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1. INTRODUCTION 

A question that is often asked in any experimental or observational science 

is whether statistical considerations are useful in the analysis of its data. This is 

a question that can only he answered by the scientists who understand the data 

as well as mechanisms and instruments that produce it. In order to help answer 

this question it is useful to know how data and data analysis is viewed by people 

who regard themislvas w statisticians. It i» the purpoaa of this repoTt to give a 

necessarily brief overview of statistical data analysis as viewed and practiced by 

statisticians. 

First, it is important to understand what statisticians do not regard as data 

analysis, but which is never-the-Iess an important aspect of data understand

ing. This Is the process of data reduction. In this phase the raw data from the 

detectors (telescopes, counters) are reduced to move useful and understandable 

quantities (such as images). The software (and sometimes hardware) that per

form this task are simply regarded as computing engines that transform the raw 

data to forms thit are more convenient for further calculations. Although statis

tical considerations may be involved in the development of these systems, they 

are usually dominated by considerations specific to the scientific field and the 

particular instruments that produce the data. 

It is the further calculations that interest statisticians, That is, how to dis

cover from the (refined) data, the properties of the systems under study that 

produced the data (stars, galaxies, etc.), and deduce statistically meaningful 

statements about them, especially in the presence of uncertain measurements. 

Statistics can be viewed as the science that studies randomness. Central to 

statistical data analysis is the notion of the random variable or measurement. 
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This is a measured quantity for which repeated observations (measurements) 

produce different values that cannot be (exactly) predicted in advance. Instead of 

a single value, repeated measurements will produce a distribution of values. The 

origin oF the randomness can be due to random measurement errors associated 

with the Instruments, or it could be a consequence of the fact that the measured 

quantity under consideration depends upon other quantities that are not (or 

cannot be) controlled - ie., held constant. In either case, a random variable is 

one for which we cannot predict exact values, only relative probabilities among 

all possible values the variable can assume. 

The distribution of relative probabilities is quantified by the probability 

density function p{X). Here X represents a value from the act of values that 

the variable can take on, and the function p[X) is the relative probability that 

a measurement will produce that value. By convention the probability density 

function is required to have the properties 

p{X) >0and J P{X)dX = 1 

as X ranges over all of its possible values. Under the assumption that X is a 

random variable, the most information that we can ever hope to know about its 

future values is contained in its probability density function. It is the purpose 

of observation or experimentation to use repeated measurements of the random 

variable X to get at the properties of p(X). It is the purpose of theory to calculate 

p{X) from various mathematical (physical) models to compare with observation. 

It is seldom the case that only one measurement is made on each object 

under study. Usually several simultaneous measurements of different quantities 

are made on each object, each of these measurements being a random variable. 
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In this case we can represent each observation as an n-vector of measurements 

X\,Xtt...,Xn (1) 

where n is the number of simultaneous measurements performed on each abject. 

We call the collection of measurements (1) a vector-valued random variable of 

dimension n. 

Statistics as a discipline has several divisions. One such division depends 

upon whether one decides to study each of the randon variables separately— 

ignoring their simultaneous measurement—or whether one uses the data (collec

tion of simultaneous measurements) to try to access the relationships (associa

tions) anions the variables. The former approach 1B known as univariate statistics 

which reduces to studying each random variable X,-, and ita corresponding prob

ability density PfiXf), separately and independently of the other variables. 

The latter approach is known as multivariate statistics. Central to it is the 

motion of the joint probability density function 

P[Xi,X2 Xn) (2) 

which is the relative probability that the simultaneous set of values X\,X-i, . <•., Xn 

will be observed. In multivariate statistics one tries to get at the properties of 

the joint probability density function (2) based on repeated observation of simul

taneous measurements. 

