

Newcastle University ePrints - eprint.ncl.ac.uk

Jiang S, Yang S. A steady-state and generational evolutionary algorithm for

dynamic multiobjective optimization. IEEE Transactions on Evolutionary

Computation 2017, 21(1), 65-82.

Copyright:

©2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is

also permitted, but republication/redistribution requires IEEE permission.

DOI link to article:

http://doi.org/10.1109/TEVC.2016.2574621

Date deposited:

26/05/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=238017
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=238017
http://doi.org/10.1109/TEVC.2016.2574621

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017 65

A Steady-State and Generational Evolutionary

Algorithm for Dynamic Multiobjective

Optimization
Shouyong Jiang and Shengxiang Yang, Senior Member, IEEE

Abstract—This paper presents a new algorithm, called
steady-state and generational evolutionary algorithm, which
combines the fast and steadily tracking ability of steady-state
algorithms and good diversity preservation of generational algo-
rithms, for handling dynamic multiobjective optimization. Unlike
most existing approaches for dynamic multiobjective optimiza-
tion, the proposed algorithm detects environmental changes and
responds to them in a steady-state manner. If a change is detected,
it reuses a portion of outdated solutions with good distribution
and relocates a number of solutions close to the new Pareto front
based on the information collected from previous environments
and the new environment. This way, the algorithm can quickly
adapt to changing environments and thus is expected to provide a
good tracking ability. The proposed algorithm is tested on a num-
ber of bi- and three-objective benchmark problems with different
dynamic characteristics and difficulties. Experimental results
show that the proposed algorithm is very competitive for dynamic
multiobjective optimization in comparison with state-of-the-art
methods.

Index Terms—Change detection, change response, dynamic
multiobjective optimization, steady-state and generational evo-
lutionary algorithm.

I. INTRODUCTION

M
ANY real-world multiobjective optimization problems

(MOPs) are dynamic in nature, whose objective func-

tions, constraints, and/or parameters may change over time.

Due to the presence of dynamisms, dynamic MOPs (DMOPs)

pose big challenges to evolutionary algorithms (EAs) since

any environmental change may affect the objective vector,

constraints, and/or parameters. As a result, the Pareto-optimal

set (POS), which is a set of mathematical solutions to MOPs,

and/or the Pareto-optimal front (POF) that is the image of

POS in the objective space, may change over time. Then, the

Manuscript received November 13, 2015; revised March 7, 2016 and
May 3, 2016; accepted May 10, 2016. Date of publication August 1, 2016;
date of current version January 26, 2017. This work was supported by the
Engineering and Physical Sciences Research Council (EPSRC) of U.K. under
Grant EP/K001310/1 and the National Natural Science Foundation (NNSF)
of China under Grant 61673331. (Corresponding author: Shengxiang Yang.)

The authors are with the Centre for Computational Intelligence,
School of Computer Science and Informatics, De Montfort University,
Leicester, LE1 9BH, U.K. (e-mail: shouyong.jiang@email.dmu.ac.uk;
syang@dmu.ac.uk).

This paper has supplementary downloadable material available at
http://ieeexplore.org, provided by the authors. This supplementary material
provides the formulation of the test problems used in the paper and some
supplementary experimental results. This material is 102 KB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2016.2574621

optimization goal is to track the moving POF and/or POS and

obtain a sequence of approximations over time.

DMOPs can be defined in different ways, according to the

nature of dynamisms [15], [41], [54]. In this paper, we mainly

consider the following kind of DMOPs:

min F(x, t) = (f1(x, t), . . . , fM(x, t))T

s.t.

⎧

⎪

⎨

⎪

⎩

hi(x, t) = 0, i = 1, . . . , nh

gi(x, t) ≥ 0, i = 1, . . . , ng

x ∈ �x, t ∈ �t

(1)

where M is the number of objectives, nh and ng are the number

of equality and inequality constraints, respectively, �x ⊆ Rn

is the decision space, t is the discrete time instance, �t ⊆ R

is the time space, and F(x, t) : �x ×�t → RM is the objective

function vector that evaluates solution x at time t.

In the past few years, there has been an increasing amount

of research interest in the field of evolutionary multiob-

jective optimization as many real-world applications, like

thermal scheduling [42] and circular antenna design [3], have

at least two objectives that conflict with each other, i.e.,

they are MOPs. Due to multiobjectivity, the goal of solv-

ing MOPs is not to find a single optimal solution but to

find a set of tradeoff solutions. When an MOP involves

time-dependent components, it can be regarded as a DMOP.

Many real-life problems in nature are DMOPs, such as

planning [8], scheduling [12], [35], and control [15], [50].

There have been a number of contributions made to several

important aspects of this field, including dynamism classi-

fication [15], [41], test problems [4], [15], [20], [23]–[26],

performance metrics [9], [15], [17]–[19], [41], [55], and

algorithm design [9], [12], [15], [18], [21], [28], [54], [55].

Among these, algorithm design is the most important issue

as it is the problem-solving tool for DMOPs.

Due to the presence of dynamisms, the design of a dynamic

multiobjective optimization EA (DMOEA) is different from

that of a multiobjective optimization EA (MOEA) for static

MOPs. Specifically, DMOEAs should not only have a fast

convergence performance (which is crucial to their tracking

ability), but also be able to address diversity loss whenever

there is an environmental change in order to explore the new

search space. Besides, if changes are not assumed to be know-

able, DMOEAs should be able to detect them in order not

to mislead the optimization process. This is because, when a

1089-778X c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

66 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

change occurs, the previously discovered POS may not remain

optimal for the new environment.

In principle, a change can be detected by re-evaluating

dedicated detectors [12], [18], [47], [54], [55] or assessing

algorithm behaviors [15], [32], [37]. The former is a easy-to-

use mechanism and allows “robust detection” [37] if a high

enough number of detectors is used, but it may require addi-

tional cost since detectors have to be re-evaluated at every

generation, and it may not be accurate when there is noise

in function evaluations. The latter does not need additional

function evaluations, but it may cause false positives and thus

make algorithms overreacting when no change occurs. Both

of them cannot guarantee that changes are detected [37].

On the other hand, whenever a change is detected, it is

often inefficient to restart the optimization process from

scratch, although the restart strategy may be a good choice if

the environmental change is considerably severe [7]. In the

literature, various approaches have been proposed to handle

environmental changes, and they can be mainly categorized

into diversity-based approaches and convergence-based

approaches, according to their algorithm behaviors. Diversity-

based approaches focus on maintaining population diversity

whereas convergence-based ones aim to achieve a fast con-

vergence performance so that algorithms’ tracking ability are

guaranteed. Generally, population diversity can be handled by

increasing diversity using mutation of selected old solutions

or random generation of some new solutions upon the detec-

tion of environmental changes [12], [18], [55], maintaining

diversity throughout the optimization process [1], [2], [6], or

employing multipopulation schemes [18], [40]. Proper

diversity is helpful for exploring promising search

regions, but too much diversity may cause evolutionary

stagnation [5].

Convergence-based approaches try to exploit past infor-

mation for better tracking performance [7], especially when

the new POS is somewhat similar to the previous one or

environmental changes exhibit regular patterns. Accordingly,

recording relevant past information to be reused at a later stage

may be helpful for tracking the new POF as quickly as possi-

ble. The reuse of past information is closely related to the type

of environmental change and hence can be helpful for different

purposes [6]. If the environment changes periodically, relevant

information of the current POS can be stored in a memory

and can be directly reintroduced into the evolving population

when needed. This kind of strategy is often called memory-

based approaches and has been extensively studied in dynamic

multiobjective optimization [7], [8], [18], [22], [52]. In con-

trast, if the environment change follows a regular pattern, past

information can be collected and used to model the movement

of the changing POF/POS. Hence, the location of the new

POS can be predicted, helping the population quickly track

the moving POF. Prediction-based approaches have received

massive attention because most existing benchmark DMOPs

(e.g., the FDA test suite [15]) involve predictable charac-

teristics, and studies along this direction can be referred

to [22], [28], [32], [33], [36], [47], [54], and [55].

Aside from the above-mentioned approaches, some stud-

ies concentrate on finding an insensitive robust POF instead

of closely tracking the moving POF [16], [27], [38].

