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A Steady State Potential Flow Model for Semiconductors (*). 

PIERRE DEGOND - PETER A. MARK0WICH 

Summary. - We present a three-dimensional steady state irrotational flow modet for semicon- 
ductors which is based on the hydrodynamic equations. We prove existence and local 
uniqueness of smooth solutions under a smallness assumptions on the data. This assump- 
tion implies subsonic flow of electrons in the semiconductors device. 

1.  - I n t r o d u c t i o n .  

The hydrodynamic model describing the electron flow in a unipolar semiconductor 
is given by [1, 2]: 

(1.1) ~:, + div (~u) = 01 u]l 

(1 .2 )  u , + ( u . V ) u +  t V p - V r  ~ x = ( x l , x 2 ,  xs) et], t > 0 ,  

(1.3) Ar = ~ - C(x) 

where ~, u, r denote the electron density, electron velocity and the electrostatic po- 
tential, respectively. The constant v > 0 is the velocity relaxation time, ~9 c_ F~ 8 the 
bounded domain occupied by the semiconductor, C = C(x) the prescribed density of 
positive background ions (doping profile) and 

(1.4) J = pu 

is the (negative) electron current density. Since in this paper we only consider isen- 
tropic flow, the energy equation of the hydrodynamic model is replaced by the pres- 
sure-density relation 

(1.5) p = p(p). 

Also, we only consider the steady state case and, additionally, we make the assump- 
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Berlin 12, FRG. 
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(1.6b) 

and using the identity 

(1.7) 

the equation (1.2) reduces to 

tion of irrotational flow: 

(1.6a) curl u = 0. 

Introducing the velocity potential ~b by 

u = - V~ 

(u.V)u = i V ( l u l l ) -  u x curlu,  

! 
h ' (~) := ~ p  (~). 

The system (1.1), (1.2), (1.3) then can be written as: 

(1.9) 1 iV~bl2 + h(~)= r + ~ ] 

(1.10) div (pV~) = 0 x e t). 

(1.11) Ar = p - C(x) 

The electron current is now given by 

(1.12) J = - ~V~. 

The existence of irrotational subsonic steady state flows in the gas-dynamics case 
(i.e. equations (1.9) with z = oo, r - 0 and (1.10)) is well-known (see. e.g. [9]). In this 
paper we shall employ a different analytical approach, which makes explicit use of the 
Poisson equation (1.11) and allows us to incorporate boundary conditions appropriate 
for the semiconductor case. 

Also, we remark that (we shall see later on) the assumption z - const is crucial for 
the existence of irrotational steady states. 

The boundary at~ is assumed to split into N disjoint, closed and connected 
,,contact- segments F1,... ,FN and ,,insulating, segments, whose union we denote 
by Fins. 

We impose the following boundary conditions: 

(1.13) ~/Fi = PD/Fi, i = 1, ..., N,  

(1.14) (V~b x v)/Fi = 0, i = 1, ..., N,  

(1.15) V~-v//'~s = O, 

(1.16) V~b. v/Fins = O, 

where v denotes the outward unit normal to at]. Note that (1.16) specifies that the 
normal component of the velocity vanishes along Fins, which implies no current flow 
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through Fins and (1.!4) implies that  r is constant on each contact segment F/. For  a cur- 
rent  driven device the va lues  of these constants are determined by imposing the cur- 
rents I/ ,  i = 1, ..., N, flowing out of the contacts: 

(1.17) - f ~Vr ~ ds = I i ,  i = 1, ..., N .  
r~ 

Because of t h e  conservation equation (1.10) the data I/ ,  i = 1 , . . . ,  N must  satisfy 

N 
(1.18) E I~ = 0. 

