SLÃC－PUB－－4024
DE86 015211
4

A STATISTICIAN＇S VIEW OF DATA ANALYSIS＊

JEROME H．FRiEDMan
Department of Statistics
Stanford University，Stanford，California， 94905
and
Computation Research Group
Stanford Linear Accelerator Center Stanford University，Stanford，California，94805

Abstract

A brief overview of statistical data analysis is provided with a view towards examining its role in the analysis of astronomy data．

Invited paper presented at the International Workshop on Data Analysis in Astronomy，Erie，Italy，April 17－30， 1986.

[^0]
1. INTRODUCTION

A question that is often asked in any experimental or observational science is whether statistical considerations are useful in the analysis of its data. This is a question that can only be answered by the scientists who understand the data as well as mechanisms and instruments that produce it. In order to help answer this question it is useful to know how data and data analysis is viewed by people who regard themelyen at statisticians. It ia the purpose of thin report to give a necessarily brief overview of statistical data analysis as viewed and practiced by statisticians.

First, it is important to understand what statisticians do got regard as data analysis, but which is never-the-less an important aspect of data understanding. This is the process of data reduction. In this phase the raw data from the detectors (telescopes, counters) are reduced to move useful and understandable quantities (such an images). The software (and sometimes hardware) that perform this task are simply regarded as computing engines that transform the raw data to forms that are more convenient for further calculations. Although statictical considerations may be involved in the development of these systems, they are visually dominated by considerations specific to the scientific field and the particular instruments that produce the data.

It is the further calculations that interest statisticians. That is, how to discover from the (refined) data, the properties of the systems under stud; that produced the data (stars, galaxies, etc.), and deduce statistically meaningful statements about them, especially in the presence of uncertain measurements.

Statistics can be viewed as the science that studies randomness. Central to statistical data analysis is the notion of the random variable or measurement.

This is a measured quantity for which repeated observations (measuremento) produce different valuez that cannot be (exactly) predicted in advance. Instead of a single value, repeated measurements will produce a distribution of values. The origin of the randomness can be due to random measurement errors associated with the instrumente, or it could be a consequence of the fact that the measured quantity under consideration depends upon other quantities that are not (or cannot be) controlled - ie., held constant. In either case, a random variable is one for which we cannot predict exact valuea, only relative probabititien among all possible values the variable can assume.

The distribution of relative probabilities is quantified by the probability density function $p(X)$. Here X represents a value from the set of values that the variable can take on, and the function $p(X)$ is the relative probability that a measurement will produce that value. By convention the probability dersity function is required to have the properties

$$
p(X) \geq 0 \text { and } \int p(X) d X=1
$$

as X ranges over all of its possible values. Under the assumption that X is a random variable, the most information that we can ever hope to know about its future values is contained in its probability density function. It is the purpose of observation or experimentation to use repeated measurements of the random variable X to get at the properties of $p(X)$. It is the purpose of theory to calculate $p(X)$ from various mathematical (physical) models to compare with observation.
it is seldom the case that only ore measurement is made on each object under study. Usually several simultaneous measurements of different quantities are made on each object, each of these measurements being a random variable.

In this case we can represent each observation as an n-vector of measurements

$$
\begin{equation*}
X_{1}, X_{2}, \ldots, X_{n} \tag{1}
\end{equation*}
$$

where n is the number of simultancous measurements parformed on each object. We call the collection of measurements (1) a vector-valued random variable of dimension n.

Statistice as a discipline has several divisions. One such division depends upon whether one decides to study each of the randor; variables separatelyignoring their simultaneous measurement-or whether one uses the data (collection of simultaneous measurements) to try to access the relationships (associations) among the variables. The former approach is known as univariate statistics which reduces to atudying each random variable X_{i}, and its corresponding probability density $P_{i}\left(X_{i}\right)$, sepatately and independently of the other variables.

