
A Steady-State Boussinesq-Stefan Problem 
with Continuous Extraction (*). 
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Summary. - One establishes an existence result /or the weak solution to a steady-stale strongly 
coupled system between a nonlinear two phases heat equation with convection and the _JYavier- 
Stokes equation in  the liquid phase. The two phases Rayleigh-B6nard problem is included 
as the particular case corresponding to a zero extraction velocity. 

O. - I n t r o d u c t i o n .  

I t  is known that  even in steady solidification problems the natural convection 
in the bulk liquid plays often an important role in industrial processes for producing 
different materials. A typical example is the vertical Bridgman crystal growth 
system for producing single-crystal semiconductor materials, which have been re- 
cently considered in [CB] from a numerical point of view. Another important case 
is the continuous casting of metal ingots, where convection from pouring momentum 
has a continuing influence on the solidification behavior. In particular, that  move- 
ment of liquid alters the shape of the solid-liquid interface (see [F], page 225). From 
the mathematical point of view this type of Stefan problems with convection, in 
steady-state and in a model case without continuous extraction, have been considered 
ia [CDK]~ [CD] by means of weak solutions. In this work we conjugate their 
approach to include convection with the two phase model of [t~] for the stationary 
continuous casting problem, in order to obtain an existence result. The presence 
of the continuous extraction generates additional nonlinearities in the heat equation, 
particularly the jump condition of t he  heat flux accross the free boundary. Our 
model also includes the possibility of a flow in the liquid phase whose viscosity is 
temperature dependent~ and general nonlinear lateral coolings~ including climatiza- 
tion processes as considered in [DL] and [CI~]. Since we use an (( a priori )> L~-estimate 
for the temperature, we allow nonlinearities without growth conditions, extending 
the results of [CDK] and [CD]. 

In section 1 we introduce the equations of this coupled Boussinesq-Stefan system~ 
with mixed thermal boundary conditions, first in its classical form, and afterwards 

(*) Entrata in Redazione il 5 matzo 1985. 
Indirizzo dell'A.: Centre de ~atems e Apliea96es Fundamentals, Av. Prof. Gama 

Pinto 2, 1699 Lisbon Codex, Portugal. 



20~ JOS]~-~I~A~gfSCO RO:DI~IGUES: A steady-state Boussinesq-Ste/an, etc. 

in the  weak solutions formulat ion.  I n  section 2 we s ta te  our assumpt ions  and we 
p rove  the  existence of a weak solution. This is based on an approx ima t ing  problem 
which is solved in section 4 b y  means  of the  Schauder fixed point  theorem.  I n  an 

in te rmedia te  step we study,  in section 3, t h e  existence, uniqueness and  continuous 
dependence of the  solution to an auxi l iary  mixed b o u n d a r y  value p rob lem for the  

t empera tu re ,  wi th  Lipschitz nonlinearit ies in the  divergence te rm.  Finally,  in sec- 
t ion 5, we obtain  the  two-phase  Rayle igh-Bdnard  p rob lem with  Dirichlet  t he rma l  
boundary  condition by  let t ing the  ext rac t ion  veloci ty  go to zero wi th  an appropr ia te  

fami ly  oi la teral  coolings. 

1. - M a t h e m a t i c a l  formulat ion .  

The solidification problems we shall consider are based on mel t  and  solid stratified 
in a cylindrical configuration ~9 = F •  t[ of R" ( F  ---- ]0, a[ for n ~ 2 or F is an 
open bounded domain  of R 2 with Lipschitz boundary  3F for n = 3). We introduce 

/ ~ =  F •  {i}, i : 0, l, F~ : FeW F~ and F ~ =  ~ F •  we denote X : (x, y, z) and 
the  gradient  b y  V = (0,, 3~, 3~), so t ha t  A = V.V. 

ev 
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Ingot or crystal geometry in R 3. 

We suppose the interface (b = { X ~ t P :  z = ~(x,y)} in s teady-s ta te  and  the  
dimensionless pull ra te  of the  crystal ,  or of the  ingot, constant ,  so t ha t  the extrac-  
t ion veloci ty  is given b y  u = be, with b > 0 and  e~ = (0, 1) if n = 2 or e~ = (0, 0, 1) 
if n = 3 .  