Another division in the study of statistics is between parametric (model de

pendent) and nonpaiaraetric (model independent) analysis. We begin with a 
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little notation. Let 

be an n - dimensional vector representing the simultaneous values of the n mea

surements made on each object. Li parametric statistics the (joint) probability 

density function is assumed to be a member of a parameterized family of func

tions, 

Ptf) = f(&&), (3) 

where a = (01,02,. - . , Op) is a set of parameters, the values or which determine 

the particular member of the family. In parametric statistics the problem of 

determining the (joint) probability density function reduces to the determination 

of an appropriate set of values for the parameters. The parameterized family 

chosen- for the analysis can come from intuition, theory, physical models, or it 

may just be a convenient approximation. 

WanparaniBtric statistics, on the other hand, does not specify a particular 

functional form for th« probability density> p(£) . It's properties are inferred 

directly from the data. As we will see, the histogram can be considered an 

example of a (univariate) probability density estimate. 

Generally speaking, parametric statistical methods are more powerful than 

nonparametric methods provided that the true underlying probability density 

function is actually a member of the chosen parameterized family of functions. 

If not, parametric methods lose thei, power rapidly as the truth deviates from 

the assumptions, and the more robust nonpsrametric methods become the most 

powerful. 

5 



The final division we will discuss is between exploratory and confirmatory 

data analysis. With exploratory data analysis one tries to investigate the prop

erties of the probability density Function with no preconceived notions or precise 

questions in mind. The emphasis here is on detective work and discovering the 

unexpected. Standard tools for exploratory data analysis include graphical meth

ods and descriptive statistics. Confirmatory data analysis, on the other hand, 

tries to use the data to either confirm or reject a specific preconceived hypothesis 

concerning the system under study, or to make precise probabilistic statements 

concerning the values of various parameters of the system. 

For the most part this paper will concentrate on confirmatory aspects of 

data analysis with a few exploratory techniques (associated with nonparamotric 

analysis) coming at the end. 

2. Mini-Introduction to Estimation Theory 

In estimation, we assume that our data, consisting of N observations, is a 

random sample from an infinite population governed by the probability density 

function p{K)- Our goal is to make inferences about p[X). In parametric esti

mation we would like to infer likely values for the parameters. In n on parametric 

estimation we want to infer p(£) directly. 

Consider a parametric estimation problem. Hi-re we have a data set {X J,^, 

considered as a random sample from some (joint) probability density function 

p(X) which is assumed to be a member of a parameterized family or functions 

/(&<>) characterized (for this example] by a single parameter a. Our problem 

is to infer a likely value Tor (ic. estimate) a. 
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Let 

V-rfGWfk..".**) (*) 

be a fraction of JlT vector valued random variables. Hen d> represents (Sot now) 

an azbtoarT taction. Smc» any function of random variables Is tedf a xendam 

variable* Y wUl be a random variable with tte own piobabwly density fmutiaa 

pj#(]T;«t)., Tbla probability density function will depend on the joint probability 

density of the &* /(X«; a), and through this on the (tent) vahteof the parameter 

s> It win also depend on the eainpla eke JlT. Suppose tt were potsSMe to choose 

the function 4 In (4) so that ps{Y', a) Is large only when the value of y is dose to 

that of a, and until everywhere else (provided the J& follow p(£) = f(K; a)), if 

this were the ease then we might hope that when we evaluate <& for our partieulw 

data aet that ths value for Y so obtained would be doss to that of a. A function 

of JV random variables Is called a "liiilitk" and Its value for a particular d iu 

set la called an ^•Hmatt* (for a). 

A* an example of how It Is poulbls to construct statistics with the properties 

described above, consider the methad at momenta. Define 

0(c) - J e(2Qp(2£)^ •= /*UQ/(2C;«)4C (5) 

where o(2Q k *n arbitrary function of a single (vector valued) random variable. 