The latter approach is known as multivariate statigtics. Central to it is the motion of the joint probability density function

$$
\begin{equation*}
p\left(X_{1}, X_{3}, \ldots X_{n}\right) \tag{2}
\end{equation*}
$$

which is the relative probability that the simultaneous set of values $X_{1}, X_{2}, \ldots, X_{n}$ will be observed. In multivariate statistics one tries to get at the properties of the joint probability density function (2) based on repeated observation of simultaneous measurements.

Another division in the study of statistics is between parametric (model dependent) and nonparametric (model independent) analysis. We begin with a
litele notation, Let

$$
\boldsymbol{X}=\left(x_{1}, x_{2}, \ldots, x_{w}\right)
$$

be an n - dimensional vector representing the simultaneous values of the n meatorements made on each object. In parametric statistics the (joint) probability denity function is assumed to be a member of a parameterized family of functions,

$$
\begin{equation*}
p(X)=f(X ; \underline{q}) \tag{3}
\end{equation*}
$$

where $\underline{\underline{n}}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ is a act of parameters, the values of which determine the particular member of the family. In parametric statistics the problem of determining the (joint) probability density function reduces to the determination of an appropriate set of values for the parameters. The parameterized family chosen for the amalyais can come from intuition, theory, physical modela, or it may just be a convenient mpproximation.

Nonparametric statistics, on the other hand, does not apecify a particular functional form for the probability denily, $p(X)$. It'e propertiea are inferred directly from the data. As we will see, the histogram can be considered an example of a (univariate) probability density estimate.

Generally speaking, parametric statistica! methods are more powerful than nonparancetric methodo provided that the true underlying probability density function is actually a member of the chosen parameterized family of functions. If not, paramebric methods lose their power rapidly as the trutt deviates from the assumptions, and the more robust nonparametric methods become the most powerful.

The final division we will discuss is between explaraiory and confirmatory data analysis. With exploratory data analysis one tries to investigate the properties of the probability density function with no preconceived nations or precise queations in mind. The emphasis here is on detective work and discovering the unexpected. Standard tools for exploratory data analysis include graphical methods and descriptive statistics. Confirmatory data analysis, on the other hand, tries to use the data to either confirm or reject a specific preconceived hypothesis concerning the system under study, or to make precise probabilistic statements concerning the values of various parameters of the system.

For the most part this paper will concentrate on confirmetury aspects of data analysic with a few exploratory techniques (associated with nonparametric aralysis) coming at the end.

2. Mini-Introduction to Estimation Theory

In estimation, we assume thet our data, consisting of N observations, is a random ample from an infinite population governed by the probability density function $p(\underline{X})$. Our goal is to make inferences about $p(\underline{X})$. In parametric csifmation we would like to infer likely values for the paramelers. In nonparametrie entimation we want to infer $p(X)$ directly.

Consider a parametric estimation problem. Ilere we have a data set $\left\{X_{i}\right\}_{i=1}^{N}$ considered as a random sample from some (joint) probabifity density function $P(\underline{X})$ which is assumed to be a member of a paramelerized family of functions $f(X ; a)$ characterized (for this example) by a single paramerter a. Dur problem is to infer a likely value for (ie. cstimate) a.

Let

$$
\begin{equation*}
Y=\phi\left(X_{1}, X_{n}, \ldots, X_{H}\right) \tag{4}
\end{equation*}
$$

be a fonction of N vetor valued random varibles. Fiere \& repptente (for now) mil arbitrary fapetion. Since any fonction of randomn variables is itwelf a random varieble, \boldsymbol{Y} will be a random variable with ite own probability density function
 denaity of the $X_{0} f\left(X_{i j},\right)_{\text {, }}$, and through thin on the (truc) velue of the parameter a. It will also depend on the mample alee N. Suppsee it were possible to choose the function ϕ in (4) so that $y_{M}(Y ; a)$ to lagge only when the valse of Y is close to that of a, and amull werywhere else (provided the X follow $p(X)=f(X ; a)$). If this were the eare then we might hope that when we evalunte ϕ for our particular date net that the value for Y so obtained would be cloce to that of σ. A furction of \boldsymbol{N} random varinbles it anded a "entatintic" and ita value for a particular data set in called an "retimate" (for a).

