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A statistical test for detecting genetic differentiation of subpopulations is described 

that uses molecular variation in samples of DNA sequences from two or more 

localities. The statistical significance of the test is determined with Monte Carlo 

simulations. The power of the test to detect genetic differentiation in a selectively 

neutral Wright-Fisher island model depends on both sample size and the rates of 

migration, mutation, and recombination. It is found that the power of the test is 

substantial with samples of size 50, when 4Nm < 10, where N is the subpopulation 

size and m is the fraction of migrants in each subpopulation each generation. More 

powerful tests are obtained with genes with recombination than with genes without 

recombination. 

Introduction 

The extent to which natural populations are subdivided into genetically differ- 

entiated subpopulations is of interest to a wide variety of biologists, including evolu- 

tionary biologists, conservation biologists, and plant and animal breeders. Traditional 

indexes, such as Wright’s ( 195 1) fixation indexes, indicating the amount of genetic 

differentiation between local populations are based on allele frequencies and have 

frequently been estimated by using data on enzyme polymorphisms (Nei 1987, pp. 

159-166, 187- 192; Weir 1990, Chap. 5). Modern techniques of molecular biology 

make it possible to gather detailed information about DNA-level genetic variation in 

populations. Recently, Nei ( 1982) and Lynch and Crease ( 1990) have introduced 

adaptations of Wright’s fixation indexes, adaptations that are particularly suited for 

data on DNA sequence and restriction-map variation. Various ways of estimating 

gene flow with molecular data have also been studied (Slatkin and Barton 1989). 

A natural question to ask is whether estimates of genetic differentiation are com- 

patible with the null hypothesis that the subpopulations are not genetically different. 

Clearly, it would be desirable to have a statistical test for this purpose. Most estimates 

of genetic differentiation are not useful test statistics because their distribution under 

the null hypothesis is not known, and so it is not clear how to calculate significance 

levels. We describe here a simple nonparametric method for testing the null hypothesis 

of no genetic differentiation between subpopulations at different localities. The method 

is permutation based, using Monte Carlo simulations to estimate significance levels, 

and is particularly suited for data on nucleotide variation in samples from two or 

more localities. In a recent paper, Lynch and Crease ( 1990) suggested this approach 
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Detecting Geographic Subdivision 139 

but did not investigate its properties. Stoneking et al. ( 1990) have also recently em- 

ployed this approach in analyzing geographic variation in human mitochondrial DNA. 

The method is based on the following simple idea: Suppose that DNA is collected 

from individuals from two or more localities. The nucleotide sequences (or restriction 

maps) of a genetic region are determined for each of the sampled individuals. These 

nucleotide sequences, referred to as “sampled DNA sequences,” are the data on which 

a statistical test of geographic subdivision is based. A test statistic, which estimates a 

measure of the genetic differentiation of the subpopulations and which will be specified 

later, is calculated from the sampled DNA sequences. The problem is to determine 

whether the observed value of the test statistic is statistically significant. To do this we 

use a permutation-based procedure. If there is no genetic differentiation of subpop- 

ulations, then which locality a DNA sequence comes from is irrelevant. Thus randomly 

assigning the sampled DNA sequences to the different localities will produce a “new” 

sample that is distributionally equivalent to the original sample. By repeatedly randomly 

assigning the sequences in this way, the statistical significance of the observed value 

of the test statistic can be estimated. 

The traditional method of testing for genetic differentiation of populations is a 

x2 test of allele frequencies in samples from different localities (Nei 1987, p. 227). 

This test can be directly adapted to use with nucleotide variation by treating each 

distinct haplotype as an allele. (A haplotype is a particular sequence or restriction 

map.) If the number of haplotypes is so large that the expected numbers of each 

haplotype from each locality are very small, then this test is not very powerful. In the 

extreme case, where each haplotype is unique in the sample, there is no information 

about genetic differentiation in the sample frequencies of haplotypes. This situation 

can occur when a large region of DNA is sequenced or when it is mapped with many 

different restriction enzymes. To examine this issue, we will compare the power of 

the permutation-based test with that of the x2 test, for a variety of sample sizes, mutation 

rates, and recombination rates. 

Two distinct classes of test statistics will be considered. One class, referred to as 

“haplotype statistics,” is based on haplotype frequencies in the sample, as in the x2 

test. For these statistics, it does not matter whether two haplotypes differ by one nu- 

cleotide or by hundreds. The other class of test statistics, the sequence statistics, uses 

the information on the number of differences between sequences. The statistics Ysr 

(Nei 1982 ) and NsT (Lynch and Crease 1990) are sequence statistics. We will investigate 

several sequence statistics to compare their performance with that of haplotype test 

statistics. 

