

Figures in brackets give the fraction of comets in each energy interval calculated from the
Monte Carlo result, allowing for the period.

Table 2. Distribution of 1/a values of long-period comets, x*= 0.02,x,=0.1.

1/a AU™! T=5 T=10 T=50 T =100
(X107%)

0-5 136 205 844 (30.8%) 930 (48.3%)

5-10 131 259 70 (13.3%) 22 (5.9%)
10-15 120 202 27 (11.0%) 9(5.2%)
15-20 130 71 13 (8.8%) 8 (7.7%)
20-25 107 38 7 (6.9%) 4 (5.6%)
25-30 44 22 1(1.3%) 5(9.5%)
30-35 32 19 4 (1.7%) 4 (9.7%)
35-40 17 18 3(6.4%) 0 (0%)
4045 26 14 3 (7.7%) 1(3.6%)
45-50 15 13 4 (12.0%) 1(4.3%)
50-55 8 7 1 0
55-60 16 6 4 2
60—65 7 8 1 2
65-70 16 4 1 0
70-175 7 3 2 0
75-80 15 9 0 2
80-85 11 9 0 1
85-90 10 5 1 0
90-95 4 2 0 0
95-100 4 5 2 1

Figures in brackets give the fraction of comets in each energy interval calculated from the
Monte Carlo result, allowing for the period.
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Table 3. Distribution of 1/a values of long-period comets. The initial orbit is weakly hyper-
bolic, x,= — 0.1, ¥k*=0.02. x,= — 0.1 corresponds to a hyperbolic velocity 243 m/s at a
great distance.

Ya AU T=5 T=10 T=50 T=100
(x107%)

0-5 119 226 827 (30.5%) 954 (65.0%)

5-10 124 231 91 (17.5%) 18 (6.3%)
10-15 135 218 23 (9.5%) 9 (6.8%)
15-20 147 68 10 (6.8%) 3(3.8%)
20-25 113 36 9 (8.9%) 2 (3.7%)
25-30 45 23 5 (6.7%) 1(2.5%)
30-35 20 14 1(1.7%) 1(3.2%)
35-40 18 10 2 (4.3%) 1(3.9%)
40-45 27 12 3 (7.8%) 1(4.8%)
45-50 16 12 2(6.1%) 0 (0%)
50-55 20 9 3 1
55-60 9 13 3 0
60-65 12 6 0 0
65-170 15 S 3 0
70-175 12 5 1 0
75-80 9 8 0 0
80-85 S 6 0 0
85-90 7 4 1 1
90-95 7 4 0 1
95-100 6 1 1 1

Figures in brackets give the fraction of comets in each energy interval calculated from the
Monte Carlo result, allowing for the period.

Table 4. Theoretical (Monte Carlo) result (x,=1) and the observed distribution of 1/a. Figures in
brackets give the fraction of comets in each energy interval calculated from the Monte Carlo result,
allowing for the period.

l/a (AU™Y) 107°a"%* T=150 T=60 T'=100 T =150 Observed

(X107%) distribution
0-5 395 818 (28.9%) 875 (36.0%) 943 (53.6%) 964 (67.5%) 46 (60.5%)
5-10 20.5 103 (18.8%) 63 (13.5%) 13 (3.8%) 13 (4.7%) 13 (17.1%)

10-15 442 16 (6.3%) 20 (9.2%) 10 (6.3%) 3(2.3%) 4 (9.3%)

15-20 73.2 10 (6.5%) 7 (5.3%) 6 (6.3%) 3(3.8%) 2 (2.6%)

20-25 106 5 (4.7%) 4 (4.4%) 5(7.6%) 3 (5.6%) 3(3.9%)

25-30 144 3 (3.8%) 4 (6.0%) 2 (4.1%) 1(2.6%) 3(3.9%)

30-35 185 2 (3.3%) 4 (7.7%) 2(5.3%) 2 (6.6%) 2(2.6%)

35-40 196 7 (12.2%) 4 (8.2%) 0 (0%) 2 (6.9%) 0 (0%)

40-45 277 5(12.3%) 1(2.9%) 2(7.9%) 0 (0%) 0 (0%)

45-50 327 1(2.9%) 2 (6.8%) 1(4.7%) 0 (0%) 3 (3.9%)

50-55 380 1 0 1 0 6

55-60 436 0 2 1 0 2

60-65 494 2 0 1 1 4

65-70 554 2 0 1 0 1

70-75 617 3 2 0 0 1

In calculating the percentage of comets in each energy interval, correction is made for the period. Those
with 1/a > 50 X107° AU " are excluded because data are scarce.
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Everhart made a similar analysis but he plotted 1/a values against N, and was not able to
obtain a distribution such as shown in Fig. 11. In contrast to his result, our work shows that
whatever the initial value of 1/a, after some time the distribution comes to have a strong
concentration near 1/a = 0.

Current interpretation of the peak near 1/a =0 of the observed distribution of binding
energies is that it indicates the existence of a large number of comets, which are
unobservable owing to large perihelion distances, and that such comets are deflected into the
observable region of the solar system by the perturbation of passing stars. If it is assumed
that the solar system always has had comets and that the cometary population is now in a
steady state, then the current interpretation is inescapable. Weissman (1978) carried out a
simulation of the process and obtained a distribution of 1/a values which is close to that
observed. One must, however, keep in mind that scientific observations of comets spans
only 200yr, and there is no rigorous basis for the assumption of a steady state. It is equally
possible to argue that comets are a transient phenomenon. If so, it will be important to see
whether the observed distribution of 1/a can be accounted for by planetary perturbation
alone, assuming that comets were injected into the solar system at an earlier epoch. The
result presented in Section 5 shows that the distribution of 1/a as observed at present is also
consistent with comets as a transient phenomenon of the solar system. The result that the
distribution of 1/a values (corrected for period) is hardly dependent upon the initial value
after 50 or 100 units of time makes it possible to specify on the above assumption the time
when comets first became members of the solar system. By comparing Fig. 8, which gives
the observed distribution, with Tables 1—4, which give the theoretical distribution, it may be
concluded that the time is approximately 100 units (or 5.8 Myr) before present. In any case,
it is unlikely that T'< 50 or T > 150. A definite answer as to which of the two assumptions
is correct may be got by a successful future mission to a comet (or comets).
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Appendix

Here it will be shown that the integral equation (4.5) admits a solution which has a simple
analytical form. To do so, assume a solution of the form

F(\, x) =A exp (kx)

where A and k are constants. By inserting the above form of F(}, x) into equation (4.5), it is
easily found that

1
AeXP(kx)"\_/EeXP( V2x) + \/2 P \/ [exp (kx) —exp (—/2x )]*exp(\/);)}, 0

provided that k < +/2. This equation is satisfied if
_ 2 V| A
V2 +4/2) 2k =2 k++2
These equations can be solved to give

V2
VI—A+1

The solution F(A, x) is therefore given by

k=—+2(1—-2), A=

FO\, x)=+/2 1-_—;_—?\exp [—v2(0 =N x].

We note that

fwik,_lF,(x)dx=f FQ\, x)dx = 1( ! 1) iuk
0 r=t 0 \/——7\ =1 (2N
Thus, we get the following integral,
@2r-nn

@n!!
which is equation (4.7).

fn F.(x)dx =
0
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