As an example of how it in posibli to conatruet niatistica with the propertics deycribed above, conalder the method of momenk. Defne

$$
\begin{equation*}
G(a)=\int s(X) p(X) d X=\int g(X) f(X ; a) d X \tag{5}
\end{equation*}
$$

where $p(X)$ is an arbitrary function of a single (vector valsed) random variable. The quanizity $G(a)$) just the average of the function of $g(X)$ with respect to the probebility denaity $p(X)$. Its dependence on the value of a in a consequence of the fact that $P(X)=f(X ; a)$ depends upon the value of a. Now, the law of large numbers (central limit theorem) tell us that

$$
\begin{equation*}
Z=\theta\left(X_{1}, X_{4}, \ldots X_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} q\left(X_{N}\right) \tag{5ad}
\end{equation*}
$$

has a normal (Gauoslan) dibatibution

$$
\begin{equation*}
P_{N}(Z ; \alpha)=\frac{1}{\sqrt{2 \pi} \sigma_{N}} \operatorname{\omega x}\left\{-\frac{1}{2}[Z-G(\alpha)]^{z} / \sigma_{N}^{Q}\right\} \tag{6b}
\end{equation*}
$$

centered at $G(a)$, with standard doviation

$$
\begin{equation*}
\sigma_{N}=\frac{1}{\sqrt{W}}\left\{\int[g(X)-G(a)]^{2} f(X ; a) d X\right\}^{t} \tag{BC}
\end{equation*}
$$

an the sumple nive becomes lexge. That in, the ample mean (of $g(X)$) hat a Gausian diptribution centered at the true mean with a atandard deviation that beromes amaller as N grown larger ($\sim \frac{1}{\sqrt{N}}$). Therufore, for large enough N, likely values of Z will always be elous to $G(a)$, and Z la a good statistic for estimating $G(a)$. If $g(X)$ is chosen so that $G(a)$ is not too wild a function of a, it then follows that

$$
Y=G^{-1}(Z)=\sigma^{-1}\left|\frac{1}{N} \sum_{i=1}^{N} g\left(X_{i}\right)\right|
$$

will be a good atatistic for entimating the value for the parsmeter a.
Note that in this devalopment the moment function $g(X)$ la fairly arbitrary. Therefore, this method ean be ued to construct a great many statistics for estimat ng the (same) parameter a. Some of these estimators vill be better than others. The field of statistics is concerned to a large degree with finding good estimators (atatiotics for entionation).

Staticticians rate the quallty of eatimators on the basis of four isasic properies: comsistency, officiency, blas, and robustness. Consistency comcerna the property of the estimator as the sample aime \boldsymbol{N} becomes atbitrarily large. In
particular an estimator (4) is said to be consistent if

$$
\lim _{N \rightarrow \infty} p_{N}\left(Y_{i} a\right)=\delta(Y-a)
$$

Where 8 is the Dirac delte function. For a consistent estimator, the estimate becomes more and more accurate as the sample size increases. Note that (6) innplies that moment estimates are consistent provided that the bracketed quantity In ($8 c$) in finite ((econd central movement of $\rho(X)$).

Effieiency is concerned with the properties of the estimator for finite N. The efficiency of an eatimator is inversely related to its expected-squared-erfor

$$
E S E_{N}(Y)=\int(Y-a)^{2} f_{N}(Y ; a) d Y
$$

This is the average-squared distance of the eatimate from the truth. Note that If the eamator is consistent, then $\lim _{N \rightarrow \infty} E S E N(Y)=0$. The relative efficiency of two estimatora Y and Z is defined as the inverse ratio of their corresponding expected squared errors,