Statistics 

The traditional method of testing for genetic differentiation of samples from 

different localities is a x2 test based on allele frequencies (Nei 1987, p. 227). If each 

distinct haplotype (sequence or restriction map) is treated as an allele, then this test 

can be directly applied. The test statistic is 

(1) 

where L is the number of localities, K is the number of haplotypes in the total sample, 
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140 Hudson et al. 

ni is the sample size from locality i, nij is the observed number of copies of haplotype 

j from locality i, and fij is the frequency of haplotype j in the total sample. Indeed, 

5 nij 
fij+L* 

C ni 
i=l 

This statistic is the standard x2 statistic used to test for homogeneity in an L X K 

contingency table. Under the null hypothesis, x2 should be approximately x2 distributed 

with (L- 1 )( K- 1) degrees of freedom, and thus the statistical significance of an ob- 

served value of x2 can be assessed by comparison with the critical values of the x2 

distribution, In practice, rare haplotypes are lumped together so that the expected 

numbers of each haplotype in each locality are not too small, Results will be presented 

for this method where rare haplotypes are lumped so that the expected number of 

each haplotype in each locality is at least one. 

In addition to x 2, we will consider another haplotype statistic, Hsr , defined as 

HST = ~-(HsIHT) y (2) 

where Hs is a weighted average of estimated haplotype diversities in the subpopulations, 

and HT is an estimate of the haplotype diversity of the total population; that is, 

L 

Hs = C WiHi @a) 
i=l 

and 

HT = 

where 

Hi = 

3, is the frequency of the jth haplotype in the sample from locality i, Wi is a weighting 

factor for population i to be specified later, and n is the total sample size, (n 

=C ;=I ni). HsT can be considered an estimator of Nei’s Gsr. Nei has suggested an 

alternative estimator of Gsr, which could be used as a test statistic: 

1 _ 

GST = ~-(HsIHT) T (5) 

where 

& = 1 -2 sj + Hs/iTL , (6) 
j=l 
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Detecting Geographic Subdivision I4 1 

and where n” is the harmonic mean of the sample sizes from the localities (Nei 1987, 

pp. 190- 192). I& is an unbiased estimate of total gene diversity (Nei and Chesser 

1983). In testing for genetic differentiation, we have found that I&- has power identical 

to that of HsT, in every case that we have examined. 

The other statistics that we will consider are sequence statistics and require some 

additional notation. To simplify the discussion, we consider only two localities, but 

the arguments can easily be generalized. Let dzj,zk denote the number of differences 

(restriction sites or nucleotide sites) between the jth sequence from locality i and the 

kth sequence from locality 1. The average number of differences between sequences 

from within locality i is denoted Ki, i = 1, 2, and the average number of differences 

between two sequences regardless of their locality is denoted KT. Then, 

ni-I ni 

C: 2 du.ik 
K, = j=l k=j+l 

I 

ni 

0 
,i= 1,2 (7) 

2 

and 

2 ?t-l tli nl n2 

C C 2 dij,ik + C IZ dlj,zk 
KT = i=l j=l 

(8) 

One sequence statistic that, we will consider is 

KST = ~-(&/KT) 9 (9) 

where KS is a weighted average of the K, and K2, and where 

Ks = wK,+( 1-w)Kz , (10) 

where w is in the interval (0; 1). Simulations, carried out as described in the Simulation 

Methods section below, suggest that the most powerful test based on KsT is obtained 

with w = nl/(nl+n2). Unless otherwise specified, KsT will be calculated with this 

weighting. The statistic KsT is identical to the sequence statistic ~sr of Nei ( 1982), 

except for the choice of w, which for ysr is proportional to the actual subpopulation 

size-or, typically, in practice- 1 divided by the number of subpopulations. The sta- 

tistic iVsr of Lynch and Crease ( 1990) is also very similar to KST, differing in the 

weighting factor w and in replacing KT by the average number of differences between 

sequences from dz&rent localities. (In contrast, KT is the average number of differences 

between sequences, regardless of the locality from which they were drawn.) 

The statistics Ysr and NsT are intended to provide a measure of the extent of 

genetic differentiation in a subdivided population. In contrast, our goal is to test whether 

two or more localities are genetically different. For this reason we will seek weightings 

which maximize the power that the tests have to detect genetic differentiation, while 

acknowledging that these weightings may not be appropriate for other purposes. 
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142 Hudson et al. 

The statistics HsT and Hs can be calculated with the same formulas as are KsT 

and KS if, for each i, j, k, and 1, the value of dii,lk is replaced by Siilk, where 8ij,k is 0 

if dij.lk is 0 and is 1 otherwise. To study a statistic that takes account of the number 

of nucleotide differences between different haplotypes but does not give as much 

weighting to large numbers of differences, we considered the statistics K& and G. 