Algorithm 1 Framework of SGEA

1: Input: N (population size)
2: Output: a series of approximated POFs
3: Create an initial parent population P := {x1, . . . , xN};
4: (A, P) := EnvironmentSelection(P);
5: while stopping criterion not met do
6: for i := 1 to N do
7: if change detected and not responded then
8: ChangeResponse();
9: end if

10: y := GenerateOffspring(P, A);
11: (P, A) := UpdatePopulation(y);
12: end for
13: (A, P) := EnvironmentSelection(P ∪ P);
14: Set P := P;
15: end while

Robustness-based approaches assume that when the environ-

ment changes, the old obtained solution can still be used in

the new environment as long as its quality is acceptable [27].

However, the criterion for an acceptable optimal solution is

quite problem-specific, which may hinder the wide application

of these approaches.

Although a number of approaches have been proposed for

solving DMOPs, the development of DMOEAs is a rela-

tively young field and more studies are greatly needed. In this

paper, a new algorithm, called steady-state and generational

EA (SGEA), is proposed for efficiently handling DMOPs.

SGEA makes most of the advantages of steady-state EAs in

dynamic environments [48] for environmental change detec-

tion and response. If a change is detected, SGEA reuses a

portion of old solutions with good diversity and exploits infor-

mation collected from both previous environments and the new

environment to relocate a part of its evolving population. At

the end of every generation, like conventional generational

EAs [13], [56], SGEA performs environmental selection to

preserve good individuals for the next generation. By mixing

the steady-state and generational manners, SGEA can adapt

to dynamic environments quickly whenever a change occurs,

providing very promising tracking ability for DMOPs.

The rest of this paper is organized as follows. Section II

describes the framework of the proposed SGEA, together with

detailed descriptions of each component of the algorithm.

Section III is devoted to presenting experimental settings for

comparison. Section IV provides experimental results and

comparison on tested algorithms. A further discussion of the

algorithm is offered in Section V. Section VI concludes this

paper with discussions on future work.

II. PROPOSED SGEA

The basic framework of the proposed SGEA is presented

in Algorithm 1. SGEA starts with an initial population P and

the initialization of an elitist population P and an archive A

through environmental selection. In every generational cycle,

SGEA detects possible environmental changes and evolves the

population in a steady-state manner. For each population mem-

ber, if a change is detected, then a change response mechanism

is adopted to handle the detected change. After that, genetic

operation is applied to produce one offspring solution for the

population member, which is then used to update the parent

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 67

Algorithm 2 EnvironmentSelection(Q)

1: Input: Q (a set of solutions)
2: Output: A (archive), P (N elitists preserved)
3: Set A := ∅ and P := ∅;
4: Assign a fitness value to each member in Q;
5: for i := 1 to |Q| do
6: if F(i) < 1 then
7: Copy xi from Q to A;
8: end if
9: end for

10: if |A| < N then
11: Copy the best N individuals in terms of their fitness values

from Q to P;
12: else
13: if |A| == N then
14: Set P := A;
15: else
16: Prune A to a set of N individuals by any truncation operator

and copy the truncated A to P;
17: end if
18: end if

population P and archive A. At the end of each generation,

P and P are combined. Similar to generational EAs [13], [56]

or speciation techniques used in niching [5], [29], a genera-

tional environmental selection is conducted on the combined

population to preserve a population of good solutions for the

next generation. This way, SGEA can be regarded as a steady-

state and generational MOEA. In the following sections, the

implementation of each component of SGEA will be detailed

step by step.

A. Environmental Selection

The environmental selection procedure (Algorithm 2),

which aims to preserve a fixed number of elitists from a

solution set Q after every generational cycle, starts with fit-

ness assignment. Each individual i of Q is assigned a fitness

value F(i), which is defined as the number of individuals that

dominate [56] it, as follows:

F(i) = |{ j ∈ Q| j ≺ i}| (2)

where |·| denotes the cardinality of a set and j ≺ i indi-

cates that j dominates i. It should be noted that, various

fine-grained methods proposed in [14], [45], and [56] can

be used to assign fitness values for individuals. However, the

fitness assignment method used in this paper is relatively sim-

ple and computationally efficient. Most importantly, when an

external individual e enters the set Q, the update of F(i) needs

only one dominance comparison between individuals e and i.

The easy-to-update property of this method will be clearly

embodied in the population update procedure (to be described

in Section II-C).

Afterwards, individuals having a fitness value of zero are

identified as nondominated solutions and then copied to an

archive A. If |A| is smaller than the population size N, the

best N individuals (including both dominated and nondomi-

nated ones) in terms of their fitness values are preserved in

an elitist population P. Otherwise, there can be two situations:

either the number of nondominated solutions fits exactly the

population size, or there are too many nondominated solutions.

Algorithm 3 GenerateOffspring(P, A)

1: Input: P (parent population), A (archive population)
2: Output: y (offspring solution)
3: if rnd < 0.5 then
4: Perform binary tournament selection on P to select two distinct

individuals as the mating parents;
5: else
6: Randomly pick an individual from A and perform binary tour-

nament selection on P to select another distinct individual as
the mating parents.

7: end if
8: Apply genetic operators to generate a new solution y;

In the first case, all nondominated solutions are copied to P.

In the second case, a truncation technique is needed to reduce

A to a population of N nondominated solutions such that the

truncated A have the best diversity possible. In SGEA, the kth

nearest neighbor truncation technique proposed in the strength

Pareto EA 2 (SPEA2) [56] is used to perform the truncation

operation, although we recognise there are other options, e.g.,

the farthest first method [10], [11], which can also serve this

purpose. After that, solutions in the truncated A are copied

to P.

Note that, like classical generational MOEAs, such as the

nondominated sorting genetic algorithm II (NSGA-II) [13]

and SPEA2 [56], SGEA performs environmental selection at

the end of each generation. Thus, SGEA can be generally

categorized into generational MOEAs.

B. Mating Selection and Genetic Operators

Mating selection is an important operation before the pro-

duction of new offspring (line 10 of Algorithm 1). In this

paper, mating parents can be selected either from the parent

population P or the archive population A. The benefit of such a

mating selection method has been extensively investigated on

static MOPs in a number of studies [30], [34], [44], [57]. While

selecting mating parents from P can maintain good population

diversity, selecting parents from A can significantly improve

the convergence speed of the population, which is considerably

desirable in fast-changing environments. If a mating parent

is to be selected from P, SGEA performs a binary tourna-

ment selection according to individuals’ fitness values. If not,

the mating parent can be randomly selected from the archive

population A.

Following the mating selection, genetic operators are

applied on the mating parents to generate a new offspring solu-

tion. In SGEA, the simulation binary crossover and polynomial

mutation are chosen as the recombination and mutation oper-

ators, respectively. The reproduction procedure is presented in

Algorithm 3.

C. Population Update

In SGEA, population update (line 11 of Algorithm 1) is

conducted on both the parent population P and archive popula-

tion A, which is detailed in Algorithm 4. The update operation

on P is in fact replacing the worst solution of P with the newly

generated solution y while the update on A is using y to update

the archived nondominated set. First, if y is not a duplicate

68 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

Algorithm 4 UpdatePopulation(y)

1: Input: y (offspring solution)
2: Output: P (updated parent population), A (updated archive

population)
3: Set the fitness value of y as zero: F(y) := 0;
4: for i := 1 to |P| do
5: if y == xi then
6: Return;
7: end if
8: if y ≺ xi then
9: Add one to the fitness value of xi: F(i) := F(i) + 1;

10: end if
11: if y ≻ xi then
12: Add one to the fitness value of y: F(y) := F(y) + 1;
13: end if
14: end for
15: Compute the individual in P having the highest fitness value:

î := i : argmax{1≤i≤|P|}F(i);

16: if F(y) ≤ F(î) then

17: Set x
î

:= y and F(î) := F(y);
18: if F(y) < 1 then
19: Remove all solutions in A that are dominated by y, and add

y to A if A is not full;
20: end if
21: end if

solution, it will be compared with each member xi of P for

the dominance relation (lines 4–14 of Algorithm 4). If y domi-

nates xi (denoted as y ≺ xi), the fitness value of xi is increased

by one. If y is dominated by xi (denoted as y ≻ xi), the fitness

value of y is increased by one. Then, the worst individual in

P with the highest fitness value is identified, and if there are

two or more such individuals, a random one is selected. If y is

not worse than the identified individual x
î

in terms of the fit-

ness value, the solution replacement takes place, as shown in

line 17 of Algorithm 4. Besides, if y is not dominated by any

member in P (which means its fitness value is zero), it should

be further considered to update the archive population A if A

is not full. This means, the archive update occurs only when

y successfully enters the parent population. It can be observed

that, the fitness assignment method used here is easy to update

an individual’s fitness value, which helps SGEA conduct solu-

tion replacement in the parent population and archive update

in an efficient manner.