The quantity Q(a) Is just the average of the function of $(20 with respect to the 

probability density p(20« Its dependence on the value of «Is a cornxqueetee of 

the fact that p Q 0 s / ( £ a ) depends upon the value of a. Now, the law of targe 

numbers (central limit theorem) tell us that 

Z'6QUtX*-»XN)~jfE9W) (H 
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lus a normal (Gaussian) distribution 

centered at <?(«)» with standard deviation 

as the sample she becomes targe. Tbmt k, the sample mean (of ?(£)) has & 

Gaussian distribution centered at the true mean with a standard deviation that 

becomes smaller as N grows larger (»» 4^). Therefore, for large enough N, likely 

values or Z will always be clots to (7(a), and Z i i i good statistic for estiiaeting 

G{o). If 9(20 '* chosen 10 thtt C(o) ii not too wild a function of a, it then 

follows that 

y.C-'<Z)=G" l|l2>&)l 
i»ti 

will be a good statistic for estimating the value for the parameter a. 

Note that in this development the moment function c{2£) la fairly arbitrary. 

Therefore, this method can be used to construct a great many statistics for 

estinut ng the (same) parameter a. Some of these estimators will be better than 

others. The field of statistics is concerned to a large degree with finding good 

estimators (statistics for estimation). 

Statisticians rate the quality of estimators on the basis of four bask prop

erties: consistency, efficiency, Mas, and robustness, insistency concerns the 

property of the estimator u the sample sin N becomes arbitrarily large. In 



particular an estimator (4) is said to be consistent if 

where c" is the Dirac delta function. For a consistent estimator, the estimate 

becomes more and more accurate as the sample size increases. Note that (6) im

plies that moment estimates are consistent provided that the bracketed quantity 

In (6c) is finite (second central movement of p(£))> 

Efficiency is concerned with the properties of the estimator for finite N. The 

efficiency of an estimator is inversely related to its expected-squaxed-error 

ESEN{Y) = / ( K - a)*/N{Y;a)dY. 

This is the average-squared distance of the estimate from the truth. Note that 

if the estimator Is consistent, then J^^ESEN^Y) *= 0. The relative efficiency 

of two estimators Y and Z is defined as the inverse ratio of their corresponding 

expected squared errors, 

REff[YtZ) = ESEN[Z)fESEN{Y). 

Bias is concerned with whether or not the average value of a statistic is equal 

to the true value of the parameter it is estimating. In particular, the bias or an 

estimator is defined to be 

BNlY)-JYfN{Y;a)dY-a. 

This is just the difference between the average value of the statistic and the truth. 

Note that >f an estimator is consistent then p^B^Y) = 0. An estimator for 
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which Bn{Y) = 0 few all N" is said to be unhiased.. Generally speaking unbiased 

estimators are preferred if all other things are equal. However, all other properties 

arc Hcklom cquaL In particular, the efficiency of the best unbiased estimators is 

generally lower than that for the beat biased estimators in a given problem. 

Unbiased estimators are almost navcr best in terms of expectod-sqiiarcd-iirror. 

Robustness concerns the sensitivity of an estimator to violations in the as

sumptions that went in to chooainj it, In parametric statistics the assumptions 

center on the particular parameterized family (3) assumed to govern the probabil

ity density of the (random) variables comprising the data. For a given parametric 

family there is usually an optimal estimator for its parameters (in terms of ef

ficiency). However, it is often the case that the efficiency of such an optimal 

estimator degrades badly if the true probability density deviates only slightly 

from the closest member of the assumed parameterized family. Robust estima

tors generally have a little Irss efficiency than the optimal estimator In any givun 

situation (if the true density were known), but maintain their relatively high effi

ciency over a wide range of different parameterized forms for probability density 

functions. Robust estimators are generally preferred since it is often impossible 

to know for certain that the assumed parametric form for the probability deniiity 

is absolutely correct. 