These are calculated as are Ksr and KS, respectively, except that dij.,k is replaced by 

log( 1 + dil,lk). For example, 

ni-1 ?I, 

C C lOg( l+dv,ik) 
Kt = ]=I k=j+l 

I 

ni 

0 
,i= 1,2. 

2 

(11) 

The logarithm function is used to downweight the cases where dii,lk is large. We have 

not corrected the dil,jk for multiple mutations at the same site. 

Two other statistics, 2 and Z*, referred to as “rank statistics,” will also be ex- 

amined. To calculate the rank statistic, one first rank orders all the do,lk values in order 

of increasing size. The 2 statistic is a weighted sum of Z1 and &, where Zi is the 

average of the ranks of all the dij.lk values for pairs of sequences from within locality 

i. The null hypothesis is rejected if the Z statistic is too small. Z * is the weighted sum 

of Z 7 and Z :, where these are the average of the logarithm of 1 plus the rank of the 

dil,lk values for pairs of sequences from within locality 1 and locality 2, respectively. 

The permutation-based method for assessing the statistical significance of an 

observed value of a test statistic will be described in terms of two localities, but the 

generalization to more than two localities is straightforward. 

Suppose that we have both a sample size n1 from locality 1 and a sample of size 

n2 from locality 2. The null hypothesis that we want to test is that the two subpopu- 

lations are not genetically differentiated. Under the null hypothesis, the two samples 

are distributionally equivalent to two samples obtained by randomly partitioning a 

sample of size nl+n2 from a single population into two subsets, of sizes nl and n2, 

respectively. Thus, if we randomly partition the pooled sample many times, calculating 

the statistic each time, then we can estimate the P value of the observed value of the 

statistic. (The P vaiue is the probability of obtaining either the observed value of the 

statistic or a more extreme value.) For example, consider the test statistic KST. We 

denote the observed value of the statistic for our sample by ( KST). Under the null 

hypothesis, we expect KST to be near 0, and so we will reject the null hypothesis if 

( KST) is too big. The P value of ( KST) is estimated by the proportion of random 

partitions that result in KST r ( KST). Large values of ( KST) have small P values. In 

all cases, we used 1,000 random partitions to estimate the P value. We are, in effect, 

estimating the P value from the outcome of 1,000 Bernoulli trials; thus the variance 

of our estimate of the P value is p( 1 -p)/ 1,000, where p is the true P value. If the 

estimated P value is small, say, ~0.05, then we reject the null hypothesis that the two 

subpopulations are not genetically differentiated. 

The quantity KT is a constant over partitions, since the average number of dif- 

ferences between sequences is the same no matter how the sequences are assigned to 

locality. It follows from the definition of KS, that KS is equivalent to KsT as a test 

statistic, except that a small observed value of KS, rather than a large value, would 
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Detecting Geographic Subdivision 143 

lead to rejection of the null hypothesis. To see this, note that, if, for a particular 

partition, KsT > (KS=), then it is necessarily the case that the value of Ks for that 

partition is less than the observed value of KS, (KS). So the P value of (Ks) is identical 

to the P value of (Ksr ) . By exactly the same argument, the P value of (H,) is identical 

to the P value of ( HST). 

The extension to more than two localities is immediate. The P value is estimated 

in the same way as before, except that now 2 ;=I ni DNA sequences are partitioned 

into L subsets of sizes rrr, n2, . . . , nL. 

The P values of the other statistics- Kg, Z, Z *, and Hs-are calculated in the 

same way. In addition, the P value of x2 can also be determined by this permutation- 

based method rather than by using the critical values from the x2 distribution. 

When more than two localities are considered and the null hypothesis is rejected, 

it is of interest to ask whether the localities of any subset are not genetically differ- 

entiated. To answer this question properly involves simultaneous inference, and so 

we suggest the simpler approach of just looking at the pairwise comparisons. 

Simulation Methods 

We consider a single alternative model-namely, a selectively neutral Wright- 

Fisher island model-with two diploid subpopulations, each of size N. Properties of 

samples under this model depend on 4Nm, 4Nr, and 4Nu, where m is the fraction of 

each subpopulation which is made up of migrants in each generation, r is the expected 

number of recombination events (crossovers) per generation per gamete in the region 

sequenced, and u is the neutral mutation rate per generation in the region sequenced. 

All mutations are assumed to be selectively neutral and are assumed to occur at sites 

not already segregating in the population. This is a version of the infinite-sites neutral 

model proposed by Kimura ( 1969). This model has been extensively studied for 

completely linked regions. [e.g., see Watterson 1975; Hart1 and Clark 1989, chap. 6 ) .] 