/=1 

We shall demonstrate  now that the boundary conditions (1.14), (1.17) lead to 
Dirichlet data for the velocity potential r Therefore we introduce the functions Zi as 
solutions of 

(1.19) div (~:Vzi) = 0, x ~ t~ ] 

(1.20) z J F j  = 3~j, j = 1, ..., N I  i = 1 . . . . .  N ,  

(1.21) VZ~. ~ / / ~  = 0 

where ~ij denotes the Kronecker symbol. Then we define the influence matrix 
D=(D~2)/=~ ..... N b y  

j=I, . . . ,N 

(1.22) Dij = [ pVzi" ~ds .  

5 

Since we can decompose (with as yet  unknown constants r 

N 

r j = l  
(1.23) 

we obtain from (1.17) 

(1.24) 
N 

j= l  

I t  is easily shown that  D is a symmetric nonnegative matrix of rank N - 1. Because of 
the condition (1.18), the system (1.24) can be inverted if we prescribe one of the 
values r (e.g. r = 0). We thus obtain 

(1.25) r  = r 

where ~/depends on Ij, j = 1, ... ,  N, and by the definition of Zi, on ~. More information 
on the influence matrices and their use in vector field decomposition can be found 
in [8]. 

By analogy to the drift-diffusion model for semiconductors [3,4], the velocity po- 
tential r can be regarded as a quasi-Fermi level for electrons. Indeed, when all the 
r are zero, then there is no current  flowing and, thus, the device is in thermal equi- 



90 PIERRE DEGOND - PETER A. MARKOWICH; A steady state potential, etc. 

librium. In this situations, we obtain the following equation for the electrostatic po- 
tential r from (1.9), (1.10), (1.11): 

(1.26) r = h(~), 3r = p - C(x) 

which agrees with the drift-diffusion equilibrium, if h(p) = Kln~, K > 0, i.e. if p = Kp 
holds (linear pressure-density relationship). 

For a <<voltage driven device, the values ~bi, i = 1,...,N (applied poentials) are 
prescribed (with, say, r = 0) and the outflow currents I~ can be computed a posterior- 
fly from (1.24), (1.18). 

In Section 2, we present an existence and (local) uniqueness result under the as- 
sumption Ym~ = { }. The reason for this is that the proof heavily relies on regularity 
results for elliptic equations in W e' q (t)), which in full generality can only be obtained 
for the Dirichlet problem (see [5]). It is possible to generalize the existence and 
uniqueness result to the mixed Newmann-Dirichlet boundary value problem under 
additional very stringent regularity and geometry assumptions on the boundary 
segments. 

The electron flow in the semiconductor is called subsonic if 

(1.27) 

or, equivalently, 

(1.28) ijI2 ~< ~2p,(~), x �9 t~, 

holds. The quantity ~ is called electron sound speed [6]. Obviously, shocks may 
occur if the flow is (partly) supersonic, and, thus, the main assumption for the exis- 
tence and uniqueness result is a restriction on the magnitude of the boundary datum 
for ~b~ which will imply a fully subsonic flow. 

The subsonic one-dimensional steady state case was analysed in [7], where a con- 
dition for .fully subsonic flow, which is verifyable in terms of the data, was given. The 
present paper extends this result to the three-dimensional case, however, the small- 
ness assumption cannot be verified explicitely anymore. 

2. - E x i s t e n c e  o f  a s m o o t h  s o l u t i o n .  

We apply the Laplace-operator to (1.9), use (1.10), (1.11) and obtain: 

( 2 . 1 )  A ( l l v ~ b l e + h ( ~ ) ) +  1 V~b.Vp ~ C(x) x e ~  

In order to eliminate the third derivatives of ~ in (2.1) we calculate 

3 

(2.2) 1/l(IV~bl2) = Q(@) + ~ ~bx~(d@)~i, 
i = 1  
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where Q(~b) is given by 

(2.3) Q(~b) = (~x~,) 2 + (~b~) ~ + ( ~ ) e  + 2 ( ~ )  ~ + 2(~b~) e + 2(r z . 

