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Abstract

We develop a novel second-order closure methodology for uncertainty quantification in
damped forced nonlinear systems with high dimensional phase-space that possess a high-
dimensional chaotic attractor. We focus on turbulent systems with quadratic nonlinearities
where the finite size of the attractor is caused exclusively by the synergistic activity of persis-
tent, linearly unstable directions and a nonlinear energy transfer mechanism. We first illustrate
how existing UQ schemes that rely on the Gaussian assumption will fail to perform reliable UQ
in the presence of unstable dynamics. To overcome these difficulties, a modified quasilinear
Gaussian (MQG) closure is developed in two stages. First we exploit exact statistical relations
between second order correlations and third order moments in statistical equilibrium in order to
decompose the energy flux at equilibrium into precise additional damping and enhanced noise
on suitable modes, while preserving statistical symmetries; in the second stage, we develop a
nonlinear MQG dynamical closure which has this statistical equilibrium behavior as a stable
fixed point of the dynamics. Our analysis, UQ schemes, and conclusions are illustrated through
a specific toy-model, the forty-modes Lorenz 96 system, which despite its simple formulation,
presents strongly turbulent behavior with a large number of unstable dynamical components
in a variety of chaotic regimes. A suitable version of MQG successfully captures the mean
and variance, in transient dynamics with initial data far from equilibrium and with large ran-
dom fluctuations in forcing, very cheaply at the cost of roughly two ensemble members in a
Monte-Carlo simulation.

1 Introduction

Turbulent dynamical systems have been a center of research activity for many decades and this is
both due to the mathematical challenges associated with them but also due to their importance
on many fields of nature and technology such as prediction in geosciences, flow optimization and
design in engineering, and electrical flow prediction in neural science, just to mention a few. By
using the term ‘Turbulent Dynamical Systems’ we refer to complex systems that evolve in time and
‘live’ in high dimensional phase spaces, having a large number of internal instabilities acting, in
general, over different temporal and spatial scales and ultimately lead to strong nonlinear energy
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transfers between modes. These internal instabilities cause rapid growth of small uncertainties
which inevitably exist in the initial conditions, the system parameters, and the modeling equations
such as uncertainty in the forcing.
The above challenges lead naturally to the adoption of a statistical framework where the goal

now is to model and quantify uncertainty rather than trying to ‘avoid’ it. Here we will mainly
focus on uncertainty quantification schemes for turbulent systems with quadratic nonlinearities and
spatially homogeneous statistics motivated by the corresponding problems in fluid flows. In this
case a turbulent regime is characterized by distribution of non-negligible amounts of energy over a
large (if not infinite) number of modes including the stable ones. This wide distribution of energy
over phase space is due to the large number of linearly unstable modes that continuously amplify
volumes in phase space. Obviously for a linear system, the presence of persistent instabilities would
ultimately lead to energy blow-ups. However, for a nonlinear turbulent system this is not the case
since the synergistic activity of nonlinear dynamical effects and persistent linear instabilities creates
a continuous transfer of energy from the unstable to the stable modes - a mechanism that has as a
result the wide distribution of energy over stable and unstable modes.
The goal of this work is first to emphasize some important features of turbulent systems (with

quadratic nonlinearities) associated with their dynamical and energy-transfer mechanisms. Based
on these properties we will then demonstrate some fundamental limitations that widely-used UQ
schemes posses in turbulent regimes. Particular emphasis will be given on UQ closure schemes
based on partial linearization of the dynamics or Gaussian closure of the infinite system of moment
equations.
Motivated by this discussion we will then develop a novel, second-order, closure scheme based on

the direct modeling of the nonlinear energy fluxes which are connected with higher-order statistics.
More specifically by using just second-order information for the statistical steady state we will give
explicit expressions for the nonlinear fluxes which i) are consistent with the dynamical properties
of the exact nonlinear fluxes, ii) reproduce the correct steady state information (both in terms of
energy and stability), iii) are parametrized with respect to instantaneous spatial system properties
(such as total energy) in order to achieve correct temporal scales in the response.
Essentially, we will model the effect of the nonlinear energy transfers on each mode by i) adding to

the linearly unstable modes systematically additional damping which will account for the departure
of energy due to nonlinear terms (balancing the linearly unstable character of these modes), and
ii) adding to the linearly stable modes additional stochastic excitation which will model the energy
received by the unstable modes. The additional damping and stochastic excitation will be added
in a dynamically consistent way in order to satisfy the properties and symmetries of the nonlinear
fluxes produced by the third-order statistics (even though we will not use statistics beyond second
order in our analysis). The relative magnitude of the additional damping and noise for each mode
will be dictated by the second-order, steady state, statistical information and will be parametrized
by a suitable spatial functional of the statistics that follows from scaling arguments.
Through this approach we will create a nonlinear model with the minimal additional damp-