Samples can be quickly generated under this model without recombination by using 

the coalescent approach (Strobeck 1987). Minor modifications of Hudson’s ( 1983) 

method using Strobe&s approach allow uniform recombination to be incorporated. 

All the results concerning the power of the tests are based on simulations carried out 

in this way, using the coalescent approach. For each parameter combination, 1,000 

samples were generated. Each sample consists of haplotypes drawn from a population 

at statistical equilibrium. For each sample, all the test statistics were calculated, and 

the null hypothesis was tested by generating 1,000 partitions of the sample. The prob- 

ability of rejection of the null hypothesis by a particular test statistic-i.e., the power 

of the test-was estimated as the proportion of the 1,000 samples for which the null 

hypothesis was rejected by that statistic. Recall that the null hypothesis is rejected if 

the estimated P value of the observed value of the test statistic is ~0.05. The P value 

is estimated using the permutation-based method described in the preceding section. 

In the following paragraphs, we do not attempt to explore the entire parameter space 

but will examine a small number of cases which illustrate some properties of the test. 

The results are presented in tables l-3. 

For each of the statistics KS, Kg , Z, Z *, and Hs, it is necessary to assign a value 

to w, a weighting parameter. To fmd approximate values of w for which the power of 

the test is maximized, all values of w that are between 0.05 and 0.95, at intervals of 

0.05, were tried for each statistic and for each of the rzl values shown in table 1. The 

results (not shown) indicated that the power of the tests is quite sensitive to the factor 
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144 Hudson et al. 

Table 1 
Power of Tests to Detect Subdivided Population 

POWER OF’  

? 
n2 flT GST d Z* Hs x1 x2 (table)b KS Z 

35... 5 0.88 0.054 0.57 0.61 0.62 0.42 0.37 0.44 0.47 

30... 10 0.90 0.048 0.79 0.83 0.84 0.70 0.66 0.65 0.67 

25 15 0.91 0.051 0.86 0.90 0.89 0.86 0.83 0.70 0.76 

20 20 0.91 0.052 0.87 0.91 0.90 0.92 0.87 0.75 0.80 

NOTE.-FO’OT each row, 1,OCKl samples were generated under a Wright-Fisher island model with two subpopulations. 

For all cases, 4Nu = 5.0 and 4Nm = 2.0, and complete linkage was assumed. For each sample, 1,000 random partitions 

were produced, and the P value of the observed value of the statistic was calculated. & is the average value of HT calculated 
: 

with eq. (3). G, is the average value of C& calculated with eq. (5). The weighting, w = n,/(nl + n2) was used to calculate 

the statistic Ks. For&, Z, Z*, and Hs, the weighting w, = (q-2)/( n,+n2-4) was used. Ifthe observed value ofthe statistic 

had P s 0.05, the null hypothesis of no genetic differentiation was rejected. 

’ Data are fractions of samples for which null hypothesis was rejected when indicated statistic was used. 

b Obtained using critical values of x2 distribution. 

w, with much reduced power when suboptimal values of w are used. As expected, 

when nl = n2, w = 0.5 is optimal for all statistics. For KS it was found that the most 

powerful test was obtained with a weighting of w = nl /( nl + n2). For the other statistics, 

w = ( nl-2)/( nl+n2-4) was close to optimal for the parameter values in table 1. These 

are the weightings used in table 1. This issue of optimal w values needs more thorough 

investigation for different values of nl and n2. For a given total sample size, the power 

of the test is largest when nl = n2, as is also shown in table 1. 

The x2 statistics were calculated by lumping haplotypes so that the expected 

number in each locality is 2 1. In all samples generated for table 1, there were at least 

two haplotypes present in each sample after this lumping, and thus the test statistic 

could be calculated. With smaller mutation rates, such as some of the cases in table 

3, there remained only one haplotype after lumping, and no x2 test was possible. In 

these cases the power reported in the table is the proportion of all 1,000 samples for 

which the test (a) was possible and (b) resulted in rejection of the null hypothesis. 

Results 

The results are shown in tables l-3. Although there is no single test that is best 

for every parameter combination considered, there are certain patterns that are dis- 
cernible in tables l-3. In every case, the power of Ks is less than or equal to that of 

Kc, and the power of Z is less than or equal to that of Z *. Thus Ks and Z are inferior 

statistics for our purpose and will not be discussed further. The test based on x2, using 

the critical values of the x2 distribution [indicated by x2 (table)] is always less powerful 

than the test based on x2 with the P values estimated by the permutation-based method. 