By sustituting A~b- (V~/~)V~b (which is the equation (1.10)) into (2.2) we obtain 

3 3 
1 

~i, j~'=l 1 
1 - } -  

(2.4) 2A(IV~I 2) = Q(~) + ( r e .  V~) 2 - 

and (2.1), (1.10) can be writ ten as coupled system: 

~ x ~ j  + (V~.Vp) 2 + Vp - ~ ~ p x j ~ j  - ~ = (2.5) }-,  = T 7 ,  = 

= - Q(~) - C(x), x �9 t~, 

v ~  
(2.6) ~1~ + -~-V~ = 0, x �9 

As mentioned in the introduction we assume that F~s is empty and pose the Dirichlet 
boundary conditions: 

(2.7) ~/at~ = PD/ate, ~/at~ = ~D/ate. 

Assume now that (~, p), ~/> p > 0, is a strong solution of the system (2.5), (2.6), (2.7). 
Then the electrostatic potential r can be obtained from the relation (1.9). Going from 
(2.5), (2.6) back to (2.1), we easily conclude that the Poisson equation (1.11) is satis- 
fied. Also, a sufficiently regular solution of (1.9), (1.10), (1.11), solves (2.5), (2.6). In 
this sense the two problems are equivalent. 

At first we prove that, for given ~, ellipticity of (2.5) is equivalent to the condition 
that  the flow is subsonic. 

LEMMA 2.1. - AssUme that ~(x) > 0, p'(p(x)) > 0 hold for  some x e t~. Then the 

equation (2.5) is elliptic at x i f  and only i f  

(2.s) IV (x) l < pV (p(x)) 

holds. 
3 

PROOF. - We write the principal par t  of (2.5) as L(~, V~) = ~ aij (p, V ~ ) ~ j  and 
i , j= l  

compute the eigenvalues of the matrix A = (aij). We obtain )~1 = )t2 = h'(~) > 0 , '  ~'3 = 

= h'(~) - (1/~)IV~S 2. The result  follows since h'(p) = (1/~)p'(~). �9 

Lemma 2.1 indicates that  it is essential for the existence proof to control IIv~IIL ~ (a) 
and to bound ,o from below. 

We make the following assumptions: 

(A.1) p e C3([0, oo) --~ [0, ~ ) ) ,  p ' (~)  > 0 V~ > 0, 
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(A.2) 

(A.3) 

(A.4) 

~�9 

C � 9  O<C._<<.C(x)<~CVxeQ, 

for some ~ , 0 < ~ < 1 ;  ~DeWe'~(Q), 0<~<~D(X)~<~  Vxe~Q 

Q is a bounded convex C~'~-domain in R ~. 

The existence result is stated in: 

THEOREM 2.2. - Let the assumptions (/L1)-(AA) hold. Then there exists ~ > 0 such 
that the problem (1.9), (1.10), (1.11), (2.7) has a solution (~b,p, r 1 4 9  
x W2,q(Q) x C4,~(Q), 1 ~< q < ~ ,  which satisfies p >1 Min(~, _C) > 0 i f  

(2.9) 

holds. 

PROOF. - We shall use Schauder's fixed point Theorem. Therefore we set  up the 
map T: ~ -o  ~ defined as follows: 

(A) Solve 

(2.10a) 

(2.10b) 

for ~ = ~b[z]. 

(B) Set 

(2.11) 

where v solves 

g'(h(~)) ~ ~ v ~  
(2.12a) /iv ~ i , j  = 1 

(V~ .  V~ + Vz 
+ g ' ( h ( ~ ) )  ~ ~2 

(2.12b) 

A ~ b + - ~ V ~ = 0  i n Q  

~,la~ = ~ la~ 

p : = g(v), g : = h - 1 

g"(h(a)) 3 
~ 1  ~=j % v~ + 

~g' (h(z)) ~, = 

) V v  - g (v )  = - Q(!~) - C ( x ) ,  

v/aQ = h(~n)/aQ. 

x e t )  

I t  is an easy exercise to show that every (sufficiently regular positive) fLxed point p* 
of T corresponds to a solution (~*, ~b*) of (2.5), (2.6), (2.7) where ~b* is determined by 
solving (2.6) with p = ~* subject to the boundary condition ~ * / a Q  = ~D/aQ. 