ing and additional stochastic forcing required to reproduce as stable solution the correct energy
distribution of the system in steady state. Moreover, because of the parametrization employed in
the nonlinear fluxes, their dynamically consistent form, and the fact that the linear part in the
approximation scheme is exact, we will see that the developed UQ scheme performs impressively
even in energetic regimes which are completely different from the steady-state. This is also the case
when the forcing parameters are different from those used to compute the steady state statistics,
time-dependent, and do not allow the system to reach a statistichal equilibrium.
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For illustration, validation, and comparison purposes we will use the Lorenz 96 system (L-96)
which is the simplest paradigm of a complex turbulent dynamical systems possessing properties
found in realistic turbulent systems such as, energy-preserving advection, damping and forcing.
From the point of view of statistical properties the turbulent responses of L-96 are characterized
by important energy spanning the whole spectrum, a large number of persistent instabilities, and
strong nonlinear energy transfers between modes. Therefore, L-96 is a perfect candidate both to
illustrate the limitations of existing UQ schemes which are based on Gaussian closure but also to
validate the derived UQ model.

2 Turbulent systems with quadratic nonlinearities

We start by providing the general setup which will be a high dimensional system with linear
dynamics and an energy preserving quadratic part. More specifically, the general system that we
will consider for our analysis is given by

du

dt
= L [u] ≡ [L+D]u+B (u,u) + F (t) + Ẇk (t;ω)σk (t) (1)

acting on u ∈ RN . In the above equation we have:

• L being a skew-symmetric linear operator representing the β−effect of Earth’s curvature,
topology etc. and satisfying,

L∗ = −L.

• D being a negative definite symmetric operator,

D∗ = D,

representing dissipative processes such as surface drag, radiative damping, viscosity, etc.

The quadratic operator B (u,u) conserves the energy by itself so that it satisfies

B (u,u) .u = 0.

Finally, F (x, t) + Ẇk (t;ω)σk (x, t) represents the effect of external forcing i.e. solar forcing, which
we will assume that it can be split into a mean component F (x, t) and a stochastic component with
white noise characteristics.

We use a finite-dimensional representation of the stochastic field consisting of fixed-in-time,
M−dimensional, orthonormal basis (where M can be relatively large)

u (t)= ū (t)+Zi (t;ω)vi.

where ū (t) represent the ensemble average of the response, i.e. the mean field, and Zi (t;ω) are
stochastic processes.

The mean field equation is given by

dū

dt
= [L+D] ū+B(ū, ū)+RijB (vi,vj)+F. (2)
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Moreover the random component of the solution, u′ = Zi (t;ω)vi satisfies

du′

dt
= [L+D]u′+B (ū,u′)+B (u′, ū)+B (u′,u′) + Ẇk (t;ω)σk (t) (3)

By projecting the above equation to each basis element vi we obtain

dZi

dt
= Zj

(
[L+D]vj+B

(
ū,vj

)
+B (vj , ū)

)
.vi +B (u

′,u′) .vi + Ẇkσk.vi

From the last equation we directly obtain the evolution of the covariance matrix R= 〈ZZ∗〉

dR

dt
= LvR+RL

∗

v +QF +Qσ, (4)

where we have:
i) the linear dynamics operator expressing energy transfers between the mean field and the

stochastic modes (effect due to B), as well as energy dissipation (effect due to D) and non-normal
dynamics (effect due to L)

{Lv}ij =
(
[L+D]vj+B

(
ū,vj

)
+B (vj , ū)

)
.vi (5)

ii) the positive definite operator expressing energy transfer due to external stochastic forcing

{Qσ}ij = (vi.σk) (σk.vj) . (6)

iii) as well as the energy flux between different modes due to non-Gaussian statistics (or nonlinear
terms) modeled through third-order moments

QF = ZmZnZjB (vm,vn) .vi + ZmZnZiB (vm,vn) .vj (7)

The last term involves higher-order statistics and therefore suitable closure assumtpions need to be
made in order to setup a UQ scheme. Moreover, the energy conservation property of the quadratic
operator B is inhereted by the matrix QF since

Tr [QF ] = 2ZmZnZiB (vm,vn) .vi (8)

= 2B (Zmvm,Znvn) .Zivi = 2B (u
′,u′) .u′ = 0 (9)

The above exact statistical equations will be the starting point for the approximation schemes
that we will present and develop below.