The t e m p e r a t u r e  T ---- T ( X )  verifies the s ta t ionary  hea t  equat ion with convection 

(1) c ( ~ ) v . v T =  V.(k(T)VT) in 9 \ r  

where c and  k are posi t ive (bounded and discontinuous) iunctions representing,  
essentially, the  specific hea t  and  the  t he rma l  conduct iv i ty  and  v is the  velocity.  
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Denoting by T.  the mel~ing temperature at the interface, we renormalize the 
T ,  

temperature by 0 = K(T) - - f k (~ : )d~  and the equation (1) becomes at the solid 
T 

region {0 > O} and at the liquid bulk {0 < O} 

(2) v.VJ(O) = AO in D \ r  = {0 > O} k) {0 < O} 

T ,  

where ] = Co~: -~ and C(T) =fc(~)t iT.  At the interface we have the renormalized 
s 

equilibrium melting temperature 0 = 0 and the balance of heat fluxes, the Stefan 
condition, 

(3) - - [ V O ] + _ . ~ = - - ~ u . v = ) . b  on r  

where A> 0 is essentially the latent heat, ~ = - ( ~ %  ~ , - - 1 ) i s  a normal vector 
to r and [ ]+ denotes the jump across 4. 

The velocity field v = v(X)  in the solid region, on the melt-solid interface and 
on the remainder boundary of the bulk liquid is assumed equal to the extraction 
velocity 

(~) v = ~ = b e ~  i n { o > o } w c u a { o < 0 } .  

Inside the bulk liquid v verifies the incompressibility condition 

(5) v . . = o  i n { o < o } ,  

and the steady-state momentum balance equation 

(6) v . V v = - - V p  + B(O) + V.~ i n { O < 0 } ,  

where B represents the buoyance forces, p the pressure and S the viscous stress- 
tensor, which expression we assume given by the following constitutive law (where 
/ )v  - �89 [Vv + (Vv)~]) 

(7) = 2~(0) Dv = ~(O)[Vv + (Vv) ~] . 

]~ere we have followed the Oberbeck-Boussinesq approximation which is based 
on the main hypothesis that  the variability of density (assumed equal to one for 
simplicity) due to changes in the temperature can be neglected. This simplification 
is also relevant to the interface conditions (3) and (4), in order to ensure no slip 
tangential to the solid part and incorporation of melt into the solid at a rate equal 
to the growth one. However we shall take into account the variation of viscosity # 
with the temperature. 



206 Jos~-F~i~cIsco t~OD~iGV-ES: A steady-state Boussinesq-Ste]an, etc. 

To complete this Boussinesq-Stefan problem we must prescribe the thermal 
boundary conditions, say 

(8) 0 = O .  p h i ' . ,  

where O, is given such that O~]r,> 0 and O , ] r <  0, and a nonlinear lateral cooling 
ir~ the form 

(9) - -  ~O/~n = g(X,  O) oa F~ , 

where, for each X e IN, g(X,.) is a monotouo increasing function in O, eventually 
multivalue4, (i.e. whose graph is a continuous cm've in R2), includind the case of 
lateral elimatizatioa or ambiguous cooling us in [DL]. 

The strollgly coupled problem (2)-(9) have been stated ia its classical formula- 
tion, that  is, by assuming the unknowns O, v and the free boundary q) smooth 
enough. However since we don't know if there exist classical solutions we need a 
weak formulation following the ideas of [CDK] and [1~]. 

~ultiplying by a smooth function $ vanishing on F,, the equation (2) with the 
interface condition (3) and the boundary condition (9) leads to (with n----~/]~t) 

.Q TN ~ 

On one hand, letting %(o>o} denote the characteristic function of the solid phase, 
one has 

on the other hand, introducing the translated velocity 

(ii) w ~ -  v - -  b e . ,  

which by (5) and the continuity assumption across r (4) is also a solenoidal field 
in 12, one obtains from (10) 

(i2) f [ v o -  ](O)(w -~ be~)- 2bz(o>o}e ].V ~ +fg(O)~ -~ O, 
[2 Y'N 

for any smooth function $ veriiying $[r~ ~ 0 .  From (6), integrating by parts in 
{O < 0}, it follows 

(i3) f {2#(O) D w :  D+ -- w.[(w + be,).VO?] -- B(O).O?} = 0 
{~<o} 
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for any  smooth solenoidal vector  field d~ with compact  support  in {0 < 0}, using 
the usual notat ion:  for the inner product  of matrices. 