F o r  the analysis of the semilinear equation (2.12) we use the following 

LEMMA 2.2. - Assume that the following conditions hold: 

(i) Q is a C 1' l-domain, 

(ii) aij �9 C O, ~ (Q) for  some 0 < ~ <. 1, a~j = aji, 1 <~ i, j <. 3, 
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3 

> o: al l Vx �9 vv  = �9 ]~3, 
i , j= 1 

(iv) b �9 L ~ (Q), 

(v) g �9 C 1 (F~), g '  I> 0, 

(vi) f � 9  L ~ (Q), 

(vii) VD �9 W e, ~ (Q), vl <- VD (X) <<. Ve for  all x �9 aQ. 

Addit ionally,  assume that there are v, ~ �9 R such that 

(2.13) g(v) ~< - f (x) ,  g(~) >I - d(x) for  all x e Q with d �9 L ~ (t)) 

holds. Then the problem 

3 

(2.14a) ~ % (x) v ~ j  
i,j = 1 

+ b(x) 'Vv  - g ( v )  = f ( x ) ,  x � 9  

(2.14b) v / a ~  = VD /aQ , 

has a unique solution which satisfies v ~ we'q(Q),  1 < q < ~ ,  and 

(2.15a) min (v~, v) <~ v(x) <. max (v2, v-) + 0111f -  dill ~ (~), x ~ Q, 

(2.15b) Ilvllw , ( ) ~ De[IIvDIIW , ( ) + IlfllL ( ) + Ig(llvllL ( ))l], 1 < q < oo , 

where D1 is independent  o f % ,  b and Dz is bounded w h e n  IIbt]L~(Q), 1 <I~,ajx 3 IIaijllco,~(~), a 

vary in  compact subsets of  [0, r162 ), (0, ~ )  and (0, ~ ) respectively. 

PROOF. - The existence of a solution of (2.14) is standard. The estimate (2.15a) fol- 
lows from the classical maximum principle and (2.15b), from the W e' q-estimate associ- 
ated with Theorem 9.15 in [5]. �9 

We define the set A;,, ~, ~:= {; e C 1' ~(Q)/;1 ~< t:(x) ~< P2 for all x E Q, H~IICI,~(~) ~ ~} 
for positive numbers 0 < t:l ~< ;2 ~< K. We shall prove that the map T is a compact s e l f  
map of Ap1 ' ~, ~ when the parameters  P1, ~e, K are appropriately chosen. 

Now let a �9 A~I, ~, ~. Since IlVa/attco, ~(~) ~ const ~ / e ~  holds, the standard HSlder-es- 
timate for elliptic equations [5, Theorem 6.6] applied to (2.10a), (2.10b) gives, using 
(2.9): 

(2.16) [kb[]c2,,(~) ~< K1 (P1, K)[[~bD[[C2.'(~) ~< K1 (~1, K) 

(from now on we denote by  Ki functions which are bounded when their arguments  
vary in compacts subsets of (0, ~)).  

We shall define the quantities ~i, p2, K by applying Lemma 2.2 to (2.12) (with the 
obvious identifications of the coefficients and the right hand side). 
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The equation (2.12a) is uniformly elliptic in ~9 (with _a = 1/2) if 

(2.17) 1 g'(h(z)) iV~l ~ ~ 1 ~ Vxet~ 

or equivalently 

(2.18) IV~I <~ ~ / lp , (# )  Vxe~9 

hold. We now choose s = s(~,  ~ ,  ~) such Lhat 

(2.19) K~ (/~1, ]~)~ ~ u rain p'(~) 
~ ~ 2  

holds. Then, by (2.16) we conclude (2.18). 
We now estimate the coefficients of (2.12a): 

(2.20a) 

(2.20b) 

(221) 

g'(h(cy))  ~xi~x.i c o, ~ K2 (~1, to2, ,~)llv~ulI~o ~(~) ~ K~(~,  ~,  ,~) ~2, 

IIg ' (h(~))~%~co,~(~)  zg '(h(z)) ~< K~ (~1, ~2, K) ~2, 

) (V~ ,V~v ,  V~b l i ~  1 )l 
g'.(h(z) - - 7 -  ? + z~- ~ . = ~b~ V~bi L ~ (~) 

(2.22) IIQ(C~)IIL~ (~) < Ko II~II~, ~(~) < KT(p,, ,~) ~=. 