At either low sample sizes or high mutation rates (when most haplotypes are in very 

low frequency and when lumping is important) the difference in power can be sub- 

stantial, but in other cases the differences are not great. The test using the critical 

values of the x2 distribution will not be considered further. This leaves us with the 

following four test statistics to discuss: Kt, Z *, Hs , and x 2. 

For almost all cases without recombination, the test based on x2 is most powerful. 

The only exceptions are either with very large mutation rate (4Nu = 15 and nl = n2 

= 25) or with rather small sample size in one or both localities (with 4Nu = 5 and nl 
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Table 2 

Power of Tests: Effects of SamDle Size, 4Nm. and 4Nr 

4Nr = 0” 4Nr = 20b 

POWERC OF POWERC OF 

n1 (=nz) 4Nm & K,+ Z* Hs x2 x2 (table) KS Z & Kf Z* Hs x2 x2 (table) KS Z 

10 

IS 

25 

25 

25 

25 

50 

50 

5.0 0.030 0.31 0.33 0.29 0.29 0.18 0.24 0.25 0.020 0.50 0.45 0.24 0.14 0.08 0.39 0.34 

5.0 0.033 0.48 0.53 0.51 0.55 0.41 0.37 0.39 0.019 0.68 0.66 0.54 0.38 0.23 0.57 0.51 

1.0 0.069 0.99 1 .oo 0.99 1 .oo 0.99 0.93 0.96 0.029 1.00 1.00 1.00 0.97 0.91 1.00 1.00 

2.0 0.054 0.94 0.97 0.95 0.99 0.96 0.8 1 0.85 0.025 0.99 0.99 0.97 0.93 0.83 0.98 0.95 

5.0 0.032 0.67 0.75 0.77 0.86 0.77 0.5 I 0.56 0.019 0.92 0.91 0.87 0.82 0.63 0.79 0.73 

10.0 0.020 0.45 0.49 0.55 0.59 0.48 0.32 0.35 0.013 0.69 0.64 0.70 0.6 1 0.42 0.50 0.44 

5.0 0.033 0.92 0.96 0.97 0.99 0.99 0.77 0.83 0.018 1 .oo 1.00 1.00 1 .oo 1 .oo 0.97 0.93 

10.0 0.019 0.71 0.79 0.85 0.96 0.93 0.52 0.57 0.013 0.94 0.93 0.97 0.99 0.97 0.81 0.71 

'Average HT = 0.91 ~0.92. 

b Average HT = 0.97. 

' Estimated as in table 1, with 4Nu = 5.0 and either 4Nr = 0.0 or 4Nr = 20.0, where r is expected number of recombination events (crossovers) per generation per gamete in region sequenced. 
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Table 3 

Power of Tests: Effects of 4Nu and 4Nr 

4Nr=O 4Nr = 16Nu’ 

POWER b POWERS 

Z* Hs x2 ~*(table) KS Z K5 Z* Hs x2 x2 (table) KS Z 

0.156 

0.313 

0.625 

1.25 

2.5 ., ._ 

5.0 

10.0 

15.0 . . . 

0.24 (0.041) 0.16 0.16 0.16 0.33 0.22 0.16 

0.40 (0.039) 0.31 0.31 0.29 0.39 0.35 0.21 

0.57 (0.040) 0.44 0.44 0.41 0.50 0.47 0.39 

0.72 (0.040) 0.53 0.55 0.54 0.65 0.57 0.47 

0.84 (0.038) 0.61 0.66 0.66 0.78 0.70 0.51 

0.91 (0.031) 0.70 0.75 0.79 0.86 0.78 0.52 

0.95 (0.025) 0.77 0.84 0.86 0.87 0.78 0.53 

0.97 (0.020) 0.78 0.86 0.89 0.84 0.68 0.49 

0.16 0.26 (0.039) 0.19 0.19 0.18 0.34 0.23 0.18 0.19 

0.30 0.41 (0.040) 0.31 0.30 0.29 0.40 0.34 0.29 0.29 

0.42 0.62 (0.040) 0.47 0.47 0.46 0.56 0.50 0.44 0.44 

0.50 0.79 (0.040) 0.61 0.61 0.61 0.74 0.65 0.54 0.54 

0.54 0.92 (0.029) 0.79 0.80 0.79 0.86 0.74 0.67 0.64 

0.57 0.97 (0.019) 0.92 0.90 0.88 0.81 0.64 0.80 0.73 

0.59 0.99 (0.010) 0.98 0.95 0.86 0.54 0.31 0.92 0.84 

0.55 0.99 (0.007) 0.99 0.98 0.73 0.34 0.17 0.97 0.91 

’ With 4Nr equal to four times mutation parameter. 
b Estimated as in table 1, with n, = n2 = 25 and 4Nm = 5.0 
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Detecting Geographic Subdivision 147 

= n2 = 10, or nl = 35, n2 = 5, or nl = 30, n2 = 10). With recombination, x2 is most 

powerful for sample sizes of 50 or for low mutation rates (4Nu I 2.5). For most other 

cases with recombination, Kg is most powerful, although, with unequal subsample 

sizes, Hs and Z * are slightly more powerful than Kz, as shown in table 1. 