$$
R E_{N}(Y, Z)=E S E_{N}(Z) / E S E_{N}(Y)
$$

Bias is concerned with whether or not the average value of a statistic is equal to the true value of the parameter it is patimating. In particular, the bias of an estimator is defined to be

$$
B_{N}(Y)-\int Y f_{N}(Y ; a) d Y-a
$$

This is just the uifference between the average value of the statistic and the truth.
Note that if an estimator is consistent then $\lim _{N \rightarrow \infty} B_{N}(Y)=0$. An estimator fo:
which $B_{n}(Y)=0$ for all N is said to be unbiassed. Gencrally speaking unbiased eatimators are preferred if all other things are equal. However, all other propartics are seldom equal In particular, the efficiency of the best unbiased estimatora is generally lower than that for the best biased estimators in a given probjern. Unbiased estimatora are almost nuver best in terms of expected-squared-urror.

Robustness concerns the sensitivity of an estimator to violations in the assumptions that went in to choosing it, In parametric etetiatice the enumptions center on the particular parameterized family (3) assumed to govern the probaioility density of the (random) variables comprising the data. For a given parametric family there is usually an optimal estimator for its parameters (in terms of efficiency). However, it is often the case that the efficiency of guch an optimal estimator deprades badly if the true probability density deviates only slighty from the closest member of the assumud parameterized family. Robust estimators generally have a little less efficiency than the optimal estimator in any given situation (if the true density were known), but maintain their relatively high efficiency over a wide range of different parameterized forms for probability density functions. Robust estimators are generally preferred since it is often impossible to know for certain that the assumed paramelric form for the probability density is absolutely correct.

As an example of robustness consider estimatitg the center of a symmetric distribution If the probability density corsesponding to the distribution were Gaussian, then the sample mean is the most efficient estimator. If, however, the distribution has higher density than the Gaussian for points far away from the center (fat teid), then the efficiency of the meen degrades badly. The sample median, on the other hand, is less efficient than the mean for Gaussian data
(relative efficiency approximately 0.64) but has much hither effeiency for fat triled distributiona.

Athongh the mathod of momente dmeribed above cen be (and often is) ured to construct eatimators, it is not the favorite way among tatisticians. Far and anryy the most popular methed is that of mavimumpikelihood. By defintition, the relative probability of simultapapelly obearving the tot of values $X=\left(X_{1}, X_{2, \ldots}, X_{N}\right)$ in the valop of the jpint probalitity donatity function $P(X)$. Let $X_{i}(i=1, N)$ be one of the obearvatione fin our date met. The relutive probability of obecring this observatfon (before we acteally obeurved it) was $P\left(X_{i}\right)$. I we believe that all of cor N obervatione wert independenty drawn from a population goveraed by $P(X)$, then the relative probmbillty of secing all N of our observations (agein in acivance of actually aseing them) Is simply the product of the probabilities for sefing the individuel observatlons. Thus the relative probability among all possibla date ets that we would heve iten, the set of data that we actually saw, is

$$
L_{N}(s)=\Pi_{i=1}^{N} p\left(X_{N}\right)=\Pi_{i=1}^{N} f\left(X_{i} ; a\right)
$$

This expreasion is knows as the likelthood function. it is annetion of the parameter a through the dependence of the probability density function on this parameter. The principal of maximum liketihood etimation is to choose as our paraneter estimite that value that maximivas the probability that we would have seen the data set that we actually sew, that ia the valne that makes the realized data set most Finely. Let in be the maximom likelihood ertitnate of the parameter a. Then,

$$
L_{N}(\overline{\mathrm{c}})=\operatorname{Marimum}_{\mathrm{E}}^{\mathrm{L}} \mathrm{~L}_{N}(\mathrm{e})
$$