We set _v := h(_C) and obtain 

g(v) = C <. C(x) + Q(i~) 

inequality (2.15a) gives 

~(x) I> ;1, 

•1 := min (C, ~). 

g(~) = C >I C(x) 

since Q(~)>I 0. The left 
obtain 

(2.23) 

where we set 

(2.24) 

With ~ := h(C) we compute 

v(x) >i rain (h(_C), h(p)) and we 

and the right inequality (2.15a) gives 

v(x) <. Max (h(~, h(~)) + D1 IIQ(~)IIL ~ (~) ~< Max (h(C), h(~)) + Ks (K) s2 
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(from now on the dependence of K / o n  ~:1 is suppressed since ~1 was already defined in 
(2.24)). We now restrain s = s(~2, K)such that  

(2.25) Ks (K) ~2 ~< a 

holds where a > 0 is chosen so small that  Max (h(C), h(5)) + a is in the domain of g. 
Then we obtain 

(2.26) ~(x) ~< ~:2 

with 

(2.27) ~2 := g (max  (h(C), h(~)) + a) .  

Thus, we are left with f~xing K. Therefore we use (2.15b) with q > 3 / ( 1 -  ~) to 
estimate 

(2.28) [IVHw~.q(~) ~< Kg(][VDIIW2,q(~) + C + Kio(~:)~2 + ~ ) ,  

where K9 only depends on a product of the form KH (~) e (also, the dependence of Ki on 
~ is suppressed from now on). We now choose ~ = s(~) such that  K l l ( ~ ) e  ~ 1, 

K~0 (~)s~ ~< 1. Then we obtain from (2.28) 

(2.29) IIVHw~, q(~) <~ A(]lVn][w~, q(~) + C + 1 + ~ ) ,  

with A being independent of s and ~. 
Because of the compact imbedding we'q(~)-->CI'Z(-~) for q > 3 / ( 1 - ~ ) ,  we 

have 

(2.30) 

where we set 

(2.31) ~c = ~2 + ( max (Ig'(fl)l + Ig"(~)l))K~2A(lIh(~D)llw2.q(~) + ~ + 1 + ~2), 

where K12 is the bound of the imbedding. 
We thus proved that  the operator T is a self map ofA~l ' ~2, ~ if ~1, ~:2, K are chosen as 

in (2.24), (2.27) and (2.31) resp., and if s (cf. (2.9)) is sufficiently small. Then, 
T(A~I,~2,~) is precompact in C1'~(~) because, as mentioned above, the imbedding 
W 2, q(t~)--. C 1' ~(~) is compact. The continuity of T, regarded as a map of a subset of 
C1,~(~) into C 1, ~(~) can be proved by standard arguments based on W e, q-estimates 
for solutions of linear elliptic equation and are omitted here. 

Therefore, we conclude the existence of a fixed point of T from t h e  Schauder The- 
orem and the proof of Theorem 2.1 is completed. �9 

The local uniqueness result is stated in: 

THEOREM 2.2. - Let ~:., •. be arbitrary positive constants. Then, there exists ~ = 
= ~(K*, ~.) > 0 such that the solution (~,~:, r of (1.9), (1.10), (1.11), (2.7) is unique in 
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the set of functions 

c(5 )  x {~ ~ c 1, ~(~), II~lb,,(#) ~ K , ,  ~ ~> ~, } x c(5)  

if 

(2.32) 

holds. 