The results in table 2 show that the power of the tests decreases rapidly as 4Nm 

increases. For nl = rr2 = 25 and 4Nr = 0, the power of the tests decreases from nearly 

lOO%, at 4Nm = 1.0, to -5O%, at 4Nm = 10.0. This decrease in power is not surprising, 

since it is well known that the island model behaves as a single large panmictic pop- 

ulation if the migration rate is large (Hart1 and Clark 1989, pp. 3 1 O-3 15 ). For the 

parameters in tables 2 and 3, the presence of recombination increases the tests’ power 

to detect subdivision. For example, with nl = n2 = 10, 4Nm = 5.0, 4Nu = 5.0, and 

4Nr = 0, the power of the test with Z* is 0.33, whereas, with 4Nr = 20.0, the power 

with Z* is 0.45. These results suggest that, for detecting population differentiation, 

genes with recombination are more informative than are genes without recombination, 

everything else being equal. Hence, for making inferences of this sort about genetic 

differentiation of subpopulations, nuclear genes may be more informative than are 

mitochondrial genes. One must keep in mind that the neutral mutation rate may be 

considerably larger for typical mitochondrial genes than for nuclear genes and that 

the effective population size of mitochondria may be significantly less (perhaps by a 

factor of 4) than that for nuclear genes. 

From table 2, it is clear that larger samples can increase the power of the test 

substantially. For example, when 4Nm = 5.0 and 4Nr = 0, the power of the test with 

Z* and x2 goes from 0.33 and 0.29, respectively, to 0.96 and 0.99, respectively, as 

the total sample size goes from 20 to 100. 

Table 3 shows that the mutation rate also influences the power considerably. 

However, note that for nl = n2 = 25 and 4Nm = 5 there seems to be, for substantial 

increases in 4Nu beyond 5.0, only a minor gain in power, when there is no recom- 

bination. Thus, for regions with low recombination rates, increased power may be 

obtained more easily by increasing the sample sizes rather than by increasing the size 

of the region sequenced. However, with recombination, the power continues to grow 

as increasingly larger regions are examined. 

Applications 

Our first example is a data set describing restriction-site and insertion/deletion 

polymorphism in a 45-kb region of the white locus on the X chromosome in Drosophila 

melanogaster ( Miyashita and Langley 1988). Sixty-four DNA sequences were sampled 

from three different locations: 20 from Raleigh, N.C., 27 from Texas, and 17 from 

Fukuoka, Japan. A total of 109 polymorphic sites were detected by using four- and 

six-cutter restriction enzymes. For simplicity we considered only the six-cutter results 

for which there were 16 restriction site and 25 insertion/deletion polymorphisms. In 

table 4 the estimated P values of the various statistics for the three pairwise comparisons 

are given. These results for the sequence statistics suggest that the Raleigh and Texas 

subpopulations are not genetically differentiated but that the Fukuoka subpopulation 

is different. In view of the geographical distances involved, these results are not sur- 

prising. In contrast to the sequence statistics, the haplotype statistics have fairly large 

P values for all pairs of localities. We note that Hr, the haplotypic diversities are high 

(>0.99), and consequently we expect the haplotype statistics to lack power to detect 

genetic differentiation. 
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Table 4 

Analysis of Six-Cutter Data of Miyashita and Langley (1988) 

ESTIMATED P VALUE’ 

HT K: Z* Hs x2 x2 (table) KS Z 

Texas vs. Fukuoka 

(n,=27;nz=17) 0.995 0.00 0.00 0.08 0.10 >0.05 0.00 0.00 

Raleigh vs. Fukuoka 

(n, = 20; rz2 = 17) 0.997 0.00 0.00 0.18 0.52 z-o.05 0.00 0.00 

Raleigh vs. Texas 

(n, = 20; n2 = 27) 0.994 0.23 0.34 0.10 0.52 >0.05 0.37 0.32 

’ Based on 1,000 random partitions. 