2.1 The Lorenz 96 system

The simplest prototype example of a turbulent dynamical system is due to Lorenz and is called the
Lorenz 96 (L-96) model. It is widely used as a test model for algorithms for prediction, filtering,
and low frequency climate response [7, 8, 9, 12, 11]. The L-96 model is a discrete periodic model
given by the following system

dui

dt
= ui−1 (ui+1 − ui−2)− ui + F, i = 0, ..., J − 1 (10)
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Figure 1: Space-time of numerical solutions of L-96 model for weakly chaotic (F = 6), strongly
chaotic (F = 8), and fully turbulent (F = 16) regime.

with J = 40 and with F the deterministic forcing parameter. We can easily observe that the energy
conservation property for the quadratic part is satisfied (i.e. B(u,u) .u = 0) and the negative
definite part has the diagonal form D = −I.
The model is designed to mimic baroclinic turbulence in the midlatitude atmosphere with the

effects of energy conserving nonlinear advection and dissipation represented by the first two terms in
(10). For sufficiently strong forcing values such as F = 6, 8 or 16 the L-96 is a prototype turbulent
dynamical system which exhibits features of weakly chaotic turbulence (F = 6), strong chaotic
turbulence (F = 8), and strong turbulence (F = 16) (cf. Figure 1).

Since the L-96 system is invariant under translations we will use the Fourier modes as a fixed
basis to describe its dynamics. Because of the translation invariance property the statistics in the
steady state will be spatially homogeneous, i.e. the mean field will be spatially constant and the
covariance operator will have a diagonal form. In addition if the initial conditions are spatially
homogeneous the above properties will hold over the whole duration of the responce. Although
spatial homogeneity simplifies the technicalities of our analysis, the majority of our conclusions
extend to the non-homogeneous case as shown in Figure 10 below.

In the L-96 system the external noise is zero, and therefore we have no contribution from external
noise in eq. (4), i.e. Qσ = 0. Thus uncertainty can only build-up from the unstable modes of the
linearized dynamics - described by Lv (ū) - which will magnify the initial uncertainty. In Figure 2
we present the number of unstable wavenumbers, i.e. the number of eigenvalue pairs with positive
real part for the linearized matrix Lv (ū) , with respect to the value of the steady state mean field
(note that spatial homogeneity implies spatially constant mean field). In the same plot we show
the with dashed lines the steady state value of the mean field for specific values of the forcing
parameter F. Based on the presence of persistent positive eigenvalues in the steady-state we have
(for sufficiently large F ) the following energy cycle (Figure 3):

1. Energy from the external excitation F leads to the growth of the mean field energy 1
2 ū.ū

(equation (2)).
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Figure 2: Number of positive eigenvalues of Lv (ū) for L-96 with respect to the magnitude of the
mean field ū. The red dashed lines indicate exact equilibrium points for different value of the forcing
parameter F. The green solid lines indicate equilibrium points for the DO UQ scheme for N = 10.
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2. The important magnitude of ū leads to the activation of positive eigenvalues of Lv (ū) (see
Figure 2) that essentially absorb energy from the mean field and transform it to variance for
the stochastic modes that are associated with this process.

3. The nonlinear conservative term B(u′,u′) absorbs part of this energy, transfering it to the
stable stochastic modes. It acts as dissipative mechanism for the unstable modes (balancing
their positive eigenvalues) and external noise for the stable modes bringing all of them into a
statistical equilibrium.

4. The stable modes receive energy from the unstable ones through the nonlinear conservative
terms. A portion of this energy is dissipated and the rest is subsequently returned to the mean
through the modes with negative eigenvalues. All modes including the mean flow dissipate
energy through the negative definite part of the linearized dynamics.

This cycle of energy in the L-96 model is representative of any general model that contains i)
unstable linearized modes whose stability depends on the mean field enegy level (i.e. that they
absorb energy from the mean field), ii) stable modes, and iii) nonlinear conservative terms that
transfer energy between the modes and through this tranfer the system is reaching an equilibrium.
This structure is ubiquitous in turbulent systems in the atmosphere and ocean with forcing and
dissipation [17, 14, 1, 2] as well as in fluid flows with lower dimensional attractors [15]. However,
there are also examples of idealized truncated geophysical flows without dissipation and forcing
with a Gaussian statistical equilibrium where the linear operator at the climate mean state is stable
while the system has many positive Lyapunov exponents [13].

3 Limitations of Quasilinear Gaussian Closure for UQ in Un-
stable, Deterministic Systems

The simplest closure scheme [5] for the moment problem for a deterministic system stated in the
previous section is to completely neglect in the evolution equation for the covariance the third-order
moments, i.e. set QF = 0. This is equivalent with neglecting quadratic terms only in the equation
for the covariance (partial linearization of the moment system) or by assuming Gaussian statistics.
In this case the evolution of the covariance matrix is performed with the closed set of equations

dū

dt
= [L+D] ū+B(ū, ū)+RijB (vi,vj)+F (11a)

dR

dt
= LvR+RL

∗

v (11b)