In t roduce,  for any  open bounded set 0 c ]~,  the I t i lber t  space V(O) which is 
the completion of the set of smooth divergence free vectors (V. d~ = 0) with compact  
support  in 0 with respect to the norm associated with the usual inner product  of 

[H~(O)]~: 

((v, r = f v v :  vq, ,  so IIv]l~(o, = ((,,, v))~, 
0 

:Now we can state  the definition of a weak solution of our Boussinesq-Stefan 
problem, following the ideas of [CDK] and [1~]: 

DErLWI~IO~. - We say tha t  (0, g, X, w) is a weak solution of problem (2)-(9) 
with v given by  (11), if 

(1~) Oer176 O = 0 ~  onr~; 

(15) g e Z~(F~v), q > n --  1 ,  g(X) ~ G(X, O(X)) for a.e. X e / ' ~ ;  

(16) Z ~ L = ( ~ ) ,  0 < Z { o > o } < z < l - - z { o < o } < l  a.e. in ~ ;  

(17) w E r ( f2 ) ,  w -= 0 a.e. in {O > 0} ~ {x ~ zg: O(X) > 0}; 

(is) f(VO--f(O)[w+be~]--2bxe~}.V$ § and 
Q ~ . 1"2v 

(19) j{2z(o) Dw: De w.E(w + b~).Vr =fB(O).r 
{O<0} {O<o} 

respectively,  for all ~ z Hx(f2): ~]r. = 0 and all t~ e V({O < 0}). 
We observe tha t ,  being ~9 Lipschitz, one has V(O)r [Ld(Y2)] ~ for n : 2, 3 

(see [L] or [s for instance) and the  nonlinear t e rm in (19) makes sense. 

2. - Existence of  a weak solution. 

:For 

(2o) 

(21) 

(22) 

(23) 

our existence result we shall assume tha t  

]: R - + R  and B:  R -->R ~ are continuous functions, (n : 2, 3); 

#:  R -+ R is a s tr ict ly positive continuous funct ion:  #(3) >/& > 0; 
and, for some fixed constant  M > 0, we suppose: 

O ~ H ~ ( F ~ ) : - - M < O D < O  on /~o and O < O ~ < M  on F, ;  

Gx(. ) = G(X, .)  is a maximal  monotone  graph in R 2, for all X e F~, 
which verifies, for each X c F•, the  following conditions 

14  - A n n a l i  d i  M a l e m a t l c a  
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(2~) 

(25) 

(26) 

[ -  ~ ,  M] c ~)(G) - {r e R: a ( x ,  ~) # O}; 

G(M) c [o, + ~ [ ,  G ( -  M) c ]-- ~ ,  0],  and 

(~ X--+g~ "~),~ ~ Z~(P~), for all Iv] <M,  with q----2 ----n or q > 2 if n = 3 .  

~ere  we have denoted g~ ~) ---- proja~(r 0, i.e., the smallest number is absolute 
value of Gz(~ ). Note that  the assumption (25) is equivalent to the following sign 
condition 

(25') g~ ~)~>0 for ]~ [>M.  

T]IEO]~E~ 1. - If the assumptions (20)-(26) hold, then there exists a weak solu- 
tion of the Boussinesq-Stefan problem (2)-(9) with v given by (11), and such that  
10[ <M in ~.  

PI~OOF. -- We shall obtain a weak solution by approximating the problem (14)-(19) 
with solutions to the one parameter (e > 0) penalized and regularized problem: 

P~OBLE~ (BS)~. - Find O~e C~ (~ H~(D), O . ] r =  0 , ,  wee V(D) such that 

(27) f {vo - 1 (o )Ew  + b ol - + f  g (Oo)r = o,  
/'zr 

respectively, for any ~ e H ' (~) :  $]r~ = 0 and any ~b e V(f2). 
Here 0~e C~ is a family of bounded functions in H~(f2), whose trace 0~ ~ O~ 

in H~(Fv), ]~E C~ with ] ~o ] uniformly on compact sets, Z~ is defined by  

(29) 

1 for ~>28 

X~(~) ~ ~/~--1 for e~<~<2~ 

0 for ~<~ 

and g~, for each fixed X e / ~ ,  is the u regularization of G r, given in terms of 
its resolvent by  

(30) g~ = ~1 (I -- J~) , where J~ = (I  + sGx) -1 . 