For a second example, we consider the data of Kreitman and Aguadt ( 1986b), 

describing restriction-enzyme and insertion/deletion variation in a 2.7-kb region of 

the genome surrounding the A& locus in D. melunoguster. A total of 87 DNA se- 

quences were sampled: 60 from Raleigh and 27 from Putah Creek, Calif. There are 

17 restriction-site and 11 insertion/deletion polymorphisms. In addition, there are 

two electrophoretically distinct alleles, Adh ’ and Adh F, which differ by a single amino 

acid. Thus, there are a total of 29 polymorphic sites. Three of the insertion/deletion 

polymorphisms appear to have more than two sizes in the sample (see Kreitman and 

Aguadi 1986b, fig. 3). To simplify the analysis, these positions will be ignored. The 

estimated P values of the statistics are shown in table 5. The sequence statistics all 

have low P values, suggesting that the subpopulations are genetically different. The 

null hypothesis is not rejected by the haplotype statistics, but again the haplotypic 

diversity is quite high, and so we do not expect the haplotype statistics to be very 

powerful. 

The frequencies of AdhF in Raleigh and Putah Creek are -0.3 and -0.6, re- 

spectively. There is strong evidence that both the A& polymorphism and its geographic 

pattern of allele frequencies are maintained by natural selection (Oakeshott et al. 

1982; Kreitman and AguadC 1986~; Hudson et al. 1987; Hudson and Kaplan 1988). 

Thus it is possible that the differences between the Raleigh and Putah Creek populations 

are primarily the result of relatively strong selection acting on the protein polymor- 

phism, rather than just the result of genetic drift with limited migration between the 

populations (for a theoretical treatment of this situation, see Kaplan et al. 199 1). To 

test this hypothesis, it is useful to examine the two AdhF allele groups separately, to 

ascertain whether the AdhF alleles in Putah Creek are genetically different from the 

AdhF alleles of Raleigh. And, similarly, the AdhS alleles can be tested in this way. In 

table 5 the estimated P values are given for the two subsamples-one consisting of 

only AdhF DNA sequences and one consisting only of AdhS DNA sequences-and in 

both cases the results are not statistically significant. Thus, we cannot reject the null 

hypothesis that the subpopulations are genetically undifferentiated neither for the 

AdhF sequences alone nor for the AdhS sequences alone. This is consistent with the 

hypothesis that there is a relatively high rate of migration between the subpopulations 

but that, despite the migration, selection maintains the allele frequency difference 

(Kaplan et al. 1991). 
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Table 5 

Analysis of Data of Kreitman and Aguadd (19866) 

ESTIMATED P VALUE' 

HT KH Z* Hs x2 x2 (table) KS Z 

All data 

(n, = 60; n2 = 27) 

AdhS only 

(n, = 42; n2 = 11) 

AdhF only 

(n, = 18; n2 = 16) 

0.96 0.01 0.01 0.12 0.38 >0.05 0.01 0.00 

0.93 0.2 1 0.22 0.36 0.34 >0.05 0.14 0.17 

0.91 0.45 0.42 0.32 0.39 >0.05 0.54 0.61 

’ Based on 1,000 random partitions. 

Discussion 

We have proposed a permutation-based statistical test for detecting genetic dif- 

ferentiation of subpopulations at different localities and have examined its power to 

detect differentiation under a selectively neutral Wright-Fisher island model. Test 

statistics based on haplotype frequencies and on the number of nucleotide differences 

between sequences were compared. Simulation results indicate how the power of the 

tests depends on the sample size and on the rates of mutation, migration, and recom- 

bination. For high mutation rates (i.e., HT - 1) or small sample sizes, the sequence- 

based statistics are more powerful. For low mutation rates or large sample sizes, tests 

based on haplotype frequencies are more powerful. The simulation results suggest 

that, for given sample sizes, when HT is below a critical value, x2 is best-whereas, if 

HT is above the critical value, ig is usually best. For example, with ~1~ = It2 = 25, if 

HT < 0.95, then x2 appears to be most powerful, and, if HT > 0.95, then Kg is usually 

best. For smaller sample sizes, the critical value of HT is lower, -0.91 for nl = n2 = 

15. For nl = n2 = 50, the critical value appears to be >0.97. An approximate rule is 

that the x 2 statistic is most powerful if HT < 1 - [ 1 / min ( nl , n2 ) ] . There are exceptions 

to this rule, even among the small number of cases that we have examined, as shown 

in table 1 for the case of n1 6 25 and n2 = 15. This issue merits further investigation. 

Since no simulations are needed when the x2 statistic is used, if the P values are 

obtained from the tabulated distribution of the x2 distribution, this is the easiest pro- 

cedure to carry out. However, the results in tables l-3 show that this test [x2( table)] 

is always less powerful than the permutation-based x2 test. Taking into account all 

our results, we suggest the following strategy for testing the null model: 

1. Use X2(table) first. If the null model is rejected, then quit. If it is not, go to 

step 2. 