In the second equation we observe that there are no terms that can express energy transfers between
different modes of the system. Thus, for a turbulent system that means that if the energy level
of the mean field is accurate we will have persistent instabilities that would cause uncontrollable
growth of the unstable modes. This is also reflected from the non-existence of a steady state
solution for the covariance equation (11b) if ū is such that Lv (ū) has positive eigenvalues. For the
L-96 system this will not be the case since the QG closure scheme avoids blow-up of the unstable
modes by reducing the mean field energy to a level that the linearized operator has zero number of
eigenvalue pairs with positive real part (see Figure 2) so that the energy flowing from the mean to
the unstable modes is balanced by the dissipation of energy occurring in the unstable modes (no
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Figure 3: Energy flow in the L-96 system. Energy flows from the mean field to the linearly unstable
modes and then redistributed through nonlinear, conservative terms to the stable modes. Red
arrows denotes dissipation, while the dashed box indicates terms that conserve energy.
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energy is transferred to the stable modes). Note that this behavior is independent of the forcing
parameter value F as long as the latter is sufficiently large in order for the exact solution to have
non-zero number of positive eigenvalues. In fact, this behavior can be demonstrated rigorously for
the L-96 model as sketched below.
We consider homogeneous statistical solutions defined by the deterministic Gaussian closure in

(11a)-(11b) for the L-96 model. With these homogeneous assumptions, the mean, ū (t), is a time
varying constant, the covariance multiplier is diagonal in Fourier space, R = rjδij , and the linear
operator, Lv, is the diagonal Fourier multiplier [13, 9]

Lvrj = ljrj

with

lj (ū) =
(
e
j

J
2πi − e−

j

J
4πi
)
ū− 1, for j ≤

J

2
with J = 40. (12)

The exact solution of the quasilinear Gaussian closure equations in (11a)-(11b) for the L-96 model
with these homogeneity assumptions becomes the diagonal equations,

drj

dt
= 2Re lj (ū) rj

dū

dt
= −ū+ F +

20∑

j=0

rjB (vj ,vj) .v0

with vj the j−th Fourier eigenmode; it is easy to check that B (vj ,vj) .v0 6= 0 for any j 6= 0.
With equations (12) and (13) we find trivially that the statistical steady state of the deterministic
Gaussian closure for a given ū∞ require

rj,∞ = 0 unless Re lj (ū) = 0 (14)

i.e. the covariance is restricted to the neutrally stable modes of Lv at ū∞.Furthermore, clearly
the first equations in (13) have a dynamically stable statistically steady state according to linear
theory only if Re lj (ū) ≤ 0, i.e. Lv (ū∞) has no unstable eigenmodes. Thus, the only allowed stable
statistical steady states of the Gaussian closure are defined by the unique value ūcr, satisfying
marginal linear stability as depicted at the bottom of Figure 2 where for any F, the variance rj,∞
at the neutrally stable mode is adjusted so that

ūcr = F +

20∑

j=0

rj,∞B (vj ,vj) .v0

i.e. the right hand side of the second equation in (13) also vanishes.
This indicates the fundamental limitations of the straightforward Gaussian closure for unstable

deterministic dynamical systems. On the other hand, for some nonlinear systems with intermittent
transient instabilities, such simple quasilinear Gaussian closures augmented by suitable stochastic
forcing can have remarkable skill for UQ in turbulent systems [3, 10]. An alternative procedure
often used in the geophysical turbulence literature is to ignore the feedback to the mean flow and
stabilize the instabilities in the fluctuations from (11b) by adding adhoc dissipation and white noise
forcing [4]; the limitations of these methods for UQ in the present context are discussed below and
earlier elsewhere [11, 10, 3].
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4 Modified Quasilinear Gaussian (MQG) models

From the previous analysis it is clear that the inclusion of an energy transfer mechanism that will
continuously transfer energy from the unstable modes to the stable ones is essential in order to
achieve the correct energy levels in the system. Our goal is to build a time-dependent dynamical
system that retains these energy transfers at steady state while it is minimally modified so that it
has good UQ properties for the transient part of the response and for modified external parameters.
Including a constant QF,∞ that has been computed using steady state information of the system

statistics will not resolve the issue since the eigenvalues of Lv will make the steady state solution
of the covariance equation

dR∞

dt
= 0 = LvR∞ +R∞L

∗

v +Qσ +QF,∞

unstable for a mean field that has the correct energy level, i.e. the pair R∞, ū∞ will be an unstable
steady state solution if the nonlinear fluxes are represented as a constant matrix QF,∞.
Based on the observation that the eigenvalues are effectively changed by the existence of the

nonlinear energy transfer mechanism we propose a special form of the flux QF that will make the
correct steady state statistics a stable equilibrium. More specifically we split the nonlinear fluxes
into a positive semi-definite part Q+F and a negative semi-definite part Q

−

F :

QF = Q
−

F +Q
+
F .