As an example of robustness consider estimating the center of a symmetric 

distributer. If the probability density corresponding to the distribution were 

Gaussian, then the sample mean is the most efficient estimator. If, however, the 

distribution has higher density than the Gaussian for points far away from the 

center (fat U:-!a), then the efficiency of the mcfcn degrades badly. The sample 

median, on the other band, is less efficient than the mean for Gaussian data 
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(relative efficiency approximately 0.64) but has much higher efficiency for fat 

tailed dietiibutioiw. 

Although the method of moments described above can be (and often is) 

used to construct estimator;, tt is wt to* hvorit« way among etatlsiklana. Far 

*«d w r o dig mtmt popular method h Hal at nmdmttm VJf^XhmtiL By def

inition, die relative probability cf aJmnttaaWHuly ohwtvmg the aet of values 

2C = ( X i , * . — . Xjv)btheTyuerfth»j«fatpMUbilhyd«i*ltyftuk^«i 

•Q0. Lrt2^* = l,iV)beoiwortl»o1)i«rvalioi»tftOUtdaUaet. The relative 

probability of observing this observation (before wo acinalh? observed it) was 

Ppf,)- ff we beEe** that all of our JV observations were tndejgtnta^ drawn 

fiwn a. population governed by pfj£), then the relative probability of seeing all 

JV of our observations (again in advance of actually seeing them) Is simply the 

product or the probabilities for seeing the individual observation!. Thus the rel

ative probability among all possible data sets that we would have seen, the set 

of data that we actually Daw, is 

Mo) = n£iP(&)-n£,/(2c,io)1 

This expression is known as the likelihood function It is a, function of the pa

rameter a through (he dependence of the probability density Amotion on this 

parameter. The principal of maximum likelihood estimation Is to choose as our 

parameter ertbnale that -value that manlmlaesthe probability that we would have 

seen the data set that we actually saw, that b the value thai makes the realized 

data set moot Ekely. I^otwttenwdmumukelihood estimate of the parameter 

a. Then, 

T ... Maximum. . . 
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In practice it Is usually more convenient to maximize the logarithm of the likeli

hood function 
N 

wjv(o) = loffLjv(o)« £ too/Ok;*) 

since it achieves ita maximum at the same value. 

As an example of maximum fficelihood estimation, 

/(X;o) - ^g£«P {-*<*-*)*/-*} 

for a single random variable X and we wish to estimate the parameter r from a 

naropleof size JV. The logarithm of the likelihood function is 

wwta) = £h»7TXil«) - - 4 j £ ( * < - a) 3 - JWeo(v^o-). 

Talcing tha first derivative with rupect to a and setting it equal to zero, yields 

the solution 

i-L 

which is the sample mean. Thus, the sample mt&a is the maximum likelihood 
estimate for the center of a Gaussian distribution. 

IF we want the maximum likelihood estimate for o, the standard deration of 

die Gaussian, we set the first derivative of uft with respect to a equal to zero 

gives die solution 

which depends on the value for a. However, we know that the likelihood solution 

for a, o, b the sample mean X independent of ot so making thb substitntion we 

IS 



have 

which is just the sample standard deviation. 

l a many (classic) cases ii is possible to calculate In dosed form the maximum 

likelihood estimate as was done for the simple case above. More often this is 

not possible and it is necessary to explicitly maximize the log-likelihood using 

numerical optimization techniques in order to obtain the maximum likelihood 

solution. 

Then Is good reason for statisticians to like maximum likelihood estimation. 

First it always provides a prescription Tor parametric estimation. As long as 

on* can compute the joint probability density given a set of parameter values, 

the likelihood function can be formed and maximised—either algebraically or 

numerically. The maximum likelihood estimate (MLB) can be shown to always 

be consistent. As the sample becomes large [N -» oe), the MLE can be shown 

to have the highest possible efficiency. Also as the sample sfoe becomes large, the 

distribution of the MLE estimate & can be shown to have a Gaussian distribution 

about the true value a 

pjv(£,a) = - ^ - e x p { - | ( f i - a)*/"!} 

with 

This information can be used to assign standard errors to maximum likelihood 

estimates. 
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There are a few drawbacks to maximum likelihood estimation- Thi estimates 

tend to be very non-robust. Abo, if numerical optimization b used to obtain the 

MLE, it can be computationally expensive. 