We shall prove in section 4 the existence of a solution (0~, w~) to Problem (BS)8, 
together with the following estimates independently of e > 0: 

(31) l[O,[]Hl(m<C, - - M < O , ( X ) < M ,  for all X e ~ ,  
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(32) [I O~lloo,~,~)< GK), 

(33) IIg~(O~)II,,~, < ~ ,  

(34-) llw~lI~,~., < ~ .  

for any  compact set K c  tg, (0 < ~ < 1) ,  

Therefore from these estimates and well known compactness results one caI1 
select a subsequence, still labelled by s, such tha t ,  for s - >  0, 

(35) 

(36) 

(37) 

(3s) 

0~ -~ 0 in H~(s in L~(F~)-strong for any  p < co, uniformly in any  
compact subset K c ~9 and pointwise a.e. in F~; 

g~(O~) ~ g in L~(F~)-weak; 

Z~(0~) ~ Z in Z~(f2)-wcak *, (since 0~<Z~<I); 

w~--> w in V(/2)-weak and [Ld(/2)]'-strong (n = 2, 3) 

for functions O~H~(z'-2)(3 C~ ]O[<M in ~ ,  0~<Z<I ,  gsL~(I'~v) and w e  V(D). 
Hence ]~(Oe) --~/(O) in Z~(~Q) for 311 p < ~ and we can let s -+ 0 in (27) ob- 

taining (18). 
Let  tp be any  smooth solenoidal vector field such tha t  

supp r -= K ~ { o  < o} - { x  ~ 9 :  o(x) < o} .  

~o te  tha t  {0 < 0} is an open subset, by  the continuity of 0,  and also one has 
max  O(X) < 0. ~rom (35) and (29) one deduces z~(O~) ~ O on X for all s small 

XEK 

enough. Then, recalling tha t  #(0@ -+ /~(0) and B(O~)-->B(O) uniformly on X, 
one can pass to the limit in (28), with such a fixed t~, obtaing (19). Since this holds 
for any  smooth solenoidal vector field with compact support in {O < 0}, (19) remains 
valid for all tp e V({O < 0}) by  density. 

The above argument  also shows tha t  ) / =  0 a.e. in {O < 0} and so X < I  --)/m<0~" 
Consider now an arbi t rary compact  subset X c {O > 0}. We also have rain O(X) > O, 

and from the uniform convergence we easily deduce tha t  x~(O~(X)) = 1 for all X e 
and all s, 0 <  s~<s0(K). Therefore we deduce ; / =  1 a.e. ill { 0 >  0} and Xm>o~<Z. 
Choosing ~b = w~ in (28), since the first t e rm is non negative by (21) and the second 
one is zero, we obtain for all e<So(/i:) 

f f 1 Iw~P< z~(o~)lw~12< max IB(~)I lw~l<0 

where C is independent  of s by  (34). Therefore it  follows tha t  w = 0 a.e. in / i : ,  and 
consequently also in {0 > 0} by the arbitraryness of /i:. 

To see tha t  (0, g, ):, w) is a weak solution, it remains to shows (15), i . e ,  g(X) e 
e ~(x, O(X)) a.e. X e F~. 
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We recall from the elementary properties of maximal monotone operators (see [B], 
Ch. II, w 4, for instance) that  g~(O~) ~ G~(J~(O~)), together with (36) and J~(O~) -+ 0 
in Z2(F~)-strong (this follows first pontwise a.e. from (35) and (24) and, afterwards, 
in L~(/~) by Lebesgue's theorem and assumption (26) which implies ]J~(X, T)] < 
< [~[ + s[g~(X, 0)[ < [~[ -k s[g~ 0)[, for l~] < / ) ,  imply g ~ Gx(O), that is (15). Iqote 

that  in this step we have identified G x with the maximal monotone operator ~ in 
Z2(F~), where 5 is the convex functional associated with the integrand j (X,  O ) =  

O 

=fg~ ~) g~. [] 
o 

3. - An auxiliary nonlinear problem. 

In the last section we have reduced our study to the approximating problem 
which is based in a fixed point argument and is postponed to the next section. 

First we show the following auxiliary problem is well posed. 