Note that the nonlinear fluxes should always satisfy the conservative property of B which in the
above context is expressed by the constraint (8):

Tr [QF ] = 0⇒ Tr
[
Q+F
]
= −Tr

[
Q−F
]
. (15)

The positive fluxes Q+F indicate the energy being ‘fed’ to the stable modes in the form of external
stochastic noise. On the other hand the negative fluxes Q−F should act directly on the linearly
unstable modes of the spectrum, effectively stabilizing the unstable modes. To achieve this we
choose to represent the negative fluxes as

Q−F (R) = N∞R+RN
∗

∞
(16)

with N∞ determined by solving the equation

Q−F∞ = Q−F (R∞) = N∞R∞ +R∞N
∗

∞
(17)

where Q−F (R∞) is the negative semi-definite part of the steady-state fluxes obtained by the equi-
librium equation QF∞ = −Lv (ū∞)R∞ − R∞L

∗

v (ū∞) . Equation (17) essentially connects the
negative-definite part of the nonlinear energy fluxes (which is a functional of the third-order sta-
tistical moments) with the second-order statistical properties that express energy properties of the
system.

We can easily verify that N∞ in equation (17) will be given explicitely by

N∞ =
1

2
Q−F (R∞)R

−1
∞
.

On the other hand the positive fluxes Q+F will be computed also according to the steady state
information, i.e. based on the positive semi-definite fluxes Q+F∞ = Q+F (R∞) . The form of this
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matrix defines the amount of energy that the linearly stable modes should receive in the form of
additive noise.
The conservative property of the nonlinear energy transfer operator B requires that for all times

the conservation property (15) is satisfied. This is achieved by retaining the shape of the fluxes (i.e.
distribution among different modes) but rescaling their magnitudes so that (15) is achieved. This
can be obtained by choosing the positive fluxes as

Q+F = −
Tr
[
Q−F
]

Tr
[
Q+F∞

]Q+F∞. (18)

The last formulation guarantees the conservation property (15) at every instant of time. In this way
we substitute the nonlinear conservative mechanism by a conservative pair of positive and negative
energy fluxes having the form of additional damping for the unstable modes and additive noise for
the stable modes (Figure 4). This is the minimal amount of additional damping and noise required in
order to achieve correct steady state statistics, thus we have a minimally changed model compared
to the original equation. As we will see in the next sections, this minimal modification allows
for very good UQ properties even in the transient phase of the response with suitable nonlinear
dynamics in time.
Note that all of the required fluxes Q−F∞, Q

+
F∞ are evaluated explicitely from available informa-

tion involving the linear operator, Lv (ū∞), and the covariance matrix, R∞ in a statistical steady
state. In addition, since the nonlinear flux model is kept separate from the unmodified linear
dynamics, it expresses an inherent property of the system, a direct link between second and third-
order statistical moments in the same spirit that Karman-Howarth equation [6] does for isotropic
turbulence. Next we develop a transient dynamical model which has these statistics as a stable
fixed point.

4.1 Improving marginal stability of the stochastic attractor

We saw that the negative fluxes Q−F essentially equilibrate the unstable directions of the linearized
dynamics. The equilibration is performed in the steady state by suitably choosing the additional
damping N so that the total energy fluxes (linear and nonlinear) involving these modes is vanishing
in the statistical steady state. Even though the correct steady state is achieved the necessary
time for this equilibration is infinite since this approach of modeling the nonlinear fluxes results in
marginally stable equilibrium.
To avoid this difficulty we add uniformly a small amount of dissipation and noise over all modes

so that the attractor in the steady state remains invariant. This can always be done if we choose

N∞ =
1

2

(
Q−F∞ − qI

)
R−1
∞

(19)

Q+F = −
Tr
[
Q−F
]

Tr
[
Q+F∞

]
(
Q+F∞ + qI

)
(20)

where q is a positive constant. For the problem that we consider we choose to scale this with the
maximum eigenvalue of the steady state fluxes, i.e. we set

q = dsλmax [QF∞] .

Following this approach we avoid the problem of marginally stable equilibrium and we increase
significantly the skill of the UQ scheme even for very small values (but non-zero) of the constant

11



Figure 4: Energy flow in the QG-ES filter. Energy flows from the mean field to the linearly
unstable modes and then redistributed through empirical, conservative fluxes to the stable modes.
Red arrows denotes dissipation, while the dashed box indicates terms that conserve energy.
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ds. In Figure 5 we present results for the L-96 system in terms of the the information distance [10]
between the Monte-Carlo solution and the MQG solution over different values of the parameter ds
and forcing F. To compute the information distance we use only second order information since
MQG does not provide hogher order statistics:

P=
1

2

(
ū
∗

MQG − ū
∗

MC

)
R−1MC (ūMQG − ūMC)

+

[
−
1

2
log detRMQGR

−1
MC +

1

2
tr
(
RMQGR

−1
MC

)
−M

]