D. Dynamism Handling

This section discusses two main aspects of dynamism han-

dling. One is change detection, a step to detect whether a

change has occurs during the evolutionary process. The other

is known as change response or change reaction, which takes

actions to quickly react to environmental changes so that the

population adapts to new environments rapidly.

1) Change Detection: Change detection can be

performed by either re-evaluating a portion of existing

solutions [12], [18], [47], [54], [55] or assessing some

statistical information of some selected population mem-

bers [15], [32], [37]. Since both methods choose a small

proportion of population members as detectors, detection

may fail if changes occur on nondetectors. On the contrary,

it will be computationally expensive if the whole population

members are chosen as detectors. Therefore, a good detection

method should strike a balance between the detection ability

and efficiency.

The proposed algorithm detects changes in a steady-state

manner, as shown in line 7 of Algorithm 1. In every gen-

eration, population members (in random order) are checked

one by one for discrepancy between their previous objective

values and re-evaluated ones. If a discrepancy exists in a pop-

ulation member, we assume a change is successfully detected

and there is no need to do further checks for the rest of popula-

tion members. When a change is detected, SGEA immediately

reacts to it in a steady-state manner. The detection method

is beneficial to prompt and steady change reaction at the

cost of high computational cost. For efficiency, the number

of individuals re-evaluated for change detection is restricted

to a small percentage of the population size. It is worth not-

ing that, re-evaluation-based change detection methods assume

that there is no noise in function evaluations, i.e., they are not

robust. Thus, the proposed method may not be suitable for

detecting changes in noisy environments.

2) Change Response: If a change is successfully detected,

some actions should be taken to react to the environmental

change. A good change response mechanism must be able

to maintain a good level of population diversity and relocate

the population in promising areas that are close to the new

POS. Simply discarding old solutions and randomly reinitial-

izing the population is beneficial to population diversity but

may be time-consuming for algorithms to converge. Likewise,

fully reusing old solutions for the new environment might

be misleading if the landscapes of two consecutive changes

are significantly different. Also, this may cause the loss of

population diversity. As a consequence, algorithms may get

trapped into local minima or cannot find all POF regions for

the new environment. For these reasons, in this paper the popu-

lation for the new environment consists of half of old solutions

and half of reinitialized solutions. The half old solutions

are selected by the farthest first selection method [11], [43],

which was originally proposed to reduce an approximation

set to the maximum allowable size. The farthest first selection

method has been reported to provide better approximation than

NSGA-II’s crowding distance [13] for unconstrained and con-

strained static MOPs [10], [11]. This method selects half of

old solutions that maximize the diversity in the objective space

(line 3 of Algorithm 5). The other half reinitialized solutions in

the new population are produced by a guess of the new location

of the changed POS. To make a correct or at least reasonable

guess, one must know two things, i.e., moving direction and

movement step-size. The following paragraphs contribute to

how to compute them.

Let Ct be the centroid of POS and At be the obtained

approximation set at time step t, then Ct can be computed by

Ct = 1

|At|
∑

x∈At

x. (3)

The movement step-size St to the new location of the

changed POS at time step t + 1 can be estimated by

St = ‖Ct − Ct−1‖ (4)

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 69

Algorithm 5 ChangeResponse()

1: Input: y (offspring solution)
2: Output: P (parent population), A (archive population)
3: R := farthest_first_selection(P) [11];
4: Compute the centroid Ct of A at time step t using Eq. (4);
5: Set A := ∅;
6: Re-evaluate solutions in R and copy nondominated solutions of

R to A;
7: Compute search direction D using Eq. (5);
8: for each xt ∈ P \ R do
9: Reinitialize xt using Eq. (6) and re-evaluate the new solution

xt+1;
10: Remove all solutions in A that is dominated by xt+1, and add

xt+1 to A;
11: end for
12: Set Ct−1 := Ct;

where St is actually the Euclidean distance between centroids

Ct and Ct−1.

The moving direction should be carefully elaborated

to guide the population toward promising search regions.

Otherwise, a completely wrong guess of the moving direc-

tion will mislead the population and make it hard to converge.

Bearing this in mind, we make use of half of the old solu-

tion set R preselected by the farthest first selection [11] to

compute the moving direction. First, the solutions in R are

re-evaluated, and nondominated solutions are saved in the

pre-emptied archive A. Then, the moving direction can be

calculated by

D = CA − CR

‖CA − CR‖ (5)

where CA and CR are centroids of A and R in the decision

space, respectively.

Having obtained the moving direction and movement step-

size, the other half population can be easily reinitialized. For

each member xt in P\R, its new location in the decision space

is generated as follows:

xt+1 = xt + StD + εt (6)

where εt ∼ N(0, Iδt) is a Gaussian noise, added to increase

the probability of the reinitialized population to cover the POS

in the new environment. I is an identity matrix and δt is the

standard deviation in the Gaussian distribution. δt is defined by

δt = St

2
√

n
(7)

where St is the step-size defined in (4), and n is the number

of decision variables.

The overall change response procedure is presented in

Algorithm 5. It is worthy noting that when the first environ-

ment change occurs, the computation of Ct−1 is not applicable.

In this situation, randomly reinitialization is employed for the

generation of solutions in P\R. As long as the centroids of

the approximation sets of two consecutive environments are

available, the above reinitialization method can be adopted.

It should be mentioned that, our proposed reinitialization

method is somewhat predictive but in some sense beyond

prediction. Prediction approaches usually collect only history

information to predict future events. However, our method

exploits both the information of previous environments and

that of the new environment to reinitialize a portion of solu-

tions, which we would like to call “guided” solutions because

their relocation are guided by an estimate of the performance

of the reused old solutions in the new environment. Therefore,

this method may be helpful for quickly tracking the changing

environment if the estimate of the new environment is reliable.

It is worth mentioning that, the guided reinitialization method

implicitly assumes that a change does not affect too much the

relative positions between solutions in the POS. It may fail in

case of a notable violation of the assumption. In this situation,

the proposed method may need to work with other population

reinitialization techniques in order to produce good tracking

performance.

E. Computational Complexity of One Generation of SGEA

In the for loop (lines 6–12 of Algorithm 1) of each gen-

eration, computational resources are mainly consumed by

the offspring reproduction, population update and environ-

mental selection procedures, and other procedures need less

computational cost. The generation of an offspring solution

(line 10 of Algorithm 1) requires O(M) computations, where

M is the number of objectives. The population update pro-

cedure (line 11 of Algorithm 1) takes O(MN), where N is

the population size. Thus, the whole steady-state evolution

part takes O(MN2) computations. The environmental selection

procedure (line 13 of Algorithm 1) spends O(MN2) com-

putations on fitness assignment and on average O(N2 log N)

computations [56] on elitist preservation. Therefore, the over-

all computational complexity of SGEA for one generational

cycle is O(MN2) or O(N2 log N), whichever is larger. It

should be noted that, in fast-changing environments, the run-

time complexity of environmental selection might rarely reach

O(N2 log N) as individuals usually are unlikely well-converged

(obtaining excessive nondominated solutions) within very

limited response time.

III. EXPERIMENTAL DESIGN

A. Test Problems

Twenty-one test problems, including five FDA [15]

problems, three dMOP [18] problems, six ZJZ prob-

lems (F5–F10) [54], and seven UDF [4] problems, are used

to assess our proposed algorithm in comparison with other

algorithms. The time instance t involved in these problems

is defined as t = (1/nt)⌊(τ/τt)⌋ (where nt, τt, and τ repre-

sent the severity of change, the frequency of change, and the

iteration counter, respectively). The definition of these prob-

lems can be found in the supplementary material of this paper.

Note that, some problems have been modified to implement

our experiments, and most of the test problems have periodical

changes.

B. Compared Algorithms

Four popular DMOEAs are used for comparison in

our empirical studies. They are the MOEA based on

70 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

decomposition (MOEA/D) [51], dynamic version of

NSGA-II (DNSGA-II) [12], dynamic competitive-cooperative

coevolutionary evolutionary algorithm (dCOEA) [18], and

population prediction strategy (PPS) [54], representing dif-

ferent classes of metaheuristics. The following gives a brief

description of each compared algorithm.