PRO~T,~,~ ( i) .  - Find O e C~ n H~(f2), such that O = 0 on / '~ and 

(39) f ( v o -  i(o)~- h(0)~}.Vr +fg(O)r = 0, 
/2 /'~v 

Vr e ~(~9) :  r  o ,  

with the following assumptions on the data: u ---- u(X) is a fixed vector field in the 
following subspace s to > n, 

(4O) 

(41) 

(42) 

(43) 

~ ( ~ )  --  {~ e [L~(~)]-: f ~ . v ~  = 0, v~ e ~ , (Q)} ; 
/2 

Oeco, l(r:) ,  ll0II~(/2)<M; 

1: R--~R and h: R - + R  are Lipsehitz continuous functions; 

g = g(X, ~): F~ •  R, is monotone increasing and continuous in z for 
each fixed X, and satisfying conditions (25') and (26) for some q > n -  1. 

In this section all the results are valid for any dimension n>2 .  

TttE01~Ei~ 2. - Under assumptions (41)-(43), for each u ~ L~(~)), (p > n) there 
exists a unique solution to Problem (A), which verifies O e C~ H1(s for 
some 0 < a < l ,  and 

(44) ]IO]L~(/2)<M �9 

P~ooF. - i) Existence. We follow the argument of Proposition 1 of [R] (see 
also [C1~]) and we begin by observing that (41) and the sign condition (25') for g 
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imply the <~ a priori )> estimate (44) for any solution to (A). In fact, lett ing $ ~- 
-~ ( 0 - - M )  + in (39) we deduce O < M  from 

f [v (O - M)+I ~ =f[ul(o).vo + ~(o) ~o]-f~(o)(o- M)< 
{0>~} Z'~v n { 0 > ~ }  

n z =  O ,  

r ~  

T 

where -~M(~)=f]( t )dt  and  / / ~ ( ~ ) = f h ( t ) d t  for 7 :>M and F ~ ( ~ : ) :  H~(-c)=  0 for 
M M 

~:<M (recall ](01~<M and (40)). Analogously one concludes O > - - M  with $-~ 
= (o  + M ) - .  

lgow denote ]M, g~ an4 h ~ the t runcated functions of ], g and h, respectively, 
i.e., g~'(X, ~) = g (X, rain (M, max (-- M, ~'))) and for 

, e B b =  {~e co(g): ]l*lto.(~,<R}, ( R > M > 0 ) ,  

define a ~ S(~) as the unique solution of the following mixed linear problem: find 
E H~(g2), such tha t ,  air " = 0 and 

(45) fva.v$=f[?'(~)u § h'(~)eo].v~--fg'(~)~ , V~" ~ B~(O): ~I~. = o.  

Using a STA~ACCmA'S estimate [S], one concludes there exists C > 0 and 0 < 

< ~ < 1, independent of T, such that the solution verifies 

(46) IlaI[~0=~,~, < C(max I/(t) lllu]l.<~) + max [h(t) l -~ IIgA-(~) + il0Ll~".=,~)) = K 
It]~M [t]<~M 

where we have denoted  #~(X) = max  ([g(X, M)], l g ( X ,  - -  M)]) (recall (43), (26)). 
Then S(B~) c Bz and S is a continuous and compact mapping of B~ into itself. 

By  the Schauder fixed point theorem there exists a function O ~ S(O), which, of 
course, is a solution to (A), because the << a priori ~> est imate (44) equally holds with 
]~, g~ and h% 

ii) Uniqueness. Suppose O and 0 are two solutions of (A), denote v = O -  (0 
and take ill (39) ~ ~ V/([~[ + ~) with ($ > 0. l~ecalling the monotonici ty assumption 
on g (43), we obtain 

fv~.  vc <f{[s(e) - I(~)] ,, + [h(e) - ~(0)2 ,~{. vc < f (z,I,,] + z~)I~I lye l, 

where Lf and L~ denote the Lipschitz constants of / and h, respectively. 
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Since V~ = ~ Vv(Iw ] + 8)-~, we deduce 

f2 D 

and, using Cauchy-Schwarz together with lV l = Iv] ]l, we have 

f V l ~  + ~)~ 
Q D 

Finally, by Poincar6's inequality, it lollows 

fllog (1o-01/  § 1)1 <c' 
~9 

(independent of ~) 

and letting ~ -+ O one must have 0 = 0, concluding the proof. [] 

RE~A~K 1. - In the existence part  of the proof, the Lipschitz continuity of ] 
and h can be relaxed to continuity. Also the monotouicity of g in 0 is not necessary 
if we replace the assumption (26) by (see (46)) 

(26') V.B> o, 3C, ReL (P ), q > n - - l :  Ig(X, for ]zl<R. 