In practice it la unally more convenient to maximize the logarithm of the likelihood function

$$
\omega_{M}(a)=\log L_{N}(a)=\sum_{i=1}^{N} \log f\left(X_{i} ; a\right)
$$

since it achieves its marimum at tha same value.
As an example of meximum Iifolihood estimation, suppose

$$
f(X ; c)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(X-\omega)^{2} / \sigma^{2}\right\}
$$

for a single random vardable X and we wish to estimate the parameter r froir a mample of sixe N, The logarithm of the likelinood function in

$$
\omega_{N}(a)=\sum_{i=1}^{N} \log f\left(X_{i} ; a\right)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(X_{i}-a\right)^{2}-N \log (\sqrt{2 \pi} \sigma) .
$$

Taking the firat derivalive wilh respect to a and ecting it equal to zero, yields the solution

$$
Y_{M L}^{(a)}=\frac{1}{N} \sum_{i=1}^{N} X_{i}=\bar{X}
$$

which is the sample mast. Thus, the sample mean is the maximum likelihood estimate for the center of a Gausian distribution.

If we wart the makimum tikelinood estimate for σ, the standand deviation of the Gaussian, we sot tho first derivative of ωN with respect to σ equal to zeco gives the solution

$$
Y_{i}(0)=\left[\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-a_{i}^{i}\right]^{1 / 2}\right.
$$

which depends on the viluefter However, we know that the likelijood solution for $a,{ }_{3}$, is the stmple mean \bar{X} indeppendent of $\sigma, s o$ maling this substitution we
have

$$
Y_{M N}^{(d)}=\left[\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-X\right)^{2}\right]^{\frac{1}{2}}
$$

which in just the sample standard deviation.
In many (classic) casea it is possible to calculate in closed form the maximum Hitelihood estimate as was done for the simple case above. More often this is not powible and it in necesarary to explicitly maximize the low-litelihood uing numericel optimization techniquee in order to obtaln the maximum likelihood solution.

There la good reason for statisticians to like maximum likelihood estimation. Frat lt alway provides a preseription for paramatric estimation. As long as one can compute the joint probability denalty given a set of parameter valuea, the llkelihood function can be formed and maximized-either algebraically or numerleally. The muximum likelihood estimate (MLE) can be ahown to always be conalatent. As the anmple becomes large ($N \rightarrow \infty$), the MLE can be shown to have the highest possible effliency. Abo as the sample size becomes large, the diatribution of the MLE estimate \mathfrak{a} can be ahown to have a Gaussian distribution about the true value a

$$
p_{N}(\hat{a}, a)=\frac{1}{\sqrt{2 \pi \sigma_{0}}} \exp \left\{-\frac{1}{2}(\hat{a}-a)^{2} / \sigma_{a}^{2}\right\}
$$

with

$$
\sigma_{d}^{2}=1 /\left[\left.\frac{\delta^{2} \omega_{N}(a)}{\delta a^{z}}\right|_{a=d}\right.
$$

This information can be used to assign standard efroft to maximum likelihood eatimetes.

There are a few drawbacks to maximum likelihood ealimation. The estimates tend to be very non-mobuat. Also, if numerical optimization is used to obtain the MLE, it can be computationally expensive.

3. Nonparametric Probability Density Estimation

In nonparametric estimation we assume that the data is e random sampla from nome (joint) probability dentity, but we do not anume aterteular parameterized functional form. Thla is ungally because-for the situation at hand-ithe correct functional form is simply unknown. The idea ls to try to directly estimate the probability densily of the population directly from the date in the absence of a specific paramelerization. Such astimatas are generally used for exploratory data analysia purposes.

Nonparametric denaity astimallon ia woll devaloped only for the unlvarlate case. Here we have a eft of moasurements $\left\{X_{i}\right\}_{i-1}^{N}$ preaumed to be a random sample from some probability denaity function $p(X)$. Figure I illuatraten a possible realized configuration of dats on the real line. Consider an intorval centered at a point X of width ΔX. The probability that one of our data pointa would have a value in this interval (before we actually observed it) is just the probabllity content of the interval

$$
\begin{aligned}
& \operatorname{Prod}\left\{X \quad \Delta X / 2 \leq X_{i} \leq X+\Delta X / 2\right\} \\
&=\int_{x-\Delta x / 2}^{x ; \Delta x / 2} p(s) d s \\
& \simeq p(X) \Delta x
\end{aligned}
$$