1) MOEA/D as a representative of decomposition-based

algorithms, MOEA/D [51] converts a mutiobjective

problem by aggregation functions into a number of

single-objective subproblems and optimizes them simul-

taneously. MOEA/D maintains population diversity by

the diversity of subproblems, and a fast convergence

can be achieved by defining a neighborhood for each

subproblem and performing mating selection and solu-

tion update within this neighborhood. Due to these

features, MOEA/D has gained increasing popularity in

recent years and has become a benchmark algorithm

in static multiobjective optimization. In this paper, the

modified version of the weighted Tchebycheff approach

used in [49] is adopted as the aggregation function for

MOEA/D because it has been recently proved to pro-

vide better distribution than its original version. Also, a

limited number nr of solutions will be replaced by any

new solution, as suggested in [31].

2) DNSGA-II: It is a dynamic version of the popular

NSGA-II algorithm [13], which is a representative of

Pareto-dominance based MOEAs. To make it suitable for

handling dynamic optimization problems, Deb et al. [12]

adapted NSGA-II by replacing some population mem-

bers with either randomly created solutions or mutated

solutions of existing solutions if a change occurs. While

the former may perform better in environments with

severe changes, the latter may work well on DMOPs

with moderate changes. In our experiment, the latter

method is adopted as it shows slightly better perfor-

mance than the former in the study of [12].

3) dCOEA: It hybridizes competitive and cooperative

mechanisms observed in nature to solve static MOPs

and to track the changing POF in a dynamic environ-

ment [18]. dCOEA uses a fixed number of archived

solutions to detect changes, and if detected, its compet-

itive mechanism will be started to assess the potential

of existing information of various subpopulations. To

increase diversity after a change, dCOEA also introduces

stochastic solutions into the competitive pool. Besides,

dCOEA uses an additional external population to store

useful but outdated archived solutions, hoping to help

the evolving population quickly adapt to the new envi-

ronment by exploiting these history information. It has

been shown that dCOEA is very promising for handling

dynamic environments [18], [24].

4) PPS: It is a representative of prediction-based methods

that model the movement track of the POF or POS in

dynamic environments and then use this model to pre-

dict the new location of POS. In PPS [54], the POS

information is divided into two parts: 1) the population

center and 2) manifold. Based on the archived popula-

tion centers over a number of continuous time steps, PPS

employs a univariate autoregression model to predict

the next population center. Likewise, previous manifolds

are used to predict the next manifold. When a change

occurs, the initial population for the new environment

is created from the predicted center and manifold. PPS

has been proved to be very competitive for dynamic

optimization when it is incorporated with an estimation

of distribution algorithm [53], and it outperforms other

predictive models [54].

C. Performance Metric

In our experimental studies, we adopt the following perfor-

mance metrics, as they can help deeply investigate algorithms’

performance regarding convergence, distribution, and diversity.

1) Inverted Generational Distance: The inverted gener-

ational distance (IGD) [49], [50], [54] measures both the

convergence and diversity of found solutions by an algorithm.

Let POF be a set of uniformly distributed points in the true

POF, and POF∗ be an approximation of the POF. The IGD is

calculated as follows:

IGD = 1

nPOF

nPOF
∑

i=1

di (8)

where nPOF = |POF|, di is the Euclidean distance between the

ith member in POF and its nearest member in POF∗.

2) Schott’s Spacing Metric: Schott [39] developed this kind

of metric with regard to the distribution of the discovered

Pareto front. Schott’s spacing metric (S) measures how evenly

the members in POF∗ are distributed, and is computed as

S =

√

√

√

√

1

nPOF∗ − 1

nPOF∗
∑

i=1

(Di − D)2 (9)

where Di is the Euclidean distance between the ith member in

POF∗ and its nearest member in POF∗ and D is the average

value of Di.

3) Maximum Spread: The maximum spread (MS) [17]

measures to what extent the obtained POF∗ covers POF

MS =

√

√

√

√

√

1

M

M
∑

k=1

⎡

⎣

min
[

POFk, POF∗
k

]

− max
[

POFk, POF∗
k

]

POFk − POFk

⎤

⎦

2

(10)

where POFk and POFk are the maximum and minimum of the

kth objective in POF, respectively. Similarly, POF∗
k and POF∗

k

are the maximum and minimum of the kth objective in POF∗,

respectively.

4) Hypervolume Difference: The hypervolume differ-

ence (HVD) [55] measures the gap between the hypervolume

of the obtained POF∗ and that of the true POF

HVD = HV(POF) − HV
(

POF∗) (11)

where HV(S) is the hypervolume of a set S. The reference

point for the computation of hypervolume is (z1 + 0.5, z2 +
0.5, . . . , zM + 0.5), where zj is the maximum value of the jth

objective of the true POF and M is the number of objectives.

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 71

TABLE I
MEAN AND STANDARD DEVIATION VALUES OF SP METRIC OBTAINED BY FIVE ALGORITHMS

D. Parameter Settings

The parameters of the MOEAs considered in the experi-

ment were referenced from their original papers. Some key

parameters in these algorithms were set as follows.

1) Population Size: The population size (N) for all the

test problems was set to 100. To make MOEA/D have

100 subproblems for three-objective FDA4 and FDA5,

we first uniformly generate around 1000 weight vectors

using the simplex-lattice design [51], then prune them

to 100 using the farthest first method [10], [11].

2) Parameter Settings for SGEA: These parameters were

set to the same values in all the compared algorithms.

Specifically, the crossover probability was pc = 1.0 and

its distribution index was ηc = 20. The mutation prob-

ability was pm = 1/n and its distribution ηm = 20. The

archive size was the same as the population size.

3) Stopping Criterion and the Number of Executions: Each

algorithm terminates after a prespecified number of

generations and should cover all possible changes. To

minimize the effect of static optimization, we gave 50

generations for each algorithm before the first change

occurs. The total number of generations was set to

3ntτt + 50, which ensures there are 3nt changes during

the evolution. Additionally, each algorithm was executed

30 independent times on each test instance.

4) The neighborhood size and the number nr of solutions

allowed to replace in MOEA/D were set to 20 and 2,

respectively.

5) For all the algorithms, the maximum 10% population

members were chosen for change detection. For the

steady-state MOEA/D, it used the same change detec-

tion mechanism as SGEA, and population re-evaluation

for change response.

6) The number of uniformly sampled points on the true

POF was set to 500 and 990 for the computation of

IGD for bi- and three-objective problems, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results on FDA and dMOP Problems

To study the impact of change frequency on algorithms’

ability in dynamic environments, the severity of change (nt)

was fixed to 10, and the frequency of change (τt) was set

to 5, 10, and 20, respectively. The obtained average SP, MS,

IGD, and HVD results over a series of time windows and their

standard deviation values are presented in Tables I–IV, respec-

tively, where the best values obtained by one of five algorithms

are highlighted in bold face. The Wilcoxon rank-sum test [46]

is carried out to indicate significance between different results

at the 0.05 significance level.

It can be observed from Table I that SGEA obtains the

best results on the majority of the tested FDA and dMOP

instances, implying that it maintains better distribution of its

approximations over changes than the other compared algo-

rithms in most cases. However, it performs slightly worse than

DNSGA-II for FDA2 and FDA3, and dCOEA for FDA4 with

fast changes (i.e., τt = 5 and 10). For all the tested instances,

both PPS and MOEA/D fail to show encouraging performance

on the SP metric, and MOEA/D seems struggling for main-

taining a uniform distribution of its obtained POF for dynamic

optimization, as indicated by the large SP values in Table I.

As shown in Table II, the results on the MS metric are quite

divergent. DNSGA-II and SGEA obtain a spread coverage

for FDA2, FDA4, and FDA5, although DNSGA-II provides

slightly better MS values than SGEA. For problems FDA1,

FDA3, and dMOP2, SGEA significantly outperforms the other

72 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

TABLE II
MEAN AND STANDARD DEVIATION VALUES OF MS METRIC OBTAINED BY FIVE ALGORITHMS

TABLE III
MEAN AND STANDARD DEVIATION VALUES OF IGD METRIC OBTAINED BY FIVE ALGORITHMS

algorithms by a clear margin in terms of the MS metric. PPS

and MOEA/D cover the POF very well for two three-objective

problems, i.e., FDA4 and FDA5, and all the algorithms per-

form similarly on dMOP1 except dCOEA, whose MS values

are not very competitive in this case. To have a better under-

standing of how algorithms’ MS performance can be affected

by different dynamisms, we discuss a little bit more on FDA3

and dMOP3. FDA3 is a problem in which environmental

changes shift the POS and affect the density of points on

the POF whereas dMOP3 is a problem where the population

diversity can decrease dramatically. The results of MS show

that, for FDA3, SGEA can maintain a good coverage of the

POF when the other algorithms perform poorly. However, this

is not the case for dMOP3, where only dCOEA and PPS

are able to distribute their obtained solutions widely on the

POF. This means that the change response mechanisms in

DNSGA-II, MOEA/D, and SGEA may face big challenges

when dynamisms drastically aggravate population diversity.