PROPOSITION 1 .  - -  Under assumptions (41)-(43) we have the following continuous 
dependence result for Problem (A): if tt n -> Uo in [L~(~Q)]~-weak (resp. strong), for 
any p >  n, then the corresponding sohtions O~-> Oo in Hl(~)-weak (resp. strong) 
and in C~ for some fixed 0 < fl < 1. 

PROOF. - For any ace s take an arbitrary sequence 

(47) u , - +  Uo in [Z~(~)]~-weak, with u e s163 
r/-->0 

and denote by O n the corresponding solutions of Problema (A), which by Theorem 2 
verify the property (44). Then, from Stampacchia's estimate (46) we have 

]]OsNo0,~(5,<X' (independent of V) 

and, testing for each V (39) with ~ = 0 , - - O ,  also 

HOsllH,(z ) < C (independent of V). 

Hence one can select a subsequence, still denoted by ~ ->  O, such that  

O~--> 0 in H~(~2)-weak and in Oo,~(~) 
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for any 0~<fi < ~. Passing to the limit in (39),, by uniqueness, one concludes O ---- 
= Oo ~ O(uo) and the convergence of the whole sequence. 

If  the convergence in (47) is strong, to prove the strong convergence in H~(K2), 
take ~ = 0 , - -Oo  in (39) and use the uniform convergence. One has ](0~) -+ ](0o), 
and h(O,)-+h(Oo) uniformly i n ~ ,  g(X, O,(X)) -~g(X, Oo(X)) for all X ~ / ~  and, 
by (43), (26) with Lebesgue's theorem, also in Zq(/~,~)-strong. Therefor% using the 
trace and imbedding theorems, one has for ~, = O,--Oo: 

f]W,l: =f{[/(o.) -/(Oo)]U. + ](Oo)[U~- u0] + [h(o.) - h(Oo)]m} .TT~-- 

with R, -+  0 as ~ -+ O. Then, it follows 

f IV(O. ~ - -  Oo)1 < / ~ , ,  

which concludes the proof of the proposition. D 

4. - Existence for the approximating problem. 

In this section we rely again on Schauder fixed point Theorem in s  [L~(~)] ", 
n = 2, 3, to solve the approximating problem. We recall, by well known inequalities 
(see [DL], [L] or [T]) there exists a positive constant Ko (depending only on ~9 and 
n = 2, 3) such that,  

(ds) 

Let R > O and introduce the following convex, closed bounded subset of s 
(recall (40)), 

(49) z~  = {v e ;s'(~): Hvl l ,<~}  �9 

Using the results of the preceding section we shall construct below a nonlinear 
mapping ~3: 33R-+ 35R, for an appropriate R~ which will be shown to be continuous 
and compact. 

TKEOI~E~ 3. -- Assume ]~E C~ X~ and g~ given by (29) and (30), respeetivel3~, 
and 0~e Co, I(F~), 10~I<M in  zg. Then for each s > 0, there exists a solution (O~, 
w~) e H~(z9) • V(f2) of Problem (BS)~, such that  O~e C~ for some 0 < ~ < 1, 
and lO~] ~< M in #2. 
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PI~O0~. - i) De/inition o] 23. For  any  u ~ s define ~ = ~(tt) as the unique 
solution of the Problem (A) with ] = ]~, h = b]~ -? ~b)~ g = ge and ~ = 0~, which 
is in C~ H~(/2) with ] ~ [ < M  by the Theorem 2. Note tha t  g~ given by (30) 
satisfy the assumption (43), because (2.6) and ]g~(X, ~)[ ~< ]g~ ~)], for any  X e F~ 
and all ~ ~ [ - - M ,  M] c D(Gx), and the assumption (25) implies the sign condition 
(25') for every g~. In  fact, we see tha t  g~(M) = 1/e(M--J~(M)) > 0  since if a = Je(M) 
one has M e  (I -t- sGz)(a) and Gz(~ ) c [0~ c~[ for all ~ > M  implies M > a  = Je(M). 
Analogously we see tha t  g~(- -M)<0.  