We observe that for the chaotic regimes (F = 5, 6) the skill of the MQG scheme is not influenced
very strongly from the choice of the parameter ds as long as this is not zero. In this regime ds
behaves essentially as a singular parameter. For much larger values of ds the performance slowly
deteriorates since the linear and nonlinear energy fluxes are ‘buried’ by the uniform diagonal part
qI. For larger values of F the transition (to very good performance) is much smoother. In all
dynamical regimes we see that the dependence of the performance of the UQ scheme on the exact
value of ds is very weak as long as this value is non zero.
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4.2 Scaling of the nonlinear energy fluxes and transient dynamics for
MQG

To achieve the best possible accuracy in the timescales of the system, we parametrize the matrix
N∞ by various forms of the energy or rates of energy flux. In particular from (7) we have the
dimensional relation that N ∼ σi Based on this we use the following form

N =
f (R,Lv)

f (R∞, Lv∞)
N∞ where N∞ =

1

2

(
Q−F∞ − qI

)
R−1
∞

(21)

with the function f (R,Lv) given by

f (R) = [Tr (R)]
1

2 , Energy functional

f (R,Lv) =




∑

λi[Lv ]>0

σ2i





1

2

, Energy of unstable modes

f (R) =

N∑

i=1

σi, Sum of typical deviations

f (R,Lv) =
∑

λi[Lv ]>0

λi [Lv]σi, Sum of positive nonlinear fluxes

where σ2i are the eigenvalues of the covariance matrix R. As shown in a non-trivial test example for
L-96 in Figure (6) below, the form of f strongly influences the transient behavior. Compared with
the other choices, the best one is always the sum of typical deviations and for this reason it will be
the standard choice for what follows.

4.3 Summary of MQG and a related stochastic ODE

With all of the above discussion, the Modified Quasilinear Gaussian closure (MQG) developed above
and implemented in the section 5 below is given by the nonlinear dynamical system for the mean
and covariance,

dū

dt
= [L+D] ū+B(ū, ū)+RijB (vi,vj)+F (22a)

dR

dt
= LvR+RL

∗

v +NR+RN
∗ +Q+F +Qσ (22b)

where

N =
f (R)

f (R∞)
N∞ with N∞ =

1

2

(
Q−F∞ − qI

)
R−1
∞

and f (R) =

N∑

i=1

σi, (23a)

Q+F = −
Tr
[
Q−F
]

Tr
[
Q+F∞

]
(
Q+F∞ + qI

)
with Q−F = NR+RN

∗, (23b)

q = dsλmax [QF∞] with ds � 1. (23c)
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It is interesting to ask if there is a formal nonlinear stochastic equation which has the mean and
covariance matrix in (22), i.e. formally, the closed system of SDE’s has the mean and covariance
agreeing with (22). Next we proceed to the formulation of a stochastic differential equation that
is equivalent to the closed system of equations describing the mean and covariance of the MQG
closure scheme.

dū

dt
= [L+D] ū+B(ū, ū)+B (u′,u′)+F

du′

dt
= ([L+D]u′+B (ū,u′)+B (u′, ū)) +N

(
u′u′∗, ū

)
u
′ +

[
Q+F

(
u′u′∗, ū

)] 1
2
Ẇ1 + σẆ2

where N, Q+F are defined by equations (21) and (20). By direct comparison with the exact equations
(2), (3) we see that the mean equation is identical while the equation for the stochastic perturbation
differs in the nonlinear term. In particular the quadratic term of the exact equation has been
replaced by a pair of damping and noise terms which depend linear on the state of the perturbation
and non-linearly, non-locally to the second order statistics of the systems. Nonlocallity is meant in
the sense that the damping coefficient depend on spatial functionals of the covariance function.
Note that the above set cannot be merged into a single equation since the modification of the

quadratic terms has occurred only in the perturbation equation while the equation for the mean
remains invariant. We emphasize that the constructed set of closed equations is a representative
of a new class of stochastic differential equations where the evolution of each stochastic realization
depends on the global statistics, i.e. on the collective or statistical behavior of all the realizations.
In particular, the associated formal Fokker-Planck equation is nonlinear. Such novel stochastic
equations merit further mathematical study.

5 Illustration and validation in the L-96 model

In this section we will illustrate numerically the UQ properties of the MQG closure. We first study
the performance of the UQ scheme for the case of constant in time forcing parameter F . The
nonlinear fluxes N∞, Q