2. Carry out the permutation tests using x 2, Kz, and Z *. If one is forced to choose 

only one statistic for the permutation test, then the following rules are suggested 

for choosing the Stati?&: (a) If HT < 1- [ 1 /min( n, , n2),], then use x2. (b) If HT 

> 1-[l/min(n,, n2)], then use Kg. 

The results in tables 2 and 3 indicate that genes with recombination result in 

more powerful tests. Two possible reasons for this are that recombination ( 1) increases 

HT and (2) decreases the level of linkage disequilibrium between nucleotide sites. 

Since mitochondrial DNA has no recombination, nuclear DNA may therefore be 
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preferable for testing for genetic differentiation of subpopulations. However, results 

in table 3 suggest that samples of mitochondrial genes and samples of nuclear genes 

with comparable values of HT would lead to tests having comparable power. Also, as 

mentioned earlier, 4Nm is likely to be smaller for mitochondrial genes than for nuclear 

genes, because mitochondrial genomes are haploid and often only transmitted ma- 

ternally. 

Acknowledgments 

This work was supported in part by NIH grant GM42447 to R.R.H. Brian 

Metscher provided expert programming assistance. 

LITERATURE CITED 

HARTL, D. L., and A. G. CLARK. 1989. Principles of population genetics. Sinauer, Sunderland, 

Mass. 

HUDSON, R. R. 1983. Properties of a neutral allele model with intragenic recombination. Theor. 

Popul. Biol. 23: 183-20 1. 

HUDSON, R. R., and N. L. KAPLAN. 1988. The coalescent process in models with selection and 

recombination. Genetics 120:83 I-840. 

HUDSON, R. R., M. KREITMAN, and M. AGUADB. 1987. A test of neutral molecular evolution 

based on nucleotide data. Genetics 116: 153- 159. 

KAPLAN, N. L., R. R. HUDSON, and M. IIZUKA. 1991. The coalescent process in models with 

selection, recombination and geographic subdivision. Genet. Res. 57~83-9 1. 

KIMURA, M. 1969. The number of heterozygous nucleotide sites maintained in a finite population 

due to steady flux of mutations. Genetics 61:893-903. 

KREITMAN, M., and M. AGUAD~. 1986a. Excess polymorphism at the Adh locus in Drosophila 

mefanogaster. Genetics 114:93- 110. 

-. 1986b. Genetic uniformity in two populations of Drosophila melanogaster as revealed 

by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc. Natl. 

Acad. Sci. USA 83:3562-3566. 

LYNCH, M., and T. J. CREASE. 1990. The analysis of population survey data on DNA sequence 

variation. Mol. Biol. Evol. 7~377-394. 

MIYASHITA, N., and C. H. LANGLEY. 1988. Molecular and phenotypic variation of the white 

locus region in Drosophila melanogaster . Genetics 120: 199-2 12. 

NEI, M. 1982. Evolution of human races at the gene level. Pp. 167-18 1 in B. BONNE-TAMIR, 

T. COHEN, and R. M. GOODMAN, eds. Human genetics, part A: The unfolding genome. 

Alan R. Liss, New York. 

-. 1987. Molecular evolutionary genetics. Columbia University Press, New York. 

NEI, M., and R. K. CHESSER. 1983. Estimation of fixation indices and gene diversities. Ann. 

Hum. Genet. 47:253-259. 

OAKESHOTT, J. G., J. B. GIBSON, P. R. ANDERSON, W. R. KNIBB, D. G. ANDERSON, and 

G. K. CHAMBERS. 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase 

clines in Drosophila melanogaster on three continents. Evolution X86-96. 

SLATKIN, M., and N. H. BARTON. 1989. A comparison ofthree indirect methods for estimating 

average level of gene flow. Evolution 43: 1349- 1368. 

STONEKING, M., L. B. JORDE, K. BHATIA, and A. C. WILSON. 1990. Geographic variation in 

human mitochondrial DNA from Papua New Guinea. Genetics 124~7 17-733. 

STROBECK, C. 1987. Average number of nucleotide differences in a sample from a single sub- 

population: a test for population subdivision. Genetics 117: 149- 153. 

WATTERSON, G. A. 1975. On the number of segregating sites in genetical models without re- 

combination. Theor. Popul. Biol. 10~256-276. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/9
/1

/1
3
8
/9

8
6
4
5
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Detecting Geographic Subdivision 15 1 

WEIR, B. S. 1990. Genetic data analysis. Sinauer, Sunderland, Mass. 

WRIGHT, S. 195 1. The genetical structure of populations. Ann. Eugenics 15323-354. 

MASATOSHI NEI, reviewing editor 

Received November 19, 1990; revision received May 20, 199 1 

Accepted May 2 1, 199 1 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/9
/1

/1
3
8
/9

8
6
4
5
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