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 73

TABLE IV
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS

Since the IGD metric mainly depends on the closeness,

distribution, and coverage of an approximation to the true

POF, we can use IGD together with SP and MS to deeply

and extensively reveal the algorithms’ performance on the test

instances. Table III clearly shows that, SGEA performs the

best on the majority of the test instances and mainly loses

on FDA4 and dMOP3, where dCOEA is the best performer,

in terms of the IGD metric. Clearly, the uncompetitive dis-

tribution (i.e., slightly large SP metric) and poor coverage

(i.e., relatively small MS metric) of obtained approximations

are the main reasons for the low performance of SGEA on

FDA4 and dMOP3, respectively. However, good SP and MS

values do not necessarily result in satisfying IGD metric, and

this can be particularly observed from the case of DNSGA-II

on FDA2, suggesting that DNSGA-II converges worse than

SGEA although it provides the best SP and MS metrics on

this problem. For PPS and MOEA/D, the IGD performance

is not competitive in spite of their good spread performance

for most of the test instances, and this may be caused by

their poor solution distribution, as indicated by their large

SP values.

Table IV presents the HVD metric obtained by five algo-

rithms on the FDA and dMOP problems. The obtained HVD

values are roughly consistent with the IGD ones illustrated

in Table III. Clearly, SGEA is more promising than the

other algorithms to solve most FDA and dMOP instances,

but it is outperformed by dCOEA on FDA4 and DMOP3.

Besides, the steady-state MOEA/D also shows some appealing

results on FDA3 and DMOP1 when τt equals 20, implying

its steady-state update method may be helpful for handling

slow-changing environments.

It can also be observed from the results of the three used

metrics that, the frequency of change has a significant effect

on algorithms’ performance, and the effect decreases when

environmental changes become slow. For two three-objective

problems, i.e., FDA4 and FDA5, DNSGA-II and MOEA/D are

most influenced by frequent changes and struggle to push their

populations toward the POF, as indicated by their large IGD

and HVD values in Tables III and IV, respectively. Overall,

dCOEA and SGEA seems less sensitive to the frequency

of change, as can be seen from their gradual improvement

on three metrics when τt increases from 5 to 20. On the

other hand, with the variation of frequency, there are dras-

tic improvements on DNSGA-II, PPS, and MOEA/D in most

of the test instances.

Apart from tabular presentation, we provide evolution

curves of the average IGD values on the test instances in Fig. 1.

It can be clearly seen that, compared with the other algorithms,

SGEA responds to changes more stably and recovers faster

for most of the test problems, thereby obtaining higher con-

vergence performance. The only exception is dMOP3, where

dCOEA performs the best, and due to the lack of popula-

tion diversity (indicated by poor MS values) when a change

occurs, the IGD values obtained by SGEA fluctuate widely on

this problem. Despite that, SGEA performs similarly to PPS

and better than DNSGA-II and MOEA/D on dMOP3. For a

graphical view of algorithms’ tracking ability, we also plot

their obtained POFs of FDA1, FDA2, FDA3, and dMOP3 over

31 time windows, which are shown in Fig. 2. Fig. 2 evidently

shows that SGEA is very capable of tracking environmental

changes, but may be of limited coverage if there is a significant

diversity loss (e.g., on dMOP3) in dynamic environments.

B. Results on ZJZ and UDF Problems

Unlike the FDA and dMOP test suites, the

ZJZ (F5–F10) [54] and UDF [4] test problems have

74 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

Fig. 1. Evolution curves of average IGD values for eight problems with τt = 10 and nt = 10.

nonlinear linkages between decision variables. Also,

the ZJZ and UDF test suites introduces a number of

new dynamic features which are not included in FDA

and dMOP. Table V reports the HVD values obtained

by five algorithms for these challenging problems with

(τt, nt) = (10, 10), and the obtained SP, MS, and

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 75

Fig. 2. Obtained POFs for four problems with τt = 10 and nt = 10.

IGD metric values can be found in the supplementary

material.

Compared with the average HVD values on FDA and

dMOP problems given in Section IV-A, the average HVD val-

ues obtained on ZJZ and UDF problems are generally much

higher, implying that the optimization difficulties are increased

in the ZJZ and UDF problems. Table V clearly shows that

SGEA and PPS are top performers on these difficult problems.

SGEA obtains the best HVD values on some problems while

PPS wins on others. SGEA performs significantly better than

DNSGA-II on problems F5–F10, but this superiority disap-

pears when they are compared on the UDF problems, and there

is no much difference between them. This means SGEA has

no much advantage in dealing with difficult variable-linkage

UDF problems. PPS, which is not impressive for solving FDA

and dMOP problems, shows very promising performance on

some ZJZ and UDF problems. This is because PPS employs

an estimation of distribution algorithm [53] as its reproduction

operator. This operator can exploit problem specific knowl-

edge, and hence is very helpful for solving variable-linkage

problems. With the aid of such a powerful operator, it is natural

that PPS can obtain competitive results on these variable-

linkage DMOPs. In contrast to PPS, dCOEA faces dramatic

difficulties to handle the ZJZ and UDF problems, although it

has previously shown good performance on FDA and dMOP

problems.

76 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

TABLE V
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS ON ZJZ AND UDF PROBLEMS

Table V also shows that almost all the tested algorithms are

struggling for three-objective problems, i.e., F8 and UDF7, and

disconnected problems, i.e., UDF3 and UDF6, as indicated

by their relatively high HVD values. This is understand-

able because the increase of the number of objectives and

disconnectivity are themselves very challenging in static opti-

mization, let alone in dynamic optimization.

To show the evolution performance, Fig. 3 plots the evo-

lution curve of the average IGD metric values over 30

independent runs. We can see from the figure that, SGEA

is able to respond to environmental changes fast and stably

in most cases. DNSGA-II and MOEA/D roughly have simi-

lar evolution curves on the majority of cases. PPS recovers

from environmental changes fast on some problems, e.g., F6,

F9, UDF2, and UDF5, but recovers slowly on other prob-

lems like F8 and UDF1. dCOEA seems struggling on these

variable-linkage DMOPs.

It is worth noting that, the tested algorithms do not react

to changes stably on a few problems, e.g., F5, F9, and F10.

The IGD values vary widely on these problems because they

involves more severe changes in POS than the other ZJZ prob-

lems. Clearly, the severe POS movement in F5 degrades the

performance of SGEA, hence it is outperformed by PPS.

V. DISCUSSION

A. Influence of Severity of Change

To examine the effect of severity levels on algorithms’ per-

formance, experiments were carried out on FDA and dMOP

problems with τt fixed to 10, and nt set to 5, 10, and 20, which

represent severe, moderate, and slight environmental changes,

respectively. Experimental results of five algorithms on the

HVD metric are given in Table VI. For the inspection of the

values of the SP, MS, and IGD metrics, the interested readers

can be referred to the supplementary material.

It can be observed from the table that, all the algorithms are

very sensitive to the severity of change, as can be seen from the

improvement of the metrics when increasing the value of nt.

For different severity levels, SGEA is able to produce impres-

sive performance and wins on the majority of the instances,

and this algorithm is mainly exceeded by dCOEA on only

two problems, i.e., FDA4 and dMOP3. However, for the prob-

lem dMOP3, the HVD metric of SGEA deteriorates with the

decrease of the severity level. One possible explanation is that,

on dMOP3, the degree of diversity loss is roughly the same for

different severity levels, but for different severity levels, SGEA

reacts to changes differently, with a large movement step-size

for severe changes (nt = 5) and a small movement step-size

for slight ones (nt = 20). A larger movement step-size is

likely to increase more population diversity than a smaller one.

Therefore, the increase of nt may negatively affect population

diversity, which in turn leads to the deterioration of the HVD

metric. Such impact suggests that SGEA may need diversity

increase techniques to deal with problems like dMOP3.