+
F are specified using, for each case of forcing parameter F, the steady state

covariance and mean: R∞, ū∞. The scaling of the nonlinear fluxes is done using the sum of the
typical deviations as described above.
The results are shown in Figure 7 for four different forcing parameters (four columns) covering

all three dynamical regimes of L-96. In particular for F = 16 we observe that energy is distributed
along every wavenumber while for the weakly chaotic regime corresponding to F = 5 the spectrum
has a much sharper form with a well distinguished peak. The skill of the MQG closure scheme
is illustrated both from its ability to reproduce in a stable way the linearly unstable, steady-state
attractor but also from its skill during the transient phase.
More specifically, we can observe the multiscale character of the response involving initially a

rapid growth of almost every mode and subsequently a multiscale relaxation to the equilibrium
spectrum. The initial conditions of the system are shown in the bottom row - in all cases we
initialize uncertainty in the high frequency modes - the mean is also initiated as constant. The MQG
algorithm is capturing both the initial rapid growth of the energy and mean but also the subsequent
slow dynamics. The case F = 5 is particularly difficult because the high energy modes require
a substantial amount of time to equilibrate. Despite this multiscale character of the stochastic
response the MQG scheme is able to recover both fast and slow dynamics of the system, as can be
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seen directly from the comparison of the spectra. We emphasize that in all the considered cases the
system is initiated very far from equilibrium and performs strongly nonlinear energy oscillations
over all wavenumbers until it reaches an equilibrium. These oscillations create energy levels for the
mean and the perturbations which are much higher than the corresponding equilibrium values.
The second numerical experiment that we perform is one with time periodic forcing parameter

F. The comparison of MQG with Monte-Carlo can be seen in Figure 8 where we observe that
because of the time dependent character of the excitation, the system converges to a time-periodic
stochastic attractor. For each case the nonlinear fluxes are computed based on the exact steady
state statistics of the system that correspond to the time-averaged value of the excitation parameter
(these time averaged values are the same with those shown in Figure 7, i.e. F̄ = 16, 8, 6, 5). In
all cases the performance of the MQG scheme on capturing the time-periodic stochastic attractor
is remarkable. We also perform the same numerical experiment using aperiodic forcing parameters
generated by the Ornstein—Uhlenbeck process

dF = −
1

τF
Fdt+ σF dW

Similarly with the time periodic case the random realizations of the forcing parameters have aver-
aged values: F̄ = 16, 8, 6, 5. These time-constant cases are used as sources of steady-state statistics
for the nonlinear fluxes employed in the aperiodic forcing parameter cases. The results are shown in
Figure 9 where it is illustrated that the exact and approximate statistics compare favorably. Note
that for F̄ = 16 a different kind of initial spectrum is considered in order to illustrate the robustness
of performance over different intial spectra.
Finally, in order to push the developed UQ scheme to its limits we consider an aperiodic forcing

parameter that has very strong fluctuations ranging from F = 0 to F = 30. In addition, the forcing
is no more spatially constant but instead it is non-zero in the spatial nodes j = 1, ..., 20 and zero
in the nodes j = 21, ..., 40. The nonlinear fluxes are computed based on steady state statistics
for F = 10. We recall that for F close to zero L-96 has no unstable directions while for F = 30
it has more than ten unstable wavenumbers. We observe in Figure 10 that while there are some
discrepancies, especially when the forcing parameter takes its maximum value, MQG is successful on
capturing the very strong variations of energy even in a mode-by-mode comparison. We emphasize
that this is not a spatially homogeneous case as the previous examples.

Comparison with Mean Stochastic Models (MSM)

A very common UQ strategy in the turbulence modeling in climate science [4, 12, 11] is based on
the substitution of the nonlinear terms in the quadratic system by linear terms which are tuned so
that the correlation time scale for each mode, as well as its steady state variance, coincide with the
exact steady-state values which are assumed to be known. More specifically, the fluctuations in the
original dynamical system are approximated by a linear system of the form

du

dt
= (L+D +G)u+B (ū∞,u)+B (u, ū∞) + F (t) + σẆ1 + ρẆ2,

where the augmented damping and white noise forcing G and ρ are chosen to roughly produce the
correct steady state variance and correlation time scales. In general there are no explicit choices of G
and ρ which can exactly match the logged correlation and covariances exactly [11, 4]. Nevertheless
such methods qualitatively reproduce the features of synoptic scale eddies in the atmosphere [4];
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such methods can also be very skillful as filters with judicious model error [12]. However, they are
severely deficient as UQ schemes [11, 10, 3] since, for example, they cannot capture the change in
variance due to external forcing. Mean stochastic models, MSM-1, based on the climate variances
and integral of the autocorrelation (and which are always realizable), and models, MSM-2, based
on the standard procedure [4] sketched above have been developed for the L-96 model [11, 12].
In Figure 11 we present a direct comparison in terms of the total energy of the mean and random

part of the stochastic solution for the L-96 system with a time dependent forcing parameter (the
same forcing parameter with Figure 9 - first column). As expected from the theoretical results,
both MSM models do not capture any fluctuations on the covariance of the solution caused by the
time-dependent nature of the forcing parameter. Clearly, this has very important consequences on
the estimation of the mean as well. The failure of both models is due to the fluctuations of the
forcing parameter that push the system to different dynamical regimes, while MSM schemes are
tuned for a specific forcing value and their performance drops drastically when the quality of the
dynamics (number of unstable directions, shape of the spectrum, timescales) changes significantly.
As we justified both theoretically and numerically this is not the case for the MQG scheme where the
nonlinear fluxes are modeled as the minimum amount of noise and damping required to represent
these nonlinear fluxes, while the linear (and possibly unstable) dynamics of the system remain
unchanged.