3. Nonparametric Probability Density Estimation 

In nojipaiameliie estimation we assume that the data is a random sample 

fram some (Joint) probability density* but we do not assume a paitleular param

eterized functional form. This is usually because—for the situation at hand—the 

correct functional form is simply unknown. The idea Is to try to directly estimate 

the probability density or the population directly from the data in the absence 

of a specific parameterization, Such estimates are generally used for exploratory 

data analysis purposes. 

Nbnparametrie density estimation is well developed only for the univariate 

case. Here we have a set of measurements {Xi}^ presumed to be a random 

sample from some probability density function p(AT), Figure 1 illustrates a possi

ble realised configuration of data on the real line. Consider an interval centered 

at a point X of width &X. The probability that one or our data points would 

have a value in this interval (before we actually observed it) is just the probability 

content of the interval 

Pnb{X A Jt/2 < X4 < X + AA72) 

JtfOX/2 

as p(X)Az. 
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The latter approximation assumes that the width of the interval is small. A rea

sonable estimate for the probability content of the interval) based on the data, 1B 

simply the fraction of data that lies in the interval. (This is in fact the MLE of 

this quantity), ie. 

«t[Pro6{-}] = ±tfum{-}. 

Combining these results yields &n estimate for the probability density at X 

in terms of the number of counts in the interval of width AX centered at X. Thia 

result is central to two of the most popular methods of nonparametric density 

estimation—histograms and window estimates. 

For the histogram density estimate the range of the data, ia divided into 

M bins or intervals (usually of equal width) and the density is estimated z& a 

(different) constant within each bin using (7) (see Figure 2). The window or 

square kernel density estimate uses overlapping windows. At each point X for 

which a density estimate is required, a symmetric interval (window) centered at 

X of width &.X is constructed and (7) is used to compute the density estimate 

.(sec Figure 3). The windows associated with close points will iiecessarily have a 

great deal of overlap. 

For both these methods, there is an associated parameter that controls the 

degree of averaging that takes place. For the histogram estimate it is the number 

of bine, M. The larger this number, the less smooth the density estimate will 
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become, but the better able it will be to capture narrow effects (sharp peaks) in 

the density. For the window estimate this trade-ofTis controlled by the width A X 

chosen for the window. The smaller the value of AX, the rougher the estimate 

will be, with the corresponding increase in sensitivity to narrow structure. 

For multivariate n > 1 data, nonparametric density estimation becomes dif

ficult. For two dimensions (n — 2) the straightforward generalizations of the 

histogram and window estimates involving rectangular bins or windowi tend to 

have satisfactory performance. However, for higher dimensions {n > 2) perfor

mance degrades severely. This is due to the so-called "curse-of-dimensionality.''' 

Consider a histogram density estimate in ten dimensions [n — 10). If we 

choose to have ten bins on each of the ten variables then there would be a total 

of 1 0 1 0 bins. Clearly for any data set of reasonable size nearly all of these bins 

would be empty and the few that were not empty would generally contain only 

one count. Even with only two bins per variable (a very coarse binning) there 

would be over 1000 hins. 

The window estimate suffers similarly. If for a uniform distribution in a ten 

dimensional unit cube, we wish our window (centered at each da ta point) to 

contain ten percent of the data points on the average, the edge length of the 

window would have to be approximately 0.8; tha t is, it would have to be 80% of 

the extent of the data on each variahle. Clearly with such a window it would be 

impossible to detect all but the very coarsest structure of the probability density 

with such an estimate. Therefore, the most we can hope for is to be able to get 

a general idea of the joint probability density p{X\,Xi,..., Xn) in high (n > 2) 

dimensional situations. 