Now we define v = 23u as the unique function v e V(~) which satisfies the linear 

problem: 

(50) f2ff(Ve(U)) .Dv:Dt~--fv[(u -~ be~).Vq~]-~ ~ f Ze(~e(u))v't~ -~f  B(ve(,)) "t~ 

for any  t~ e V(~2). 

if) 2 3 ( ~ ) c  ~ .  Sinc% for fixed u~ the left member of (50) defines a coercive 
continuous bilinear form on V(~) (recall (21) and (48)) and the right side a con- 
t inuous linear functional (recall [~,l <M), the existence and uniqueness of v follows 
by the Lax-~i lgram theorem. 

Taking t~ = v in (50), using (~8) and setting fl = max  [B(~)I , one has 
IvI~M 

(51) 
Q 

because, in the left sid% the second te rm vanishes and the third one is nonnegative. 
Therefore one has the est imate 

(52) 

which shows tha t  if u e ~ also v = 23u e ~ .  

iii) Continuity and compactness o] 23. Take in s any sequence u~-~ Uo 
in s From Proposition 1 one knows tha t  ~ ,  = T~(u~) -~ ~(uo) = ~o uniformly 
in ~ and consequently also ff(w~,) -~ ff(v~o), Z~(~,) -+ g~(~o) and B(~, )  -+ B(v~o ) in 
the topology of C~ From (51), one has fox" v s = 23u s 

a'a4 we can choose a subsequence, still labelled by ~, and a function v e V ( ~ )  such 

tha i  

v, -~ v in V(T2)-weak and s 
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and 

Then we can pass to the limit in (50),~ since 

Q #2 

fv,(u,.v~) -~f~(uo.VqJ), vq e v(~) 

because v,(V~b) ~ -~ v(V~) ~ in ~-s t rong.  
By  uniqueness, one has v -~ Vo--- ~Uo, and the whole sequence v, converges in 

~4-strong to Vo. 
Then~ the fixed point  w~ z 23w8 a n d  O~----- T~(w~) form a solution to the approx- 

imat ing problem (BS)~. [] 

Pl~oPosI~IO~ 2. - Under  the assumptions of the Theorem 1~ all the solutions 
(0~, w~) of the approximat ing problem (BS)~ ver i fy  the est imates (31)-(34) indepen- 
dent ly  of e. 

PIr - As in the  proof of Theorem 2, the ((a priori ~) est imate []O~]lz~o(~)<~M 
follows direct ly f rom (27). Then (33) is a direct consequence of (26), and taking 

= w~ in (28) the  est imate (34) follows as in (51), with C = ~/2flI.QI~r.K~/2/~o 
Using this information,  the  H~(~q)-estimate for O~ is now a s tandard consequence 

of the formulat ion (27) with ~ = O~--0~,  since O~ have been chosen bounded in 

Final ly  (32) is the  local De Giorgi-~ash-Meser es t imate  (see [GT]) for the equa- 
t ion - -  AO~-~ V'F~ in ff)'(~), where F~ ~ f~(O~)[w~ + be~] + )obz~(O~)e~ belongs to a 
bounded set of ~4. [] 

5. - A remark on the two-phase Rayleigh.B~nard problem. 

I t  is a tr ivial  remark  to say tha t  all the  proceeding results, in part icular  the 
Theorem 1, still hold for b = 0 tha t  is for the Boussinesq-Stefan problem without  
ext.raction, which have been considered already in [CDK] and [CD]. We shall obtain 
this problem with Dirichlet thermal  boundary  condition on F~,  the so-called two- 
phase Rayleigh-B6nard problem in [CB], by  let t ing b -~ 0 with an appropriate  class 
of Neumann  boundary  conditions on tha t  par t  of the  boundary .  

Consider a monotone increasing funct ion 

(53) ~7~C~ and ~(t)t>~]t[ ~ , t e R ,  (r>~l, 

for instance one can choose ~(t) ~ tit] ~-2, and let fi and O~ be two bounded functions 



216 JOS]~-F:RANClSC0 RODRIGUES: A steady-state Boussinesq-Ste~an, etc. 

on FN: 

(5~) O~,e ~(F~)  , 

(55) k/b>~(X) > l/kb > O, for some constant k > l .  