B. Study of Different Components of SGEA

This section is devoted to studying the effect of different

components of SGEA. SGEA has three key components, i.e.,

the guided reinitialization for change response, the steady-

state population update, and the generational environmental

selection. To deeply examine the role that each component

plays in dynamic optimization, we adapt the original SGEA

into three variants. The first variant (SGEA-S1) does not use

the part of guided change response. Instead, it re-evaluates

all current population members in the event of environ-

mental changes. The second variant (SGEA-S2) discards the

steady-state update part of SGEA. In other words, SGEA-S2

generationally detects and reacts to changes, and reproduces

offspring. SGEA-S3 is another modification of SGEA, in

which environmental selection at the end of every generation

is conducted by preserving a population of individuals with

good fitness. This means, SGEA-S3 prefers well-converged

solutions regardless of their diversity. These three variants are

compared with the original SGEA on four problems with the

setting of (τt, nt) = (10, 10). Table VII presents the average

and standard deviation values of four metrics obtained by dif-

ferent SGEA variants. The Wilcoxon signed-rank test [46] is

carried out at the 0.05 significance level to indicate statistically

significant difference between SGEA and the other variants.

In Table VII, SGEA performs significantly better than the

three variants on FDA1 in terms of four metrics, implying all

the three key components are crucial to the high performance

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 77

Fig. 3. Evolution curves of average IGD values for eight variable-linkage problems with τt = 10 and nt = 10.

of SGEA on this problem. For dMOP1, SGEA-S1, SGEA-S2,

and SGEA obtain considerably small IGD and HVD values,

indicating they can solve this problem very well. In contrast,

SGEA-S3 seems incapable of solving dMOP1, as indicated by

the inferior four metrics. The poor performance of SGEA-S3

on dMOP1 is mainly due to the lack of diversity mainte-

nance, particularly when excessive nondominated solutions are

obtained. This case clearly illustrates the importance of gen-

erational environmental selection to SGEA. For F5, there is

notable difference between SGEA-S2 and the other algorithms

in terms of the metrics. SGEA-S2 obtains the worst SP, IGD,

and HVD values, although it has better coverage (MS) than

the others. The results of SGEA-S2 on F5 obviously suggest

that the use of steady-state population update can significantly

improve the performance of SGEA. Besides, the difference

between SGEA-V1 and SGEA on F5, in terms of the IGD and

HVD metrics, also validates the effectiveness of the proposed

guided population reinitialization for handling environmental

changes. The results of four algorithms on UDF1 show that

SGEA is significantly better than SGEA-S1 and SGEA-S3.

This observation further confirms the benefit of the guided

population reinitialization and generational selection used in

SGEA for dynamic optimization.

It is not difficult to understand that, as a combination of

three key components, SGEA generally outperforms the other

compared variants. The above observations clearly exhibit

78 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

TABLE VI
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS WITH DIFFERENT VALUES OF nt

TABLE VII
PERFORMANCE COMPARISON OF SGEA VARIANTS

the importance of each component in dealing with dynamic

environments. Here, we would like to give more explana-

tions for the role of each component. The guided population

reinitialization exploits the information of new environments

to coarsely relocate some population members close to the

new POS, which is beneficial to rapidly track the changing

POS. The steady-state update strategy can speed up the con-

vergence process of the population. This is because, within

every generation, when an offspring is generated, it is imme-

diately used to update the evolving population and the external

archive. Thus, the offspring, if very promising, has opportuni-

ties to be chosen as a parent for producing new offspring. This

way, the steady-state update strategy offers a fast convergence

speed and a steady reaction to changes as well. Although

the steady-state update strategy is helpful for convergence,

it does not consider population diversity. For this reason,

the generational selection strategy is introduced to mainly

maintain population diversity. One particular situation is that,

when plenty of nondominated individuals are available, the

generational selection can prune them so as to preserve a

fixed-size population with good diversity for next generation.

As a result, the balance between convergence and diversity

can be properly struck during the evolution. In a nutshell,

all these three components of SGEA play a important role

in reacting steadily and adapting rapidly to environmental

changes.

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 79

TABLE VIII
SP, MS, AND IGD VALUES OF SGEA-V1 FOR FDA1 AND FDA2

C. Influence of Introducing Mutated Solutions

In the previous section, empirical studies indicate that

SGEA is very competitive for handling dynamic environments,

but it does not work as well as DNSGA-II for a good dis-

tribution and coverage on problems like FDA2. Similar to

DNSGA-II, we can introduce η% mutated solutions of existing

solutions into the new population after a change into SGEA,

and we call this version of SGEA as SGEA-v1. This means,

the new population consists of 50% of old solutions, η%

(0 ≤ η ≤ 50) mutated solutions, and (50 − η)% guided solu-

tions. Unlike SGEA, SGEA-v1 computes the moving direction

[as shown in (5)] in a different way. To be specific, the 50% old

solutions and η% mutated solutions are regarded as the set R

in (5), and nondominated solutions from R after re-evaluation

are copied to A. This way, (50 − η)% of the new population

to be reinitialized can benefit from the reused old solutions as

well as the mutated solutions, especially when these solutions

have a high level of diversity.

The effect of mutated solutions is studied on FDA1 and

FDA2 with the setting of τt = 10 and nt = 10, and η varied

from 0 to 50. In the case of η = 0, SGEA-v1 is actually

the original SGEA, and η = 50 means there are no guided

solutions in the new population. The mutation probability and

the distribution index for making mutated solutions were set

the same as in DNSGA-II [12].

Table VIII presents the results of SGEA-v1 for the two

tested problems. For FDA1, the performance of SGEA-v1 on

three metrics notably deteriorates with the increase in the num-

ber of mutation solutions in population. The similar trend can

be observed from the results of FDA2, in which all the metric

values are negatively influenced when η increases. The nega-

tive effect of introducing mutated solutions can be explained

by the fact that, mutated solutions are more random than

well-planned guided solutions used in SGEA, and may take

more time to be directed toward the true POF. In other words,

such mechanism seems not suitable for SGEA when handling

dynamic environments.

D. Influence of Introducing Random Solutions

As illustrated in the previous experimental study, SGEA

is quite vulnerable to severe diversity loss and thus can-

not compete with dCOEA on dMOP3. For this reason, we

devise another version of SGEA, denoted SGEA-v2, which

is inspired by the use of stochastic competitors for diversity

increase in dCOEA. SGEA-v2 has the similar change response

framework to SGEA-v1 except that it replaces η% of the

population with randomly created solutions. The influence of

TABLE IX
SP, MS, AND IGD VALUES OF SGEA-V2 FOR DMOP3

Fig. 4. POFs of dMOP3 (τt = 10 and nt = 10) obtained by SGEA-v2 over
31 time steps.

introducing random solutions is studied on dMOP3, where η

varies from 0 to 50.

The results of SGEA-v2 on dMOP3 with τt = 10 and

nt = 10 are given in Table IX. Clearly, the introduction of

random solutions significantly improves the coverage perfor-

mance of SGEA, which in turn decreases the IGD values. Such

benefit is maximized when 40% random solutions are adopted,

and the corresponding approximations of 31 time steps are

illustrated in Fig. 4, showing that SGEA with the use of ran-

dom solutions is very capable of tracking the changing POF

on dMOP3. On the other hand, the SP metric is negatively

affected by random solutions, with a notable decline when η

increases. This is because the use of random solutions drasti-

cally increases population diversity, leading to a wide spread

of the population along the POF so that the uniformity of the

obtained approximation is not easy to keep. Thus, for dMOP3,

the SP metric is inconsistent with MS and IGD.

Since the use of random solutions considerably help SGEA

cope with the diversity loss, we wonder whether SGEA-v2

80 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

TABLE X
COMPARISON BETWEEN DCOEA AND SGEA-V2 ON DMOP3

Fig. 5. Comparison of IGD curves between dCOEA and SGEA-v2 for
dMOP3 with τt = 10 and nt = 10.

can win against the other compared algorithms on dMOP3.

Hence, we compare SGEA-v2 with η = 40 with the previous

best performer, i.e., dCOEA, on different dynamic scenar-

ios of dMOP3. Table X and Fig. 5 present the comparison

results, clearly showing that SGEA-v2 significantly outper-

forms dCOEA in terms of the three performance metrics.

This further confirms the potential of SGEA for handling

dynamic environments if the population diversity is properly

maintained.

