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A STEEPEST DESCENT METHOD
FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS

P. DEIFT AND X. ZHOU

In this announcement we present a general and new approach to analyzing

the asymptotics of oscillatory Riemann-Hilbert problems. Such problems arise,

in particular, in evaluating the long-time behavior of nonlinear wave equations

solvable by the inverse scattering method. We will restrict ourselves here exclu-

sively to the modified Korteweg de Vries (MKdV) equation,

yt - 6y2yx + yxxx = 0,        -oo < x < oo, t > 0,

y(x, t = 0)=y0(x),

but it will be clear immediately to the reader with some experience in the field,

that the method extends naturally and easily to the general class of wave equa-

tions solvable by the inverse scattering method, such as the KdV, nonlinear

Schrödinger (NLS), and Boussinesq equations, etc., and also to "integrable"

ordinary differential equations such as the Painlevé transcendents.

As described, for example, in [IN] or [BC], the inverse scattering method for

the MKdV equation leads to a Riemann-Hilbert factorization problem for a

2x2 matrix valued function m = m(- ; x, t) analytic in C\R,

m+(z) = m-(z)vXJ,        zgR,|

m(z) —► /   asz—>oo, J

m±(z) = lim m(z ±ie; x, t),
£10

VXit(z) = e-^'zi+x2)a}v^zy(4tz'+xz)ai ^ ffj _  Í 1      ^>   \

and _

If yo(x) is in Schwartz space, then so is r(z) and

r(z) = -r(-z),        sup \r(z)\ < 1.
zeR

From the inverse point of view, given v(z), one considers a singular integral
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(1)

where
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equation (see [BC]) for the associated quantity p{z ; x, t) = m+(z ; x, t)(b+l)x>t

= m-{z ; x, t){bZx)x,t and the solution of the inverse problem is then given by

(2) y{x, t)= Í (73, / fi(z;x,t)wX)t(z)-^-.

where

wXJ = (w+)Xt, + (w-)x>t,        w± = ±(b± -1).

Significant work on the long-time behavior of nonlinear wave equations solv-

able by the inverse scattering method, was first carried out by Manakov [M]

and by Ablowitz and Newell [AN] in 1973. The decisive step was taken in 1976
when Zakharov and Manakov [ZM] were able to write down precise formulae,

depending explicitly on the initial data, for the leading asymptotics for the KdV,

NLS, and sine-Gordon equations, in the physically interesting region x = 0{t).

A complete description of the leading asymptotics of the solution of the Cauchy
problem, with connection formulae between different asymptotic regions, was

presented by Ablowitz and Segur [AS], but without precise information on the

phase. The asymptotic formulae of Zakharov and Manakov were rigorously

justified and extended to all orders by Buslaev and Sukhanov [BS 1-2] in the

case of the KdV equation, and by Novokshenov [N] in the case of NLS.

The method of Zakharov and Manakov, pursued rigorously in [BS] and in

[N], involves an ansatz for the asymptotic form of the solution and utilizes tech-

niques that are somewhat removed from the classical framework of Riemann-

Hilbert problems. In 1981, Its [I] returned to a method first proposed in 1973

by Manakov in [M], which was tied more closely to standard methods for the

inverse problem. In [I] the Riemann-Hilbert problem was conjugated, up to

small errors which decay as t —► oo , by an appropriate parametrix, to a simpler

Riemann-Hilbert problem, which in turn was solved explicitly by techniques

from the theory of isomonodromic deformations. This technique provides a

viable, and in principle, rigorous approach to the question of long-time asymp-
totics for a wide class of nonlinear wave equations (see [IN]). Finally we note

that in [B], Buslaev derived asymptotic formulae for the KdV equation from

an exact determinant formula for the solution of the inverse problem.

In our approach we consider the Riemann-Hilbert problem ( 1 ) directly, and

by deforming contours in the spirit of the classical method of steepest descent,
we show how to extract the leading asymptotics of the MKdV equation. In

particular for x < 0, let ±z0 — ±y/\x\/\2t be the stationary phase points for

i(4tz3 + xz). Then the first step in our method is to show that (1) can be

deformed to a Riemann-Hilbert problem on a contour Z of shape (see Figure

1 ), in such a way that the jump matrices vxt t on RcE and on the compact part

Figure 1

j\
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Figure 2

of L\R away from ±z0 , converge rapidly to the identity as t —► oo . Thus we are

left with a Riemann-Hilbert problem on a pair of crosses YA \SLB (see Figure 2).

As t —> oo , the interaction between Z-4 and ZB goes to zero to higher order and

the contribution to y(x, t) through (2) is simply the sum of the contributions
from JA and Ia separately. Under the scalings z —► z(48íz0)~1/2 T z0, the

problems on I.A and ZB are reduced to problems on a fixed cross, with jump

matrices which are independent of time, and which can be solved explicitly in

terms of parabolic cylinder functions, as in [I]. Substitution in (2) yields, finally,
the asymptotics for y{x, t).

Our result is the following: let
it 1   fz°

</>(z0) - aigr(iiz) - - - argr(zo) + - /     log|j - z0|¿(log(l - \r(s)\2)
71 J-za

(here Y is the standard gamma function) and let

( v y/2

Va= \Jtz~o)     cos(16'zo - ^log(192íz¿) + 0(zo)),

where  v = -(2k)-1 log(l - |r(z0)|2) > 0.   Set  t = tz\ = (|jc|/12rx/3)3/2.

Theorem. Let yo{x) lie in Schwartz space with reflection coefficient r(z). As

t -> oo, the solution y(x, t) o/MKdV with initial data y0(x), has uniform

leading asymptotics conveniently described at fixed t » \, in the six regions
shown in Figure 3.

jf<0 jc = 0 x>0

z0>M_1,x^-oo   (A/')"1 < i = 0(/2/5)

III

z0 < M, x > (M'y

VII "l IV v VI

zn<Ai, x->°° x<M' z>M~\x^>

Figure 3

In region I, for any j,

y(x ,t)=ya + 0{{-x)-J + (-x)-y4Cj(~x/t))

where C/(«) is rapidly decreasing. In region II,

y(x,t) = ya + (tz0)-V2O(T-1'4).

In region III,

y(x, 0 = (30"1/3/K*/(3i)1/3) + 0(r2^/t2^),

where p is a Painlevé function of type II.
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In region IV,

y(x, t) = (30_1/V(x/(301/3) + 0(r2'3).

In region V, for any j,

y(x, t) = (3f)"1/3pO/(3i)1/3) + 0(rj + r2'3*-12***")

for some n > 0.
Finally, in region VI, for any j,

y(x, 0 = 0((x + t)-J).   D

Remark 1. The reader may check that in the overlap regions the asymptotic

forms do indeed match. Also the reader may check that in regions II and IV,

the formulae for the leading asymptotics agree with those in [IN].

Remark 2. The above error estimates are not the best possible and in region II

in particular, the t-1/4 decay can certainly be improved.

Remark 3. There is no obstacle in the method to obtaining an asymptotic

expansion for y(x, t) to all orders.

Remark 4. As noted at the beginning of this announcement, the method we

have presented extends naturally to the general class of nonlinear wave equa-

tions solvable by the inverse scattering method. Also, there is no difficulty in

incorporating solutions with solitons.
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