Defining the nonlinear cooling on -PN by 

(56) g(X,  z) -=fi(X)~( '~ - -  O~v(X)) , for ~ e R and X e / ~ ,  

one easily verifies conditions (23)-(26), by taking (53)-(55) into account. 
Now we recall the definition of weak solution for the I~ayleigh-B6nard problem 

introduced in [CBK]: 

DEFINITION. -- We say that  (O, v) is a weak solution of problem (2)-(7) with 
b = 0 and Dirichlet thermal boundary condition, if 

(57) 

(ss) 

(49) 

(60) 

0 z C 0 ( ~ ) n H I ( Q ) ,  0 = 0 ,  on F ,  and 0 = 0 , . ~  on F~; 

V(Q), v = 0  a.e. in { 0 > 0 } ;  v 6 

f [vo-- / (O)v] .V = O, Vr 6 t/1(~2) : ~lr.or~ = 0 ; 
D 

f[2/~(O) Dr: D+--v(v .Wp)]  = f B ( O ) . + ,  Wp e V({O < o}). 
{O<o} {O<o} 

The next theorem represents a continuous transition from one problem to another 
and gives an existence result for weak solutions to (57)-(60). 

TEE0~E~ 4. -- Under the assumptions (20)-(22) and (53)-(56), if b -4 0 one can 
find functions (Oh, w~), solutions of (14)-(19) and a subsequence b -+ 0, such that, 
for any compact set ~ c 

(61) 

(62) 

O~ --> 0 in Hl(Q)-strong and in C~ , 0 < fl < 1 ; 

wb-> v in V(~)-weak and gd-strong, 

where  (0 ,  v) is a weak solution of the l~ayleigh-B6nard problem, such that  IO[ .4< M 
in D .  

P~ooF. - Since the assumptions (53)-(56) preserve, in particular, the sign condi- 
tion (25'), from the Theorem 1 one knows there exists Ob such that  (with M and C 
independent of b) 

(63) IlObll~(~,<M a~d liwbtlv(~><C, for any b > 0 ~  
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~ow, consider the unique solution ~ e Hi(Y2) to the problem 

A ~ = O  in ~2, ~ = O o  on /~o and ~----O~v on F~v, 

and let ~ ~ Oh--~ in (18). We have, using (53) and (55), 

(64) (independent of 0 < b < 1 ) ,  

~9 Y'N 

for any  O~ verifying (63). Then it follows 

[[0bI[H~(~ ) + HO~[lo..~(~)<C", for 0 < b < l ,  

for any  compact K c Y2 and some fixed 0 < ~ < 1. Therefore we can select a sub- 
sequence b --> 0 such tha t  (for 0 < fl < ~) 

(65) 

(66) 

Ob--~ 0 in Hl(Q)-weak, in C~ and a.e. on F x ,  

wb -~ v in V(~9)-wcak and [Ld(Y2)]~-strong (n = 2, 3) ,  

from (64) one concludes tha t  0 verifies (57), since 

f 10 -- Ox] ~<lim inf f ]08-- Ox[ ~'= O, 
, d  b-.9-o J 

and also (59) since one can easily let b -~ 0 in (18)~ for any  fixed $ e Hl(~(~): ~ = 0 

G a G .  
On the other hand,  since Ob-+ O uniformly in any  compact subset of D, if 

K c {0 > 0} is an arbi t rary compact set one must  have a l so  K c {0b > 0} for b 
small enough and from wb---- 0 a.e. in {0b > 0} one deduces v : 0 a.e. first in K 
and therefore also a.e. in {0 > 0}, tha t  is v satisfies (58). Analogously, if ~ is ~ny 
smooth solenoidal vector field such tha t  supp d~ c {0 < 0} one also has snpp ~ c 
c {O~< 0} for b small enough and we can easily pass to the limit in (19)8 for such 
a ~ ,  concluding (60) by  density. 

I t  remains to prove the strong convergence in Hi(F2). Set $ : 0 b - - O  in (18)b 
to get 

.E'.v ,.0 

with  (using (63), (65) and (66)) 

Rb--f{](Oo) wo + beo[](O0) + V(Os-- 0) 0 as b - > 0 .  
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Hence one concludes VOs-~ VO strongly in ~ from 

f , v o l ~ <  lira i0n~f [VO~]~ < limsup f[vo~]~<~f [VO[ 2 . 
/2 s s ~2 
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