E. More Discussions

The previous experimental comparison and analysis have

shown that SGEA is capable of solving a wide range of

DMOPs. Specifically, SGEA works well on simple DMOPs

without strong variable linkages, like most of the FDA and

dMOP problems. In some patterns of changes, such as, the

geometric shapes of two consecutive POFs/POSs are similar,

changes are slight or do not cause diversity loss, and changes

are relatively smooth, SGEA is able to track the moving

POFs/POSs effectively and efficiently. Therefore, SGEA pro-

vides better performance than the other compared algorithms

in these cases. The fact that most of the test problems have

periodical changes suggests SGEA is particularly applicable

to periodical environments.

However, like other algorithms, SGEA has some draw-

backs too. One drawback is that SGEA struggles to deal

with changes that brings about severe diversity loss, which

has been illustrated by dMOP3. In practice, SGEA does not

increase diversity when changes occur, so it is vulnerable to

the loss of diversity. However, as have shown in this paper,

this drawback can be alleviated by introducing some ran-

domly created individuals when a change is detected. Another

drawback comes from the inefficiency of SGEA for han-

dling severe movements in POS. As verified by F5, such a

severe change can significantly degrade the performance of

SGEA. Besides, the dissimilar geometric shapes between two

consecutive POFs/POSs (see results on F10) may challenge

the performance of SGEA. In case that a change affects too

much the relative positions between solutions in the POS, the

guided reinitialization method of SGEA may not work well

due to its linear property. It also affects too much the rela-

tive positions between solutions. On the other hand, SGEA

also suffers from optimization difficulties caused by variable

linkages. Experimental comparisons on the UDF problems evi-

dently show that SGEA and the other algorithms all have

difficulty in solving strong variable-linkage problems. A pos-

sible way to solve variable linkages may be borrowing similar

idea from the optimizer of PPS or incorporating with new

operators [42] to evolve the population.

VI. CONCLUSION

In this paper, we have proposed an SGEA, for han-

dling multiobjective problems with time-varying characteris-

tics. Different from existing dynamism handling approaches in

the literature, SGEA detects and reacts to changes in a steady-

state manner. If a change is detected, SGEA reuses a portion

of old solutions with good diversity and re-evaluates them,

providing the algorithm with some basic understanding of the

landscape of the new environment. As a result, SGEA exploits

useful information extracted from the new environment, i.e.,

the moving direction, to relocate the remaining portion of pop-

ulation to regions near the new POF. Otherwise, a generational

cycle of static steady-state optimization is executed, in which

the evolving population progressively interacts with an exter-

nal archive, promoting the convergence speed of SGEA. At the

end of each generation, the previous and current populations

are combined, and the environmental selection is performed

on the combined population to preserve elitists for the next

generation.

SGEA has been compared with other several popular

DMOEAs on a number of DMOPs, including bi- and three-

objective problems, with different dynamic characteristics and

difficulties. Experimental studies have shown that, on the

majority of the considered problems, SGEA is capable of

tracking their changing POFs efficiently, but may struggle to

recover if the problem has strong variable linkages or changes

cause a significant diversity loss.

JIANG AND YANG: SGEA FOR DYNAMIC MULTIOBJECTIVE OPTIMIZATION 81

The main components of SGEA have been studied and

their roles in handling dynamic environments have been

deeply illustrated. Besides, the influence of the introduction

of mutated and randomly created solutions for change reac-

tion has been investigated, showing that mutated solutions may

have a negative effect on the elaborated SGEA, and the use of

random solutions can considerably alleviate the diversity loss

caused by environmental changes, thereby offering significant

improvement on the performance of SGEA.

Although SGEA has provided encouraging performance on

the test problems considered in this paper, it needs to be

examined on a wider range of dynamic environments, such as

changes that are hard to be detected or do not vary regularly.

Our future work includes the incorporation of new constraint

handling techniques to deal with dynamic constrained prob-

lems, new operators like [42] to evolve population, new

detectors and response mechanisms to handle environmental

changes. Besides, new dynamic benchmarks and performance

metrics are needed to facilitate the analysis of DMOEAs.

REFERENCES

[1] V. Aragón, S. Esquivel, and C. A. Coello Coello, “Evolutionary multi-
objective optimization in non-stationary environments,” J. Comput. Sci.

Technol., vol. 5, no. 3, pp. 133–143, 2005.

[2] C. R. B. Azevedo and A. F. R. Araújo, “Generalized immigration
schemes for dynamic evolutionary multiobjective optimization,” in Proc.

IEEE Congr. Evol. Comput. (CEC), New Orleans, LA, USA, 2011,
pp. 2033–2040.

[3] S. Biswas, D. Bose, S. Das, and S. Kundu, “Decomposition-based
evolutionary multi-objective optimization approach to the design of con-
centric circular antenna arrays,” Prog. Electromagn. Res. B, vol. 52,
pp. 185–205, Jun. 2013.

[4] S. Biswas, S. Das, P. N. Suganthan, and C. A. Coello Coello,
“Evolutionary multiobjective optimization in dynamic environments:
A set of novel benchmark functions,” in Proc. IEEE Congr. Evol.

Comput. (CEC), Beijing, China, 2014, pp. 3192–3199.

[5] S. Biswas, S. Kundu, and S. Das, “Inducing niching behavior in differ-
ential evolution through local information sharing,” IEEE Trans. Evol.

Comput., vol. 19, no. 2, pp. 246–263, Apr. 2015.

[6] S. Biswas, S. Das, S. Kundu, and G. R. Patra, “Utilizing time-linkage
property in DOPs: An information sharing based artificial bee colony
algorithm for tracking multiple optima in uncertain environments,” Soft

Comput., vol. 18, no. 6, pp. 1199–1212, 2014.

[7] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proc. IEEE Congr. Evol. Comput. (CEC),
vol. 3. Washington, DC, USA, 1999, pp. 1875–1882.

[8] L. T. Bui, Z. Michalewicz, E. Parkinson, and M. B. Abello, “Adaptation
in dynamic environments: A case study in mission planning,” IEEE

Trans. Evol. Comput., vol. 16, no. 2, pp. 190–209, Apr. 2012.

[9] M. Cámara, J. Ortega, and F. de Toro, “A single front genetic algorithm
for parallel multi-objective optimization in dynamic environments,”
Neurocomputing, vol. 72, nos. 16–18, pp. 3570–3579, 2009.

[10] B. Chen, W. Zeng, Y. Lin, and D. Zhang, “A new local search-based
multiobjective optimization algorithm,” IEEE Trans. Evol. Comput.,
vol. 19, no. 1, pp. 50–73, Feb. 2015.

[11] C. Chen and L.-Y. Tseng, “An improved version of the multiple trajec-
tory search for real value multi-objective optimization problems,” Eng.

Optim., vol. 46, no. 10, pp. 1430–1445, 2014.

[12] K. Deb, N. U. B. Rao, and S. Karthik, “Dynamic multi-objective opti-
mization and decision-making using modified NSGA-II: A case study
on hydro-thermal power scheduling,” in Proc. 4th Int. Conf. Evol. Multi

Criterion Optim., vol. 3. 2007, pp. 803–817.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[14] E. U. Ergul and I. Eminoglu, “DOPGA: A new fitness assignment
scheme for multi-objective evolutionary algorithms,” Int. J. Syst. Sci.,
vol. 45, no. 3, pp. 407–426, 2014.

[15] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: Test cases, approximations, and applications,” IEEE Trans.

Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.

[16] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust solutions
to dynamic optimization problems,” in Applications of Evolutionary

Computation (LNCS 7835). Heidelberg, Berlin, Germany: Springer,
2013, pp. 616–625.

[17] C. K. Goh and K. C. Tan, “An investigation on noisy environments in
evolutionary multiobjective optimization,” IEEE Trans. Evol. Comput.,
vol. 11, no. 3, pp. 354–381, Jun. 2007.

[18] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.

Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.

[19] M. Helbig and A. P. Engelbrecht, “Performance measures for dynamic
multi-objective optimisation algorithms,” Inf. Sci., vol. 250, pp. 61–81,
Nov. 2013.

[20] M. Helbig and A. P. Engelbrecht, “Benchmarks for dynamic multi-
objective optimisation algorithms,” ACM Comput. Surveys, vol. 46, no. 3,
2014, Art. no. 37.

[21] M. Helbig and A. P. Engelbrecht, “Population-based metaheuristics for
continuous boundary-constrained dynamic multi-objective optimisation
problems,” Swarm Evol. Comput., vol. 14, pp. 31–47, Feb. 2014.

[22] I. Hatzakis and D. Wallace, “Dynamic multiobjective optimization with
evolutionary algorithms: A forward-looking approach,” in Proc. 8th

Annu. Conf. Genet. Evol. Comput. (GECCO), Seattle, WA, USA, 2006,
pp. 1201–1208.