6 Concluding discussion and future directions

We have analyzed energy transfer properties in high-dimensional quadratic systems and based on
this analysis we have developed a novel, second-order, closure scheme for uncertainty quantification.
More specifically, in the first part of this work we have illustrated the synergistic activity of persistent
linear instabilities with a nonlinear energy transfer mechanism that results in finite amount of energy
in both the unstable (which would blow-up otherwise) and stable modes (which would have zero
energy otherwise). This combined effect has as a result the distribution of important amount of
energy over all the modes of the system, creating turbulent responses.
Using these dynamical properties we have illustrated the fundamental limitations of closure

schemes that ignore or partially model the nonlinear interactions between modes. More specifically,
we have rigorously proven that UQ methods that ignore third-order moments (such as quasilinear
Gaussian closure) will equilibrate only if the mean has sufficiently low energy so that all the modes
are either stable or neutrally stable. This is because in the absence of nonlinear energy transfers
an unstable mode will lead to variance blow-up. Therefore, QG models will systematically fail to
perform uncertainty quantification in turbulent systems characterized by persistent instabilities.
The second part of the paper involves the explicit modeling of these nonlinear interactions. This

is done by using exact, second-order, steady state information that leads to explicit modeling of the
nonlinear energy transfers in the form of additional damping for the linearly unstable modes and
external stochastic noise for the stable modes. Essentially we are using second-order information
for the steady state statistics to quantify the collective effect of all third order moments on the
energy fluxes in a wide variety of different chaotic regimes both for statistical initial data far from
equilibrium and for randomly fluctuating extreme forcing. This judicious modeling of the energy
transfer mechanism allows for the MQG scheme to capture robustly the linearly unstable steady
state of the original system. Moreover, by parametrizing the magnitude of the nonlinear fluxes with
spatial functionals of the modes instantaneous energy we are able to obtain remarkable skill even
for the transient phase of the response. The performance of the UQ scheme is illustrated through
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Figure 7: Comparison of MQG uncertainty quantification scheme with exact statistics produced by
Monte-Carlo method. Results are shown for different values of the forcing parameter F (contant
in time) corresponding to weakly chaotic, chaotic, and turbulent regimes.
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Figure 8: Comparison of MQG uncertainty quantification scheme with exact statistics produced
by Monte-Carlo method. Results are shown for different dynamical regimes of the time-periodic
forcing parameter F . The nonlinear fluxes have been computed using the time averaged value of
F (t) - these averaged values coincide with the constant values of the previous Figure.
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Figure 9: Comparison of MQG uncertainty quantification scheme with exact statistics produced by
Monte-Carlo method. Results are shown for different dynamical regimes of the aperiodic forcing
parameter F generated as an Ornstein—Uhlenbeck process. The nonlinear fluxes have been com-
puted using the time averaged value of F (t) - these averaged values coincide with the constant
values of Figure 7. Note that for F̄ = 16 a different kind of initial conditions is considered.
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Figure 10: Comparison of MQG with direct Monte Carlo for time dependent forcing parameter F (t)
excibiting very strong variations covering all dynamical regimes: deterministic (F < 1) , chaotic,
and turbulent. The nonlinear fluxes have been computed using the steady state spectrum and mean
for F = 10.
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Figure 11: Comparison of MSM 1 and 2 with Monte-Carlo method for the same time-dependent
forcing of Figure 9 (first column).

the L-96 system which, despite its simple formulation, is a paradigm model that exhibits strongly
unstable and turbulent dynamics. The derived UQ scheme maintains its skill even for the case of
time-dependent excitation when the system is pushed in dynamical regimes which are completely
different from the regime used to quantify the nonlinear interactions. These encouraging results
suggest future applications of MQG to more realistic turbulent geophysical systems [14, 17].
Despite the remarkable skill of MQG method for systems with persistent instabilities it is im-

portant to keep in mind that it provides only second-order statistics for the response, even though
it indirectly uses higher-order stochastic information in its calibration. In addition, its applicability
is limited to stochastic excitations which have similar spatial structure with the stochastic excita-
tion for which the nonlinear fluxes have been estimated. Both of these limitations may be resolved
by combining global UQ methods that can ‘see’ and resolve the full turbulent spectrum (such as
MQG) with order-reduction approaches such as dynamically orthogonal field equations that allow
for higher statistical order, spatiotemporal modeling only along specific directions [16, 15]. Current
research work by the authors involves the blending of these two methodologies, in order to capture
accurately both the energy spectrum as well as the higher-order statistical structure in important
subspaces, and results will be presented in the near future.
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