Cluster analysis is one approach for doing this. Here the goal is to try to 
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dcterawM if the joint density b very email nearly everywhere, except far A small 

number of isolated regions warn It b luge. Thb effect b known as clustering, 

dmtering algorithms Attempt to determine when thfe condition exists and to 

identify the isolated regioiu. 

M»ppinflthedaUt©kwerdimen8kmUB4jbbp«es(^ 

sicnal sarapacea) end studying density estimates on thesubspace ts often a quite 

fruitful approach. Good nonparametrle density estimation ta possible in one and 

two dimension*. Tho trlcli b to perform the mapping in a way that preserves as 

much aj ponible the Information contained In the full dimenaional data set. 

Let & = {Xi,Xi,...,XK) be a point in n-dlmemions and t = T[X) repre-

aent its mapping to one dimension. Here 7 l n tingle valued function of the n 

arguments Xu Xt,... 1X*. Since X. li a {vector valued) random variable, t if also 

a random variable with a corresponding probability deniliy function pr(t)> that 

depends on the transformation function T, Thb (one-dimensional) probability 

density can be easily estimated and examined for different choices of transforma-

tloni. 

For a mapping onto two dimensions, one dcflnai two transformation functions 

* l " Zj&Ma s 2j(2C) creating the random varlabiesiijti with joint distribution 

PTI^»(*J»*8)» depending on the choke of the transformation functions. Again, it is 

straightforward to estimate and examine the two-dimenmoaal joint density of the 

mapped points fj and <j. By performing judiciously <Rosen dimension redwing 

tiansfomutions and studying the corresponding density estimates, one can often 

gain considerable Insight concerning the fl-dimcneional joint probability density 

;(Xi,Xs (...,X»). 

Generally the choke of mapping functions b gnided by the intuition of the 
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researcher wing hie knowledge of the data and the mechanisms that g v* use 

to it. There are abo techniQues that attempt to we the data itself to suggest 

rcvcaline mapping* to lower dimensions. The useful techniques so far developed 

involve car/ linear mapping functions 

At 
( a ^ * j X j «flT2C (one~dimension) 

/ • l 

*i °» s f & f e «• a?2C t t w o ~ dimensions) 

where the projection vectors St&jLiSj. depend upon the data. 

The mast commonly used data driven mapping technique is based on princi

pal con-ponents analysis. Here the basic notion Is that projections (linear map

pings) that most spread out the data are likely to be the most Interesting. This 

concept is illustrated In Figure 4 for the case of mapping two-dimensional data to 

a one-dimensional lubspace. Here there are two symmetrically shaped clusters 

separated in one direction. This direction la the one in which the (projectod) 

data are most spread out, and Is also the direction that reveals the oxistonce of 

the clustering. 

Principal components mapping can he fooled, however, a* illustrated in Fig

ure 5. Here the clusters are not symmetrically shaped, bat are highly elliptical 

The separation of the clusters is along the minor axes in the direction for which 

the pooled c'.ata *» bast spread out. Principal components la this esse would 

choose the direction along the major axes (direction of most data spread) which 

in this case does not reveal the clustering. 

This shortcoming of principal components mapping has lead to the develop

ment of projection pursuit mapping. Here, Instead of finding mappings (projec
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tions) that maximize the spread of the data, one tries to find those mappings 

that maximize the mfQ&Djti&n (negative entropy) defined M 

I(£ = -fpT(t)logpT{t)dt 

with t = e r X, and pr[t) the probability density function of the projected data. 

This approach successfully overcome the limitations of the projection pursuit 

approach but at the expense of additional computation. 

4. Conclusion 

The purpose of this report has been to give a broad (but necessarily quite 
•hallow) overview of statistical data analysis. The intent was to introduce as
tronomers to the way statisticians view data so that they can judge whether 
increased familiarity with statistical concepts and methods will be helpful to 
them. 
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