[23] S. Jiang and S. Yang, “A benchmark generator for dynamic multi-
objective optimization problems,” in Proc. U.K. Workshop Comput.

Intell. (UKCI), Bradford, U.K., 2014, pp. 1–8.

[24] S. Jiang and S. Yang, “A framework of scalable dynamic test prob-
lems for dynamic multi-objective optimization,” in Proc. IEEE Symp.

Comput. Intell. Dyn. Uncertain Environ. (CIDUE), Orlando, FL, USA,
2014, pp. 32–39.

[25] S. Jiang and S. Yang, “Evolutionary dynamic multi-objective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE Trans. Cybern., to
be published, doi: 10.1109/TCYB.2015.2510698.

[26] Y. Jin and B. Sendhoff, “Constructing dynamic optimization test prob-
lems using the multi-objective optimization concept,” in Applications of

Evolutionary Computing (LNCS 3005). Heidelberg, Berlin, Germany:
Springer, 2004, pp. 525–536.

[27] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A framework for
finding robust optimal solutions over time,” Memetic Comput., vol. 5,
no. 1, pp. 3–18, 2013.

[28] W. T. Koo, C. K. Goh, and K. C. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Comput., vol. 2, no. 2, pp. 87–110, 2010.

[29] S. Kundu, S. Biswas, S. Das, and P. N. Suganthan, “Crowding-
based local differential evolution with speciation-based memory archive
for dynamic multimodal optimization,” in Proc. 15th Annu. Conf.

Genet. Evol. Comput. (GECCO), Amsterdam, The Netherlands, 2013,
pp. 33–40.

[30] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in Proc. IEEE Congr.

Evol. Comput. (CEC), 2000, pp. 46–53.

[31] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[32] R. Liu, J. Fan, and L. Jiao, “Integration of improved predictive
model and adaptive differential evolution based dynamic multi-objective
evolutionary optimization algorithm,” Appl. Intell., vol. 43, no. 1,
pp. 192–207, 2015.

[33] R. Liu, Y. Chen, W. Ma, C. Mu, and L. Jiao, “A novel cooperative
coevolutionary dynamic multi-objective optimization algorithm using a
new predictive model,” Soft Comput., vol. 18, no. 10, pp. 1913–1929,
2014.

[34] H. Lu and G. G. Yen, “Rank-density-based multiobjective genetic algo-
rithm and benchmark test function study,” IEEE Trans. Evol. Comput.,
vol. 7, no. 4, pp. 325–343, Aug. 2003.

[35] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic design
of scheduling policies for dynamic multi-objective job shop scheduling
via cooperative coevolution genetic programming,” IEEE Trans. Evol.

Comput., vol. 18, no. 2, pp. 193–208, Apr. 2014.

[36] Z. Peng, J. Zheng, J. Zou, and M. Liu, “Novel prediction and mem-
ory strategies for dynamic multiobjective optimization,” Soft Comput.,
vol. 19, no. 9, pp. 2633–2653, 2014.

82 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 1, FEBRUARY 2017

[37] H. Richter, “Detecting change in dynamic fitness landscapes,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Trondheim, Norway, 2009,
pp. 1613–1620.

[38] S. Salomon, R. C. Purshouse, G. Avigad, and P. J. Fleming, “An
evolutionary approach to active robust multiobjective optimisation,”
in Evolutionary Multi-Criterion Optimization (LNCS 9019). Cham,
Switzerland: Springer, 2015, pp. 141–155.

[39] J. R. Schott, “Fault tolerant design using single and multicriteria
genetic algorithm optimization,” M.S. thesis, Dept. Aeronaut. Astronaut.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 1995.

[40] R. Shang, L. Jiao, Y. Ren, L. Li, and L. Wang, “Quantum immune clonal
coevolutionary algorithm for dynamic multiobjective optimization,” Soft

Comput., vol. 18, no. 4, pp. 743–756, 2014.
[41] E. Tantar, A.-A. Tantar, and P. Bouvry, “On dynamic multi-objective

optimization, classification and performance measures,” in Proc.

IEEE Congr. Evol. Comput. (CEC), New Orleans, LA, USA, 2011,
pp. 2759–2766.

[42] A. Trivedi, D. Srinivasan, S. Biswas, and T. Reindl, “Hybridizing
genetic algorithm with differential evolution for solving the unit commit-
ment scheduling problem,” Swarm Evol. Comput., vol. 23, pp. 50–64,
Aug. 2015.

[43] L.-Y. Tseng and C. Chen, “Multiple trajectory search for uncon-
strained/constrained multi-objective optimization,” in Proc. IEEE Congr.

Evol. Comput. (CEC), Trondheim, Norway, 2009, pp. 1951–1958.
[44] S. Tiwari, G. Fadel, and K. Deb, “AMGA2: Improving the perfor-

mance of the archive-based micro-genetic algorithm for multi-objective
optimization,” Eng. Optim., vol. 43, no. 4, pp. 377–401, 2011.

[45] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired
coevolutionary algorithms for many-objective optimization,” IEEE

Trans. Evol. Comput., vol. 17, no. 4, pp. 474–494, Aug. 2013.
[46] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bull., vol. 1, no. 6, pp. 80–83, 1945.
[47] Y. Wu, Y. Jin, and X. Liu, “A directed search strategy for evolutionary

dynamic multiobjective optimization,” Soft Comput., vol. 19, no. 11,
pp. 3221–3235, 2015.

[48] F. Vavak and T. C. Fogarty, “Comparison of steady state and generational
genetic algorithms for use in nonstationary environments,” in Proc. IEEE

Int. Conf. Evol. Comput., Nagoya, Japan, 1996, pp. 192–195.
[49] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing conver-

gence and diversity in decomposition-based many-objective optimizers,”
IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Jun. 2015.

[50] Z. Zhang, “Multiobjective optimization immune algorithm in dynamic
environments and its application to greenhouse control,” Appl. Soft

Comput., vol. 8, no. 2, pp. 959–971, 2008.
[51] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm

based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[52] Z. Zhang and S. Qian, “Artificial immune system in dynamic envi-
ronments solving time-varying non-linear constrained multi-objective
problems,” Soft Comput., vol. 15, no. 7, pp. 1333–1349, 2011.

[53] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Trans. Evol.

Comput., vol. 12, no. 1, pp. 41–63, Feb. 2008.
[54] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for evo-

lutionary dynamic multiobjective optimization,” IEEE Trans. Cybern.,
vol. 44, no. 1, pp. 40–53, Jan. 2014.

[55] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Prediction-based
population re-initialization for evolutionary dynamic multi-objective
optimization,” in Proc. 4th Int. Conf. Evol. Multi Criterion Optim.,
Matsushima, Japan, 2007, pp. 832–846.

[56] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization,” in Proc.

EUROGEN Evol. Methods Design Optim. Control Appl. Ind. Prob.,
Athens, Greece, 2002, pp. 95–100.

[57] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach,” IEEE

Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

Shouyong Jiang received the B.Sc. degree in infor-
mation and computation science and the M.Sc.
degree in control theory and control engineering
from Northeastern University, Shenyang, China, in
2011 and 2013, respectively. He is currently pursu-
ing the Ph.D. degree with the School of Computer
Science and Informatics, De Montfort University,
Leicester, U.K.

His current research interests include evolution-
ary computation, multiobjective optimization, and
dynamic optimization.

Shengxiang Yang (M’00–SM’14) received the
B.Sc. and M.Sc. degrees in automatic control and
the Ph.D. degree in systems engineering from
Northeastern University, Shenyang, China, in 1993,
1996, and 1999, respectively.

He is currently a Professor in Computational
Intelligence and the Director of the Centre for
Computational Intelligence, School of Computer
Science and Informatics, De Montfort University,
Leicester, U.K. He has over 210 publications. His
current research interests include evolutionary and

genetic algorithms, swarm intelligence, computational intelligence in dynamic
and uncertain environments, artificial neural networks for scheduling, and rel-
evant real-world applications.

Prof. Yang is the Chair of the Task Force on Evolutionary Computation in
Dynamic and Uncertain Environments, under the Evolutionary Computation
Technical Committee of the IEEE Computational Intelligence Society and
the Founding Chair of the Task Force on Intelligent Network Systems,
under the Intelligent Systems Applications Technical Committee of the IEEE
Computational Intelligence Society.