PROOF. - Let (~1, ~1, r (~2, ~2, r be two solutions in the considered class. 
We set ~ = ~1 - ~b~, f = P1 - P2, 7 = r - r Then, by subtracting the equations, we 
obtain the following boundary value problem: 

(2.33) 1V(~b~ + ~b2)'V~ + h' (~) fl = 7 + -~ , fla~ = O, 
7= 

(2.34) div (~1Va + five2) = 0, alan = 0, 

(2.35) Va, 

where ~ is between ~ and P2. 
We multiply (2.23) by f, (2,34) by a (2.35) by 7 - 7D and integrate 

(2.36) f p~ IV~12dx = - ~Vr 
, i  . #  

n 

1 I ~ f d x ,  (2.37) 
Q t~ Q t~ 

f -~l lfV(~l++2)'Wdx- f lVvl2dx+ fVr'V.dx. (2.38) ~ fit dx = 
. $  

Subtracting (2.38) from (2.37) gives 

(2.39) I h'( )f2dx + Ivrl2dx = 
n t~ 

We estimate (2.36): 

1 + f Vr V~'D dx T f ~fl dx 
Q ~2 

f ]V~ 12 dx ~< MIIv~II~(~)Ilfll~(~)IIWlIL~<~) (2.4O) 
t~ 

and thus 

(2.41) ]IV~][L2(Q) ~< MeHflI[L2(~) 

follows. Here and in the sequel we denote by M not necessarily equal constants, 
which only depend on the data and on K,, ~,. 



PIERRE DEGOND - PETER A. MARKOWICH: A steady state potential, etc. 97 

By using the Poincar6 inequality, we can therefore estimate the first term on the 
right hand side of (2.39) 

1 I (2.42) T afldx <~ M~I[~II~(o). 
t? 

We obtain for the second term 

(2.43) f Vy- V],, dx <~ IlV~[IL~<~)[IVYDIIL~(~) 

and from the definition (2.35) of ~'D 

(2.44) IIV~DIIL~<~) ~< mlkbl + ~b2[lw2.q(~)II~[IH~(~) -< M~II~IIH~(~). 

We carry out the divergence in (2.34) 

t~l A~ -'}- V~ l"Va  + ~/[,~2 -['- V/~'V~2 = 0 

and estimate 

We thus obtain using (2.41) 

(2.45) 11~lI.2<~)-< M~(I~IIL~(~)+ IIv~llL~<~)). 

We consider (2.33) with h'(D/~ replaced by h(~l) -h(~2) and apply the gradient: 

(2.46) V~" D + h'(p~)Vfl + h"(V)flVpe = V~. + 1Va ,  

where V is between ~ and ~2. Taking the L2-norm and using that h'(~l)>I ~ > 0 
gives 

(2.47) ~llv~[l~(~) -</l~ll~(~) + IIV~llL2(~) +/llWlIL~(~) + IIV~DIIL~(~). 

We use (2.44), (2.45), (2.41) and derive 

(2.48) ~[IV~]lL~,~> < Ml[ell/~,~)+ Ms eliv~llL~(~) + IIVdL~(~). 

Then, for z sufficiently small, we have 

(2.49) 

and from (2.45) 

(2.5O) 

We use (2.50) to estimate (2.44) and consequently (2.43): 

(2.51) f VT" VyD dx <~ Mz e(lINb(~) + [Iv~llb<~>). 
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Finally, we estimate (2.39) using (2.42), (2.51): 

(2.52) ~HflH~2(~) + IIvyIl~2(~) ~< MsHflH~2(a) + Mz 2 I[VyII2~(~) 

and conclude fl = y = a = 0 for s sufficiently small. �9 

From a practical standpoint the most severe restriction of the presented model is 
the assumption that  the velocity relaxation time z is constant. Note that, for non con- 
stant z, the equation (1.8) does not admit solutions if 

( V ~ b )  1 V z ( x ) •  (2.53) rot z - ~  - re(x) 

Thus, nonconstant relaxation times, in particular current and/or  density dependent 
models, are generally a source of vorticity. 
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