The latter approximation assumes that the width of the interval is small. A reasonable estimate for the probability content of tine interval, based on the data, is aimply the fraction of deta that lies in the interval. (This is in fact the MLE of this quantity), ie.

$$
\cot [\operatorname{Prob}\{\cdot\}]=\frac{1}{N} N u m\{\cdot\}
$$

Combining these resulta yields an estimate for the probability density at X

$$
\begin{equation*}
\hat{\mathbf{p}}_{N}(X)=\frac{1}{(\Delta X) N} N u m\left\{X-\Delta / 2 \leq X_{i} \leq X \div \Delta / 2\right\} \tag{T}
\end{equation*}
$$

in terms of the number of counts in the interval of width ΔX centered at X. This result is cantral to two of the most popular methods of nonparametric density estimation-histograms and window estimates.

For the histogram density estimate the range of the data is divided into M bins or intervals (usually of equal width) and the density is estimated is a (diferent) constant within each bin using (7) (see Figure 2). The window or equarc kernel density estimate used overlapping windows. At each point X for which a density estimate is required, a symmetric interval (window) centered at X of width ΔX is constructed and (7) is used to compute the density estimate (see Figure 3). The windows associated with close points will recessarily have a great dcal of overlap.

For both these methods, there is an associated parameter that controls the degrec of averaging that takes place. For the histogram estimate it is the number of bine, M. The larger this number, the less smooth the density estimate will
become, but the better able it will be to capture narrow effects (sharp peaks) in the density. For the window estimate this trade-aff in contralled by the width ΔX chosen for the window. The smaller the value of ΔX, the rougher the estimate will be, with the corresponding increase in sensitivity to narrow structure.

For multivariate $n>1$ data, nonparametric density estimation becomes difficult. For two dimensions ($n=2$) the straightforward generalizations of the histogram and window estimates involving rectangular bins or windown tend to have eatisfactory performance. However, for higher dimensions ($n>2$) performance degrades severely. This is due to the so-called "curse-of-dimensionality."

Consider a histogram density estimate in ten dimensions ($n=10$). If we choose to have ten bins on each of the ten variables then there would be a total of 10^{10} bins. Clearly for any data set of reasonable size nearly all of these bins would be empty and the few that were not empty would generally contain only one count. Even with only two bins per variable (a very coarse binning) there would be over 1000 hins.

The window estimate suffers similarly. If for a uniform distribution in a ten dimensional unit cube, we wish our window (centered at each data point) to contain ten percent of the data points on the average, the edge length of the window would have to be approximately 0.8 ; that is, it would have to be 80% of the extent of the data on each variahle. Clearly with such a window it would be impossible to detect all but the very coarsest structure of the probability densily with such an estimate. Therefore, the most we can hope for is to be able to get a general idea of the joint probability density $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ in high ($n>2$) dimensional situations.

Cluster analysis is one approach for doing this. Here the goal is to try to
doternisa If the joint denalty to very amall nearly averywhere, except for a small number of feolated regions whert it in large. This effect is known as chustering. Closfering elyorithmes attempt to determine when thie condition exists and to dentify the ipolated regioms.

Mapping the data to lomer dimencional subspacen (usually one or turo dimensional rarapaces) and studying density estimates on the subspace is often a quite truitfel approseh. Good nonperametric denaity entimation is powsible in ont and two dimendona. Tho trick to to perform the mepplag in a way that preserves as much as poaible the information contened in the full dimenalonal date set.

Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a polnt in n-dimanalone and $t=T(\underline{X})$ repreaent its mapping to one dimanaion, Here T is a ingle valued function of the n cguments $X_{1}, X_{1}, \ldots, X_{n}$, Since X ias (vector valued) random qariable, t is also a random variable whit a corresponding probebility denily function $p_{T}(t)$, that deponds on the tranformation function T. This (one-dimenional) probability danily en be asily eatimated and exmined for differant choices of transformations.

For a mapping onto two dimenalont, one definat lwo tranaformation functions $t_{1}=\mathbf{Z}_{2}(X), t_{2}=\mathbf{T}_{3}(X)$ croating the random varhables f_{1}, t_{2} with joint distribution FT, $T_{1}\left(f_{2} t_{3}\right)$, depending on the choice of the trantitermation functions. Again, it is stratightforward to extimate and examine the two-dimennionel joint dennity of the mapped points t_{1} and t2 $_{2}$. By performing judiciously shosen dicsension reducing tramaloranations and etvdying the correspondins donsity eatimatet, one can often selm cousiderable inaight conceptiag the n-dimonaional joint probability density $\boldsymbol{I}\left(X_{2}, X_{8, \ldots}, X_{n}\right)$.

Generally the choiee of mapping functions is guided by the intuition of the
researcher using his knowledge of the date and the mechanisms that g we use to it. There are also techaiques that attempt to wre the dota itself to suggeat revealing mapping to lower dimensions. The eseful techniques so far developed involve colly linear mapping functions

$$
\begin{array}{ll}
t=\sum_{j=1}^{N} a_{j} X_{j}=q^{T} X & \text { (one - dimension) } \\
t_{1}=a_{1}^{T} X, t_{2}=g_{i}^{T} X & \text { (two-dinanaions) }
\end{array}
$$

where the projection vectors $\boldsymbol{a}_{2} \underline{\underline{a}}$, $\underline{a n}_{\mathbf{y}}$ depend upon the data,
The most commonly used data driven mapplag tochnique is bated on princlpal con-ponents amalyals. Hicre tho batic notion is that projectlons (Hnear mappings) that most apread out the data arollkely to be the most Internating. This concept is illustrated in Figure 4 for the case of mapping two-dimensional date to a one-dimensional ubspace. Here there ere two aymmebriceily shapad clusters separated in one direction. This direction it the one in which the (projoctod) data are most spread out, and is also the direction that roveala the oxistonco of the elustering.

Principal componente zapping can he fonled, however, at illustrated in Figure 5. Here the clusters are sut symmotrically shaped, but are highty ellipticnl. The eeparation of the clusters $\begin{aligned} & \text { ta along the minor axes in the direction for which }\end{aligned}$ the pooled dats is least sprad out. Principal components in this case would choose the direction along the major axes (direction of most data spread) which in this case does not reveal the cluatering.

This shortcoming of prineipal components mapping has lead to the development of projection pursuit mapping. Here, Insteed of finding mappings (projec-
tions) that maximize the spread of the data, one tries to find those mappings that maximive the information (negative entropy) defined of

$$
I(\Omega)=-\int p_{T}(t) \log p_{T}(t) d t
$$

with $t=a^{T} X$, and $p r r_{r}(t)$ the probability density function of the projected data. This approach successfully overcomes the limitations of the projection purauit appromeh but at the expence of idditional computation.

4. Conclusion

The purpose of this report hes been to give a broad (but recesrarily quite challowf overview of atatiotical data analysis. The intent was to introduce asfronomers to the why statistician view data so that they can judge whether increased familiarity with stetistical concepts and methods will be helpful to them.

Fisute 1.

Histogram density extimate:

Figure 2.

Rosenblott (souare mernal) estmate:

Figued 3. Overlapping Buns

Finues 4.

Figute 5.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govemment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completensss, or usetulness of any information. appapatus, product, or process disclosed. or represents that its use would not infringe privately owned rights. Reference herein to any specifie commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does nol necessafily constitute of ingply ils endorsement, recommendalion, or favoring by the United States Government or any ageicy thereof. The views and opinions of authors expressed herein do not necessarily state of reflect those of the United States Government or any agency thereof.

[^0]: ＊Work partially nupported by the Department of Energy，contract DEA03－76SF00515．

